Image Processing Toolbox™
Reference

MATLAB

R2019%a > ) MathWorks:



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Processing Toolbox™ Reference
© COPYRIGHT 1993-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

August 1993
May 1997

April 2001

June 2001

July 2002

May 2003
September 2003
June 2004
August 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

First printing
Second printing
Third printing
Online only
Online only
Fourth printing
Online only
Online only
Online only
Fifth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Version 1

Version 2

Revised for Version 3.0

Revised for Version 3.1 (Release 12.1)
Revised for Version 3.2 (Release 13)
Revised for Version 4.0 (Release 13.0.1)
Revised for Version 4.1 (Release 13.SP1)
Revised for Version 4.2 (Release 14)
Revised for Version 5.0 (Release 14+)
Revised for Version 5.0.1 (Release 14SP1)
Revised for Version 5.0.2 (Release 14SP2)
Revised for Version 5.1 (Release 14SP3)
Revised for Version 5.2 (Release 2006a)
Revised for Version 5.3 (Release 2006Db)
Revised for Version 5.4 (Release 2007a)
Revised for Version 6.0 (Release 2007Db)
Revised for Version 6.1 (Release 2008a)
Revised for Version 6.2 (Release 2008Db)
Revised for Version 6.3 (Release 2009a)
Revised for Version 6.4 (Release 2009Db)
Revised for Version 7.0 (Release 2010a)
Revised for Version 7.1 (Release 2010Db)
Revised for Version 7.2 (Release 2011a)
Revised for Version 7.3 (Release 2011Db)
Revised for Version 8.0 (Release 2012a)
Revised for Version 8.1 (Release 2012b)
Revised for Version 8.2 (Release 2013a)
Revised for Version 8.3 (Release 2013b)
Revised for Version 9.0 (Release 2014a)
Revised for Version 9.1 (Release 2014b)
Revised for Version 9.2 (Release 2015a)
Revised for Version 9.3 (Release 2015b)
Revised for Version 9.4 (Release 2016a)
Revised for Version 9.5 (Release 2016b)
Revised for Version 10.0 (Release 2017a)
Revised for Version 10.1 (Release 2017b)
Revised for Version 10.2 (Release 2018a)
Revised for Version 10.3 (Release 2018b)
Revised for Version 10.4 (Release 2019a)






Functions — Alphabetical List

1]






Functions — Alphabetical List




1 Functions — Alphabetical List

1-2

Color Thresholder

Threshold a color image

Description

The Color Thresholder app lets you threshold color images by manipulating the color
components of these images, based on different color spaces. Using this app, you can
create a segmentation mask for a color image.

Open the Color Thresholder App

¢ MATLAB® Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Color Thresholder app icon.

* MATLAB command prompt: Enter colorThresholder.

Examples

. “Image Segmentation Using the Color Thresholder App”

Programmatic Use

colorThresholder opens the Color Thresholder app, which enables you to create a
segmentation mask of a color image based on the exploration of different color spaces.

colorThresholder (RGB) opens the Color Thresholder app, loading the image RGB into
the app.

colorThresholder close closes all open instances of the Color Thresholder app.



Color Thresholder

See Also

Apps
Image Segmenter

Functions
imcontrast

Topics
“Image Segmentation Using the Color Thresholder App”

Introduced in R2014a

1-3



1 Functions — Alphabetical List

1-4

DICOM Browser

Explore collection of DICOM files

Description

The DICOM Browser app lets you explore the contents of collections of DICOM files. The
app sorts images by study and series. You can select a series and save it to the MATLAB
workspace. The DICOM Browser stores the data as a volume, with separate variables for
a colormap and for spatial details.

Open the DICOM Browser App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the DICOM Browser app icon.

* MATLAB command prompt: Enter dicomBrowser.

Examples

Explore by Folder Name
Open the DICOM Browser, displaying DICOM files from the sample image folder.

dicomBrowser(fullfile(matlabroot, 'toolbox/images/imdata'))
Explore by DICOMDIR File
Open the DICOM Browser and explore a DICOM folder by using the DICOMDIR file.

dicomBrowser(fullfile(matlabroot, 'toolbox/images/imdata/DICOMDIR"))

Programmatic Use

dicomBrowser opens the DICOM Browser app for exploring the contents of collections
of DICOM files.



DICOM Browser

dicomBrowser (DIR) opens the DICOM Browser app, displaying details about the files in
the folder DIR and its subfolders. DIR can contain a full path name, a relative path name
to the file, or the name of a file on the MATLAB search path.

dicomBrowser (DICOMDIR) opens the DICOM Browser app and gathers details from the
DICOM directory file, named DICOMDIR. A DICOM directory file is a special DICOM file
that serves as a directory to a collection of DICOM files stored on removable media, such
as CD/DVD ROMs. DICOMDIR can contain a full path name or a relative path name to the
file. The name of this file is DICOMDIR, with no file extension.

See Also

Apps

Functions
dicomanon |dicomdict | dicomdisp | dicominfo | dicomlookup | dicomuid |
dicomwrite

Introduced in R2017b

1-5



1 Functions — Alphabetical List

1-6

Image Batch Processor

Apply a function to multiple images

Description

The Image Batch Processor app lets you process a folder of images using a function you
specify. The function must have the following signature: out = fcn(in). The app
creates an output folder containing the processed images, using the same name and
subfolder structure as the input folder.

Open the Image Batch Processor App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Image Batch Processor app icon.

* MATLAB command prompt: Enter imageBatchProcessor.

Examples

. “Batch Processing Using the Image Batch Processor App”

Programmatic Use

imageBatchProcessor opens the Image Batch Processor app, which enables you to
process a folder of images.

imageBatchProcessor close closes all open instances of the Image Batch Processor
app.

See Also

Functions
imread | imwrite



Image Batch Processor

Topics
“Batch Processing Using the Image Batch Processor App”

Introduced in R2015a

1-7



1 Functions — Alphabetical List

1-8

Image Browser

Browse images using thumbnails

Description

The Image Browser app lets you view thumbnails of all the images in a particular folder
or image datastore. Once displayed in the app, you can select an image and open it in one
of several Image Processing Toolbox apps. You can save images displayed in the app to
the MATLAB workspace as an ImageDatastore object.

Open the Image Browser App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Image Browser app icon.

* MATLAB command prompt: Enter imageBrowser.

Programmatic Use
imageBrowser opens the Image Browser app.

imageBrowser(folder) opens the Image Browser app with all images in the folder,
folder, loaded.

imageBrowser(imds) opens the Image Browser app with all images in the image
datastore, imds, loaded.

See Also

Apps
Image Batch Processor

Functions
imageDatastore



Image Browser

Topics
“View Thumbnails of Images in Folder or Datastore”
“Getting Started with Datastore” (MATLAB)

Introduced in R2016b

1-9



1 Functions — Alphabetical List

Image Segmenter

Segment an image by refining regions

Description

The Image Segmenter app lets you segment an image using the active contours (also
called snakes) algorithm. Using this app, you first create an initial segmentation that
defines seed locations and then segment the image iteratively.

Open the Image Segmenter App

* MATLAB Toolstrip: Open the Apps tab, under Image Processing and Computer
Vision, click the Image Segmenter app icon.

* MATLAB command prompt: Enter imageSegmenter.

Examples

. “Image Segmentation Using the Image Segmenter App”

Programmatic Use

imageSegmenter opens the Image Segmenter app, which enables you to create a
segmentation mask of an image by using active contours.

imageSegmenter(I) opens the Image Segmenter app, loading the image I into the app.

imageSegmenter close closes all open instances of the Image Segmenter app.

1-10



Image Segmenter

See Also

Functions
activecontour | grabcut | grayconnected | imbinarize | imfindcircles |
lazysnapping

Topics
“Image Segmentation Using the Image Segmenter App”

Introduced in R2014b

1-11



1 Functions — Alphabetical List

1-12

Image Region Analyzer

Browse and filter connected components in an image

Description

The Image Region Analyzer app measures a set of properties for each connected
component (also called an object or region) in a binary image and displays this
information in a table. You can also use this app to create other binary images by filtering
the image on region properties.

Open the Image Region Analyzer App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Image Region Analyzer app icon.

* MATLAB command prompt: Enter imageRegionAnalyzer.

Examples
. “Calculate Region Properties Using Image Region Analyzer”
. “Filter Images on Region Properties Using Image Region Analyzer App”

Programmatic Use

imageRegionAnalyzer opens the Image Region Analyzer app, which enables you to
create other binary images and get information about the regions within binary images.

imageRegionAnalyzer(I) opens the Image Region Analyzer app, loading the image I
into the app.

imageRegionAnalyzer close closes all open instances of the Image Region Analyzer
app.



Image Region Analyzer

See Also

Functions
bwareafilt | bwpropfilt | regionprops

Topics
“Calculate Region Properties Using Image Region Analyzer”

“Filter Images on Region Properties Using Image Region Analyzer App”

Introduced in R2014b

1-13



1 Functions — Alphabetical List

Image Viewer

View and explore images

Description

The Image Viewer app provides image display capabilities as well as access to several
tools for navigating and exploring images, and performing some common image
processing tasks.

Open the Image Viewer App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Image Viewer app icon.

* MATLAB command prompt: Enter imtool.

Examples

. “Explore Images with Image Viewer App”

Programmatic Use

imtool

See Also

Apps
Video Viewer

Functions
imshow

1-14



Image Viewer

Topics
“Explore Images with Image Viewer App”

Introduced in R2014b

1-15



1 Functions — Alphabetical List

1-16

Registration Estimator

Register 2-D grayscale images

Description

The Registration Estimator app aligns 2-D grayscale images using automatic image
registration. Using this app, you can:

* Compare feature-based, intensity-based, and nonrigid registration techniques
interactively
* Obtain the registered image and the geometric transformation

Feature-Based Techniques

Registration Estimator app offers six registration techniques that use feature detection
and matching:

* FAST

* MinEigen

* Harris

* BRISK

* SURF

* MSER

Intensity-Based Techniques

Registration Estimator app offers three registration techniques that use intensity metric
optimization:

* Monomodal intensity

* Multimodal intensity

* Phase correlation

For more details of the available techniques, see “Techniques Supported by Registration
Estimator App”.



Registration Estimator

Open the Registration Estimator App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Registration Estimator app icon.

* MATLAB command prompt: Enter registrationEstimator.

Examples

. “Register Images Using the Registration Estimator App”

Programmatic Use

registrationEstimator opens the Registration Estimator app, which enables you to
perform intensity-based, feature-based, and nonrigid image registration.

registrationEstimator (MOVING, FIXED) opens the Registration Estimator app,
loading the grayscale images MOVING and FIXED into the app.

registrationEstimator close closes all open instances of the Registration
Estimator app.

See Also

Functions
imregconfig | imregdemons | imregister | imregtform | imwarp

Topics
“Register Images Using the Registration Estimator App”
“Techniques Supported by Registration Estimator App”

Introduced in R2017a

1-17



1 Functions — Alphabetical List

Video Viewer

View videos and image sequences

Description

The Video Viewer app plays movies, videos, or image sequences. Using Video Viewer you
can select the movie or image sequence that you want to play, jump to a specific frame in
the sequence, change the frame rate of the display, or perform other viewing activities.

Open the Video Viewer App

* MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer
Vision, click the Video Viewer app icon.

* MATLAB command prompt: Enter implay.

Examples

. “View Image Sequences in Video Viewer App”

Programmatic Use

implay

See Also

Apps
Image Viewer

Functions
implay

1-18



Video Viewer

Topics
“View Image Sequences in Video Viewer App”

Introduced in R2014b

1-19



1 Functions — Alphabetical List

Volume Viewer

View volumetric data and labeled volumetric data

Description

The Volume Viewer app lets you view 3-D volumetric data and 3-D labeled volumetric
data. Using this app, you can view the data as a volume or as plane slices. You can also
view the data as a maximum intensity projection or an isosurface. Using the Rendering
Editor component you can manipulate opacity to see the structures in the volume that you
want to see and make transparent those structures in the volume that you do not want to
see.

Open the Volume Viewer App

* MATLAB toolstrip: Open the Apps tab, under Image Processing and Computer
Vision, click the Volume Viewer app icon.

* MATLAB command prompt: Enter volumeViewer.

Examples

Load Labeled Volume into Volume Viewer
1 Load alabeled volume into the workspace.

load(fullfile(toolboxdir('images'), 'imdata', 'BrainMRILabeled', 'labels', 'label 001.n
2 Open the labeled volume in the Volume Viewer. Use the 'VolumeType' parameter to
identify the volume as a labeled volume.

volumeViewer(label, 'VolumeType', 'labels')

“Explore 3-D Volumetric Data with Volume Viewer App”

“Explore 3-D Labeled Volumetric Data with Volume Viewer App”

1-20



Volume Viewer

Programmatic Use
volumeViewer opens a volume visualization app.

volumeViewer (V) loads the intensity volume V into the app. V is a scalar-valued m-by-n-
by-p image of class logical, uint8, uintl16, uint32, int8, int16, int32, single, or
double.

volumeViewer (V,L) loads the intensity volume V and the labeled volume L into the
Volume Viewer. L is a scalar-valued m-by-n-by-p image of class categorical, uintsg,
uintl6, uint32, int8, intl16, int32, single, or double

volumeViewer(  ,'VolumeType',vtype) loads the volumetric data into the app,
where 'VolumeType' defines the type of volume being loaded. vtype can be either
'"Volume' or 'Labels'. If the volume is of class categorical, the default VolumeType
is 'Labels"'. For volumes of any other class, the default VolumeType is 'Volume'. If
you specify both an intensity volume and a labeled volume, the Volume Viewer ignores
this name-value pair

volumeViewer ( , 'ScaleFactors',sfactors) loads the volumetric data into the

app, where 'ScaleFactors' specifies the scale factors used to rescale volumes.
'ScaleFactors' is a 1-by-3 positive numeric array of the form [x y z], where the
values are scale factors applied in the x, y, and z directions. The default valueis [1 1 1].
If 'VolumeType' is 'Labels’, the Volume Viewer ignores this name-value pair.

volumeViewer close closes all open Volume Viewer apps.

See Also

Functions
isosurface | labelvolshow | slice | volshow

Topics
“Explore 3-D Volumetric Data with Volume Viewer App”
“Explore 3-D Labeled Volumetric Data with Volume Viewer App”

Introduced in R2017a

1-21



1 Functions — Alphabetical List

1-22

activecontour

Segment image into foreground and background using active contours (snakes)

Syntax

bw = activecontour(A,mask)

bw = activecontour(A,mask,n)

bw = activecontour(A,mask,method)
bw = activecontour(A,mask,n,method)
(_

bw = activecontour ,Name, Value)

Description

bw = activecontour(A,mask) segments the image A into foreground (object) and
background regions using active contours. Using the active contour algorithm, also called
snakes, you specify curves on the image that move to find object boundaries. The
activecontour function evolves the segmentation using an iterative process and, by
default, activecontour performs 100 iterations.

The mask argument is a binary image that specifies the initial state of the active contour.
The boundaries of the object regions (white) in mask define the initial contour position
used for contour evolution to segment the image. The output image bw is a binary image
where the foreground is white (logical true) and the background is black (logical false).

To obtain faster and more accurate segmentation results, specify an initial contour
position that is close to the desired object boundaries.

bw = activecontour(A,mask,n) segments the image by evolving the contour for a
maximum of n iterations.

bw = activecontour(A,mask,method) specifies the active contour method used for
segmentation, either 'Chan-Vese' or 'edge’.

bw = activecontour(A,mask,n,method) segments the image by evolving the
contour for a maximum of n iterations using the specified method.



activecontour

bw = activecontour( ,Name, Value) specifies parameters that control various
aspects of the segmentation. Parameter names can be abbreviated, and case does not
matter.

Examples

Segment an Image Specifying the Mask

This example shows how to segment an image using the default settings of the
activecontour function.

Read a grayscale image and display it.

I = imread('coins.png');
imshow(I)
title('Original Image')

Original Image

1-23



1 Functions — Alphabetical List

Specify the initial contour and display it.
mask = zeros(size(I));
mask(25:end-25,25:end-25) = 1;
figure

imshow(mask)
title('Initial Contour Location')

Initial Contour Location

Segment the image using the default method and 300 iterations.
bw = activecontour(I,mask,300);

Display the result.

figure

imshow (bw)
title('Segmented Image')

1-24



activecontour

Segmented Image

Segment Image Overlaying Mask and Contour on Original Image
Read image and display it.

I = imread('toyobjects.png');

imshow(I)

hold on
title('Original Image');

1-25



1 Functions — Alphabetical List

Original Image

Specify initial contour location close to the object that is to be segmented.

mask = false(size(I));
mask(50:150,40:170) = true;

Display the initial contour on the original image in blue.

visboundaries(mask, 'Color','b");

1-26



activecontour

Original Image

Segment the image using the 'edge' method and 200 iterations.
bw = activecontour(I, mask, 200, 'edge');
Display the final contour on the original image in red.

visboundaries(bw, ‘Color', 'r");
title('Initial contour (blue) and final contour (red)');

1-27



1 Functions — Alphabetical List

Initial contour (blue) and final contour (red)

Display segmented image.

figure, imshow(bw)
title('Segmented Image');

1-28



activecontour

Segmented Image

Segment an Image Specifying a Polygonal Mask Created Interactively

Read image into the workspace and display it. Display instructions to specify initial
contour location.

I = imread('toyobjects.png');
imshow(I)

1-29



1 Functions — Alphabetical List

str = 'Click to select initial contour location. Double-click to confirm and proceed."'

title(str, 'Color','b', 'FontSize',12);
disp(sprintf('\nNote: Click close to object boundaries for more accurate result.'))

Click to select initial contour location. Double-click to confirm and proceed.

Specify initial contour interactively.
mask = roipoly;

figure, imshow(mask)
title('Initial MASK');

1-30



activecontour

Initial MASK

Segment the image, specifying 200 iterations.

maxIterations = 200;
bw = activecontour(I, mask, maxIterations, 'Chan-Vese');

% Display segmented image

figure, imshow(bw)
title('Segmented Image');

1-31



1 Functions — Alphabetical List

Segmented Image

Perform 3-D Segmentation Using 2-D Initial Seed Mask

Load 3-D volumetric image data, removing the singleton dimension.

D = load('mri.mat');
A = squeeze(D.D);

Create 2-D mask for initial seed points.

seedLevel = 10;
seed = A(:,:,seedLevel) > 75;

1-32



activecontour

figure
imshow(seed)

Create an empty 3-D seed mask and put the seed points into it.

mask = zeros(size(A));
mask(:,:,seedLevel) = seed;

Perform the segmentation using active contours, specifying the seed mask.

bw = activecontour(A,mask,300);

Display the 3-D segmented image.

figure;
p = patch(isosurface(double(bw)));
p.FaceColor = 'red';

p.EdgeColor = 'none';
daspect([1 1 27/128]);
camlight;

lighting phong

1-33



1 Functions — Alphabetical List

140 1

1201

100

207

0 20 40 60 80 100 120

Input Arguments

A — Image to be segmented
nonsparse, 2-D or 3-D, numeric array

Image to segmented, specified as a nonsparse, 2-D or 3-D, numeric array.
Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32

mask — Initial contour at which the evolution of the segmentation begins
binary image

1-34



activecontour

Initial contour at which the evolution of the segmentation begins, specified as a binary
image the same size as A.

For 2-D and 3-D grayscale images, the size of mask must match the size of the image A.
For color and multi-channel images, mask must be a 2-D logical array where the first two
dimensions match the first two dimensions of the image A.

Data Types: logical

n — Maximum number of iterations to perform in evolution of the segmentation
100 (default) | numeric scalar.

Maximum number of iterations to perform in evolution of the segmentation, specified as a
numeric scalar. activecontour stops the evolution of the active contour when it reaches
the maximum number of iterations. activecontour also stops the evolution if the
contour position in the current iteration is the same as the contour position in one of the
most recent five iterations.

If the initial contour position (specified by mask) is far from the object boundaries, specify
higher values of n to achieve desired segmentation results.

Data Types: double

method — Active contour method used for segmentation
‘Chan-Vese' (default) | 'edge’

Active contour method used for segmentation, specified as 'Chan-Vese' or 'edge'. The
Chan and Vese region-based energy model is described in [1] on page 1-37. The edge-
based model, similar to Geodesic Active Contour, is described in [2] on page 1-37.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: bw = activecontour(I, mask, 200, 'edge', 'SmoothFactor',1.5);

1-35



1 Functions — Alphabetical List

1-36

SmoothFactor — Degree of smoothness or regularity of the boundaries of the
segmented regions
0, for 'Chan-Vese'; 1 for 'edge' (default) | positive numeric scalar

Degree of smoothness or regularity of the boundaries of the segmented regions, specified
as the comma-separated pair consisting of 'SmoothFactor' and a positive numeric
scalar. Higher values produce smoother region boundaries but can also smooth out finer
details. Lower values produce more irregularities (less smoothing) in the region
boundaries but allow finer details to be captured. The default smoothness value depends
on the method chosen.

Example: bw = activecontour(I, mask, 200, 'edge', 'SmoothFactor',1.5);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ContractionBias — Tendency of the contour to grow outwards or shrink inwards
0, for 'Chan-Vese'; 0.3 for 'edge"' (default) | scalar

Tendency of the contour to grow outwards or shrink inwards, specified as the comma-
separated pair consisting of 'ContractionBias"' and a scalar. Positive values bias the
contour to shrink inwards (contract). Negative values bias the contour to grow outwards
(expand). This parameter does not guarantee that the contour contracts (or expands). It is
possible that even with a positive value for this parameter, the contour could actually
expand. However, by specifying a bias, you slow the expansion when compared to an
unbiased contour. Typical values for this parameter are between -1 and 1.

Example: bw = activecontour(I, mask, 200,
‘edge', 'ContractionBias',0.4);

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32

Output Arguments

bw — Segmented image
binary image the same size as the input image A.

Segmented image, returned as a binary image the same size as the input image A. The
foreground is white (logical true) and the background is black (logical false).



activecontour

Tips

activecontour uses the boundaries of the regions in mask as the initial state of the
contour from where the evolution starts. mask regions with holes can cause
unpredictable results. Use imfill to fill any holes in the regions in mask.

If a region touches the image borders, activecontour removes a single-pixel layer
from the region, before further processing, so that the region does not touch the
image border.

To get faster and more accurate results, specify an initial contour position that is close
to the desired object boundaries, especially for the 'edge' method.

For the 'edge' method, the active contour is naturally biased towards shrinking
inwards (collapsing). In the absence of any image gradient, the active contour shrinks
on its own. Conversely, with the 'Chan-Vese' method, where the contour is unbiased,
the contour is free to either shrink or expand based on the image features.

To achieve an accurate segmentation with the 'edge' method, specify an initial
contour that lies outside the boundaries of the object. The active contour with the
'edge’' method is biased to shrink, by default.

If object regions are of significantly different grayscale intensities, the 'Chan-Vese'
method [1] might not segment all objects in the image. For example, if the image
contains objects that are brighter than the background and some that are darker, the
'Chan-Vese' method typically segments out either the dark or the bright objects
only.

Algorithms

activecontour uses the Sparse-Field level-set method, similar to the method described
in [3], for implementing active contour evolution.

References

[1]1 T F Chan, L. A. Vese, Active contours without edges. IEEE Transactions on Image

Processing, Volume 10, Issue 2, pp. 266-277, 2001

[2] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. International Journal of

Computer Vision, Volume 22, Issue 1, pp. 61-79, 1997.

1-37



1 Functions — Alphabetical List

[3] R. T. Whitaker, A level-set approach to 3d reconstruction from range data.
International Journal of Computer Vision, Volume 29, Issue 3, pp.203-231, 1998.

See Also

Image Segmenter | imellipse | imfreehand | multithresh | poly2mask | roipoly

Introduced in R2013a

1-38



adapthisteq

adapthisteq

Contrast-limited adaptive histogram equalization (CLAHE)

Syntax
J = adapthisteq(I)
J = adapthisteq(I,Name,Value)

Description

J = adapthisteq(I) enhances the contrast of the grayscale image I by transforming
the values using contrast-limited adaptive histogram equalization (CLAHE) [1].

J = adapthisteq(I,Name,Value) specifies additional name-value pairs. Parameter
names can be abbreviated, and case does not matter.

Examples

Apply Contrast-Limited Adaptive Histogram Equalization (CLAHE)

Apply CLAHE to an image and display the results.

I imread('tire.tif');

J adapthisteq(I, 'clipLimit',0.02, 'Distribution', 'rayleigh');
imshowpair(I,J, 'montage');

title('Original Image (left) and Contrast Enhanced Image (right)')

1-39



1 Functions — Alphabetical List

1-40

Original Image (left) and Contrast Enhanced Image (right)

Apply CLAHE to Indexed Color Image

Read the indexed color image into the workspace.
[X, MAP] = imread('shadow.tif');

Convert the indexed image into a truecolor (RGB) image, then convert the RGB image
into the L*a*b* color space.

RGB
LAB

ind2rgb(X,MAP);
rgb2lab(RGB) ;

Scale values to the range expected by the adapthisteq function, [0 1].
L = LAB(:,:,1)/100;

Perform CLAHE on the L channel. Scale the result to get back to the range used by the
L*a*b* color space.

L = adapthisteq(L, ‘NumTiles',[8 8], 'ClipLimit',0.005);
LAB(:,:,1) = L*100;



adapthisteq

Convert the resulting image back into the RGB color space.
J = lab2rgb(LAB);
Display the original image and the processed image.

figure
imshowpair(RGB,J, 'montage")
title('Original (left) and Contrast Enhanced (right) Image')

ight} Image

Original (left) and Contrast Enhanced (ri

Shadows in the enhanced image look darker and highlights look brighter. The overall
contrast is improved.

Input Arguments

I — Input Image
2-D array

Input intensity image, specified as a numeric 2-D array.

Data Types: single | double | int1l6 | uint8 | uintl6

1-41



1 Functions — Alphabetical List

1-42

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'NumTiles', [8 16] divides the image into 8 rows and 16 columns of tiles.

NumTiles — Number of tiles
[8,8] (default) | 2-element vector of positive integers

Number of rectangular contextual regions (tiles) into which adapthisteq divides the
image, specified as a 2-element vector of positive integers. With the original image
divided into M rows and N columns of tiles, the value of 'NumTiles' is [M N]. Both M and
N must be at least 2. The total number of tiles is equal to M*N. The optimal number of tiles
depends on the type of the input image, and it is best determined through
experimentation.

Data Types: double

ClipLimit — Contrast enhancement limit
0.01 (default) | real scalar

Contrast enhancement limit, specified as a real scalar in the range [0, 1]. Higher limits
result in more contrast.

"ClipLimit’ is a contrast factor that prevents oversaturation of the image specifically
in homogeneous areas. These areas are characterized by a high peak in the histogram of
the particular image tile due to many pixels falling inside the same gray level range.
Without the clip limit, the adaptive histogram equalization technique could produce
results that, in some cases, are worse than the original image.

Data Types: double

NBins — Number of histogram bins used to build a contrast enhancing
transformation
256 (default) | positive integer scalar

Number of histogram bins used to build a contrast enhancing transformation, specified as
a positive integer scalar. Higher values result in greater dynamic range at the cost of
slower processing speed.



adapthisteq

Data Types: double

Range — Range of output data
"full' (default) | 'original’

Range of the output image data, specified as one of the following values:

Value Description

"full' Use the full range of the output class (e.g. [0 255] for
uint8).

‘original’ Limit the range to [min(I(:)) max(I(:))].

Data Types: char | string

Distribution — Desired histogram shape
‘uniform' (default) | 'rayleigh' | 'exponential'’

Desired histogram shape, specified as one of the following values:

Value Description

‘uniform’ Create a flat histogram.
'rayleigh’ Create a bell-shaped histogram.
'exponential’ Create a curved histogram.

'Distribution’ specifies the distribution that adapthisteq uses as the basis for
creating the contrast transform function. The distribution you select should depend on
the type of the input image. For example, underwater imagery appears to look more
natural when the Rayleigh distribution is used.

Data Types: char | string

Alpha — Distribution parameter
0.4 (default) | nonnegative real scalar

Distribution parameter, specified as a nonnegative real scalar. 'Alpha' is only used when
'Distribution' issetto 'rayleigh' or 'exponential’.

Data Types: double

1-43



1 Functions — Alphabetical List

1-44

Output Arguments

J — Output intensity image
2-D array

Output intensity image, returned as a 2-D array of the same class as the input image I.

Algorithms

CLAHE operates on small regions in the image, called tiles, rather than the entire image.
adapthisteq calculates the contrast transform function for each tile individually. Each
tile's contrast is enhanced, so that the histogram of the output region approximately
matches the histogram specified by the 'Distribution’' value. The neighboring tiles
are then combined using bilinear interpolation to eliminate artificially induced
boundaries. The contrast, especially in homogeneous areas, can be limited to avoid
amplifying any noise that might be present in the image.

References

[1] Zuiderveld, Karel. “Contrast Limited Adaptive Histograph Equalization.” Graphic
Gems IV. San Diego: Academic Press Professional, 1994. 474-485.

See Also
histeq

Introduced before R2006a



adaptthresh

adaptthresh

Adaptive image threshold using local first-order statistics

Syntax

T = adaptthresh(I)

T = adaptthresh(I,sensitivity)
T = adaptthresh( __ ,Name,Value)
Description

T = adaptthresh(I) computes a locally adaptive threshold for 2-D grayscale image or
3-D grayscale volume I. The adaptthresh function chooses the threshold based on the
local mean intensity (first-order statistics) in the neighborhood of each pixel. The
threshold T can be used with the imbinarize function to convert the grayscale image to
a binary image.

T = adaptthresh(I,sensitivity) computes a locally adaptive threshold with
sensitivity factor specified by sensitivity. sensitivity is a scalar in the range [0,1]
that indicates sensitivity towards thresholding more pixels as foreground.

T = adaptthresh(  ,Name,Value) computes a locally adaptive threshold using
name-value pairs to control aspects of the thresholding.

Examples

Find Threshold and Segment Bright Rice Grains from Dark Background
Read image into the workspace.
I = imread('rice.png');

Use adaptthresh to determine threshold to use in binarization operation.

1-45



1 Functions — Alphabetical List

1-46

T = adaptthresh(I, 0.4);

Convert image to binary image, specifying the threshold value.
BW = imbinarize(I,T);

Display the original image with the binary version, side-by-side.

figure
imshowpair(I, BW, 'montage')

Find Threshold and Segment Dark Text from Bright Background
Read image into the workspace.
I = imread('printedtext.png’);

Using adaptthresh compute adaptive threshold and display the local threshold image.
This represents an estimate of average background illumination.



adaptthresh

T = adaptthresh(I,0.4, 'ForegroundPolarity', 'dark");
figure
imshow(T)

Binarize image using locally adaptive threshold
BW = imbinarize(I,T);

figure
imshow (BW)

1-47



1 Functions — Alphabetical List

1-48

e s

What Is Imagg:filtering in the Spatial Domain?

Filtering is 4 lechnique lorfmdlﬂing or enhancing an image. For example, you can filler an image 1o emphasize certain
features or remove other features. Image processing cperations implemented with filtering include smaothing, sharpening.
and edge enhancement.  ~ '

Filtering is a neighbormood cpertion, in which the value of any given pixe!l in the output image is determined by applying
some aigerithm to the values of the pixels in the neighborhoad of the corresponding Input pixel, A pixel's neighbarhood is
some set of pixeis, defined by their locations relative to hat pixel. {SeeMeighborhood or Block Processing: An Qverview for
a ganersl discussion of neighborhood operations ) Linear filtering is filtering in which the value of an output pixel is a linear
combination of the vales of the pixels in the input pixel's neighbarhood.

Convolution

Linear fitering of an image is accomplished thraugh an operation called convoatution. Canvolution is a neighborhocd
operation in which each output pixal is the weighted sum of neighboring input pixels. The matrix of weights is called the
canvolution kemet, aksa known as the Mer, A convolution kemel is a correlation kemel that has been rotated 180 degraes,

For exampie, suppose the image is

A=[17 24 1 g 15
B S 7 14 16
4 6 13 20 22
18 12 19 21 3

41 48 A -

Calculate Threshold for 3-D Volume
Load 3-D volume into the workspace.

load mristack;
V = mristack;

Display the data.

figure .
slice(double(V),size(V,2)/2,size(V,1)/2,size(V,3)/2)

colormap gray
shading interp



adaptthresh

25 -

20

15

10 4

0 -l

300 \

200 300

200
100

100

Calculate the threshold.

J = adaptthresh(V, 'neigh',[3 3 3], 'Fore', 'bright');
Display the threshold.

figure
slice(double(J),size(J3,2)/2,size(J3,1)/2,size(J,3)/2)

colormap gray
shading interp

1-49



1 Functions — Alphabetical List

25 -

20

15

10 4

0 sl
300

300

200

100
100

Input Arguments

I — Grayscale image or volume
2-D numeric matrix | 3-D numeric array

Grayscale image or volume, specified as a 2-D numeric matrix or 3-D numeric array.

If the image contains Infs or NaNs, the behavior of adaptthresh is undefined.
Propagation of Infs or NaNs might not be localized to the neighborhood around Inf or
NaN pixels.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32



adaptthresh

sensitivity — Determine which pixels get thresholded as foreground pixels
0.5 (default) | number in the range [0, 1]

Determine which pixels get thresholded as foreground pixels, specified as a number in the
range [0, 1]. High sensitivity values lead to thresholding more pixels as foreground, at the
risk of including some background pixels.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: T = adaptthresh(I,0.4, 'ForegroundPolarity’', 'dark');

NeighborhoodSize — Size of neighborhood used to compute local statistic
around each pixel

2*floor(size(I)/16)+1 (default) | positive odd integer | 2-element vector of positive
odd integers

Size of neighborhood used to compute local statistic around each pixel, specified as a
positive odd integer or a 2-element vector of positive odd integers.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

ForegroundPolarity — Determine which pixels are considered foreground
pixels
"bright' (default) | 'dark’

Determine which pixels are considered foreground pixels, specified using one of the
following:

Value Meaning
'bright’ The foreground is brighter than the background.
‘dark’ The foreground is darker than the background

Data Types: char | string

1-51



1 Functions — Alphabetical List

1-52

Statistic — Statistic used to compute local threshold
‘mean’' (default) | 'median' | 'gaussian’

Statistic used to compute local threshold at each pixel, specified as one of the following:

Value Meaning

'mean’ The local mean intensity in the neighborhood. This technique is also
called Bradley’s method [1].

'median’ The local median in the neighborhood. Computation of this statistic can
be slow. Consider using a smaller neighborhood size to obtain faster
results.

'gaussian' |The Gaussian weighted mean in the neighborhood.

Data Types: char | string

Output Arguments

T — Normalized intensity values
numeric matrix | numeric array

Normalized intensity values, returned as a numeric matrix or numeric array of the same
size as the input image or volume, I. Values are normalized to the range [0, 1].

Data Types: double

References

[1] Bradley, D., G. Roth, "Adapting Thresholding Using the Integral Image," Journal of
Graphics Tools. Vol. 12, No. 2, 2007, pp.13-21.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.




adaptthresh

Usage notes and limitations:

* adaptthresh supports the generation of C code (requires MATLAB Coder™). Note
that if you choose the generic MATLAB Host Computer target platform,
adaptthresh generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

* The ForegroundPolarity and Statistic arguments must be compile-time
constants.

See Also

graythresh | imbinarize | otsuthresh

Introduced in R2016a

1-53



1 Functions — Alphabetical List

affine2d

2-D affine geometric transformation

Description

An affine2d object encapsulates a 2-D affine geometric transformation.

Creation

You can create an affine2d object using the following methods:
* imregtform — Estimates a geometric transformation that maps a moving image to a
fixed image using similarity optimization

* 1imregcorr — Estimates a geometric transformation that maps a moving image to a
fixed image using phase correlation

+ fitgeotrans — Estimates a geometric transformation that maps pairs of control
points between two images

* The affine2d function described here

Syntax

affine2d
affine2d(A)

tform
tform

Description

tform = affine2d creates an affine2d object with default property settings that
correspond to the identity transformation.

tform = affine2d(A) sets the property T with a valid affine transformation defined by
nonsingular matrix A.



affine2d

Properties

T — Forward 2-D affine transformation
nonsingular 3-by-3 numeric matrix

Forward 2-D affine transformation, specified as a nonsingular 3-by-3 numeric matrix.
The matrix T uses the convention:

[x y 1] = [uv 1] * T

where T has the form:

[

0w
-~ Q T
oo

1
The default of T is the identity transformation.

Data Types: double | single

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions

invert Invert geometric transformation

isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits

transformPointsForward Apply forward geometric transformation
transformPointsInverse  Apply inverse geometric transformation

Examples

1-55



1 Functions — Alphabetical List

1-56

Define 2-D Affine Transformation Object for Rotation

Create an affine2d object that defines a 30 degree rotation in the counterclockwise
direction around the origin.

theta = 30;
tform = affine2d([cosd(theta) sind(theta) 0;...
-sind(theta) cosd(theta) 0; 0 0 1])

tform =
affine2d with properties:

Dimensionality: 2
T: [3x3 double]

Apply the forward geometric transformation to a point (10,0).

[x,y] = transformPointsForward(tform,10,0)

X = 8.6603

y =5

Validate the transformation by plotting the original point (in blue) and the transformed
point (in red).

figure
plot(10,0, 'bo',x,y, " 'ro")
axis ([0 12 0 12]); axis square;



affine2d

12

10

Transform Image Using 2-D Affine Transformation Object
Read an image into the workspace.
A = imread('pout.tif');

Create an affine2d object that defines an affine geometric transformation. This example
combines vertical shear and horizontal stretch.

tform = affine2d([2 0.33 0; 0 1 0; 0 0 1])

1-57



1 Functions — Alphabetical List

1-58

tform =
affine2d with properties:

Dimensionality: 2
T: [3x3 double]
Apply the geometric transformation to the image using imwarp.
B = imwarp(A,tform);
Display the resulting image.
figure

imshow(B);
axis on equal;



affine2d

100

150

200

250

300

350

a0 100 150 200 250 300 350 400 450

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1-59



1 Functions — Alphabetical List

1-60

+ affine2d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

* When generating code, you can only specify singular objects—arrays of objects are not
supported.

See Also

Functions
fitgeotrans | imregcorr | imregister | imregtform | imwarp

Objects

LocalWeightedMeanTransformation2D | PiecewiselLinearTransformation2D |
PolynomialTransformation2D | affine3d | geometricTransform2d |
projective2d

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a



affine3d

affine3d

3-D affine geometric transformation

Description

An affine3d object encapsulates a 3-D affine geometric transformation.

Creation

You can create an affine3d object using the following methods:

* imregtform — Estimates a geometric transformation that maps a moving image to a
fixed image using similarity optimization

¢ The affine3d function described here

Syntax

affine3d
affine3d(A)

tform
tform

Description

tform = affine3d creates an affine3d object with default property settings that
correspond to the identity transformation.

tform = affine3d(A) sets the property T with a valid affine transformation defined by
nonsingular matrix A.

Properties

T — Forward 3-D affine transformation
nonsingular 4-by-4 numeric matrix

1-61



1 Functions — Alphabetical List

1-62

Forward 3-D affine transformation, specified as a nonsingular 4-by-4 numeric matrix.
The matrix T uses the convention:

[x y z1l]] = [uvwl] *T

where T has the form:

[

Qoo
x>0 o
— =0
kX<
s -

The default of T is the identity transformation.

Data Types: double | single

Dimensionality — Describes the dimensionality of the geometric
transformation
3

Describes the dimensionality of the geometric transformation for both input and output
points, specified as the value 3.

Object Functions

invert Invert geometric transformation

isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits

transformPointsForward Apply forward geometric transformation
transformPointsInverse = Apply inverse geometric transformation

Examples

Define 3-D Affine Transformation Object for Anisotropic Scaling

Create an affine3d object that scales a 3-D image by a different factor in each
dimension.



affine3d

N R =
~ON

m = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 06 Sz 0; 0 0 0 1])

tform =
affine3d with properties:

Dimensionality: 3
T: [4x4 double]
Load a 3-D volume into the workspace.

load('mri');
D = squeeze(D);

Apply the geometric transformation to the image using imwarp.
B = imwarp(D,tform);

Visualize an axial slice through the center of each volume to see the effect of scale
translation. Note that the center slice of the transformed volume has a different index
than the center slice of the original volume because of the scaling in the z-dimension.

figure
imshowpair(D(:,:,14),B(:,:,33), 'montage');

1-63



1 Functions — Alphabetical List

1-64

The original image is on the left, and the transformed image is on the right. The
transformed image is scaled more in the vertical direction than in the horizontal
direction, as expected since Sy is larger than Sx.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

+ affine3d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

* When generating code, you can only specify singular objects—arrays of objects are not
supported.



affine3d

See Also

Functions
imregister | imregtform | imwarp

Objects
affine2d | geometricTransform3d

Topics
“2-D and 3-D Geometric Transformation Process Overview’
“Matrix Representation of Geometric Transformations”

J

Introduced in R2013a

1-65



1 Functions — Alphabetical List

1-66

analyze75info

Read metadata from header file of Analyze 7.5 data set

Syntax

info = analyze75info(filename)

info = analyze75info(___ ,Name,Value)
Description

info = analyze75info(filename) reads the header file of the Analyze 7.5 data set
specified by filename. The function returns info, a structure whose fields contain
information about the data set. Analyze 7.5 is a 3-D biomedical image visualization and
analysis product developed by the Biomedical Imaging Resource of the Mayo Clinic. An
Analyze 7.5 data set is made of two files, a header file and an image file. The files have
the same name with different file extensions. The header file has the file extension . hdr
and the image file has the file extension .img.

info = analyze75info( ___ ,Name,Value) reads the Analyze 7.5 header file using
name-value pairs to control different aspects of the operation.

Examples

Get Information about an Analyze 7.5 Data Set

Get information about an Analyze 7.5 data set. An Analyze 7.5 data set is made up of two
files: a header file with the file extension . hdr and an image file with the file
extension .1img. You don't need to specify a file extension when calling analyze75info.

info = analyze75info('brainMRI');

Get information about an Analyze 7.5 data set, this time specifying the byte ordering of
the data set. If you specify the wrong byte order, analyze75info attempts to read the
file with the other supported byte order.



analyze75info

info = analyze75info('brainMRI', 'ByteOrder', 'ieee-le');

Input Arguments

filename — Name of Analyze 7.5 data set
character vector | string

Name of Analyze 7.5 data set, specified as a string or character vector. You don’t need to
specify a file extension.

Example: info = analyze75info('brainMRI");

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN, ValueN.

Example: info = analyze75info('brainMRI', 'ByteOrder', 'ieee-le');

ByteOrder — Endianness of the data
character vector | string

Endianness of the data, specified as one of the strings or character vectors in the
following table. If the specified value results in a read error, analyze75info issues a
warning message and attempts to read the header file with the opposite ByteOrder
format.

Value Meaning
'ieee-le' Byte ordering is Little Endian
'ieee-be' Byte ordering is Big Endian

Data Types: char | string

1-67



1 Functions — Alphabetical List

Output Arguments

info — Information about Analyze 7.5 data set
structure

Information about Analyze 7.5 data set, returned as a structure.

See Also

analyze75read

Introduced before R2006a

1-68



analyze75read

analyze75read

Read image data from image file of Analyze 7.5 data set

Syntax

X
X

analyze75read(filename)
analyze75read(info)

Description

X = analyze75read(filename) reads the image data from the image file of an
Analyze 7.5 format data set specified by the character vector filename. The function
returns the image data in X.

Analyze 7.5 is a 3-D biomedical image visualization and analysis product developed by the
Biomedical Imaging Resource of the Mayo Clinic. An Analyze 7.5 data set is made of two
files, a header file and an image file. The files have the same name with different file
extensions. The header file has the file extension . hdr and the image file has the file
extension .img.

Note By default, analyze75read returns image data in radiological orientation (LAS).
For more information, see “Read Image Data from Analyze 7.5 File” on page 1-69.

X = analyze75read(info) reads the image data from the image file specified in the
metadata structure info. info must be a valid metadata structure returned by the
analyze75info function.

Examples

Read Image Data from Analyze 7.5 File

Read image data from an Analyze 7.5 file.

1-69



1 Functions — Alphabetical List

X = analyze75read('brainMRI"');

View the data. First, because Analyze 7.5 format uses radiological orientation (LAS), flip
the data for correct image display in MATLAB.

X = flip(X);

Then, reshape the data to create an array that can be displayed using montage. Select
frames 12 to 17.

Y = reshape(X(:,:,12:17),[size(X,1) size(X,2) 1 6]);
montage(Y);




analyze75read

Read Image Data Using the Info Structure

Read image data from an Analyze 7.5 data set, using the structure returned by
analyze75info to specify the data set. First, use analyze75info to create the info
structure.

info = analyze75info('brainMRI');

Call analyze75read to read image data from the data set, specifying the info structure
returned by analyze75info.

X = analyze75read(info);

Input Arguments

filename — Name of Analyze 7.5 data set
character vector

Name of Analyze 7.5 data set, specified as a character vector. You don’t need to specify a
file extension.

Example: info = analyze75info('brainMRI");

Data Types: char

info — Information about Analyze 7.5 data set
structure

Information about the Analyze 7.5 data set, specified as a structure returned by the
analyze75info function.

Data Types: struct

Output Arguments

X — Image data from Analyze 7.5 data set
array

Image data from Analyze 7.5 data set, returned as an array. X can be logical, uints,
intl16, int32, single, or double. analyze75read uses a data type for X that is

1-71



1 Functions — Alphabetical List

consistent with the data type specified in the data set header file. Complex and RGB data
types are not supported. For single-frame, grayscale images, X is an m-by-n array.

See Also

analyze75info

Introduced before R2006a

1-72



applycform

applycform

Apply device-independent color space transformation

Syntax

B = applycform(A,C)

Description

B = applycform(A, C) converts the color values in A to the color space specified in the
color transformation structure C.

Examples

Convert sRGB to L*a*b* Color Space using Applycform

Read color image that uses the sRGB color space into the workspace.

rgb = imread('peppers.png');

Create a color transformation structure that defines an sRGB to L*a*b* conversion.
C = makecform('srgb2lab');

Perform the transformation with applycform.

lab = applycform(rgb,C);

Input Arguments

A — Input color space
2-D numeric matrix | 3-D numeric array | string | character vector

1-73



1 Functions — Alphabetical List

Input color space, specified as one of the following:

* 2-D numeric matrix. applycform interprets each row as a color unless the color
transformation structure, C, contains a grayscale ICC profile. In that case,
applycform interprets each pixel in A as a color.

* 3-D numeric matrix. Each row-column location is interpreted as a color. size (A, 3) is
typically 1 or more, depending on the input color space.

» string or character vector. A is only a string or character vector if C is created with the
following syntax:
C = makecform('named', profile, space)

Data Types: double | uint8 | uintl6 | char | string

C — Color transformation
structure

Color transformation, specified as a structure. The color transformation structure
specifies various parameters of the transformation. You can create a color transformation
structure using makecform.

Output Arguments

B — Output color space
numeric array

Output color space, returned as a numeric array. The size of B depends on the
dimensionality and size of the input color space, A:

* When A is two-dimensional, B has the same number of rows and one or more columns,
depending on the output color space. (The ICC specification currently supports up to
15-channel device spaces).

* When A is three-dimensional, B is the same number of rows and columns as A, and
size(B,3) is 1 or more, depending on the output color space.

See Also

lab2double | Lab2uint16 | lab2uint8 | makecform | whitepoint | xyz2double |
xyz2uintl6



applycform

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

1-75



1 Functions — Alphabetical List

1-76

applylut

Neighborhood operations on binary images using lookup tables

Note applylut is not recommended. Use bwlookup instead.

Syntax

A = applylut (BW, lut)

Description

A = applylut (BW, lut) performs a 2-by-2 or 3-by-3 neighborhood operation on binary
image BW by using a lookup table, lut. The lookup table consists of the output values for
all possible 2-by-2 or 3-by-3 neighborhoods.

Examples

Perform Erosion Using a 2-by-2 Neighborhood

Create the LUT.

lutfun = @(x) (sum(x(:))==4);
lut = makelut(lutfun,?2);

Read image into the workspace and then apply the LUT to the image. An output pixel is
on only if all four of the input pixel's neighborhood pixels are on .

BW1l
BW2

imread('text.png');
applylut(BW1,lut);

Show the original image and the eroded image.

figure, imshow(BW1);



applylut

The term watershed
refers to aridge that ...

o
c
[ H
0 o
® £
ol =
©
E} =0
=
= c
=1
e
iy = |

0
=
o]
sl
(7]
)
(7]
—
o)
=
=

figure, imshow(BW2);

1-77



1 Functions — Alphabetical List

The term watershed
refers to a ridge that ...

ent
=

tent

=

=
=
=
e
=
=

v
3Y

drain

river

Input Arguments

BW — Input image
2-D binary image

Input image, specified as a 2-D binary image. For numeric input, any nonzero pixels are
considered to be 1 (true).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 |uint64 | logical

lut — Lookup table of output pixel values
16-element numeric vector | 512-element numeric vector

Lookup table of output pixel values, specified as a 16- or 512-element vector as returned
by makelut.

1-78



applylut

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
A — Output image

binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values
are determined by the content of the lookup table, Lut. The output image J is the same
size as the input image I.

» [Ifall elements of lut are 0 or 1, then A has data type logical.
» If all elements of lut are integers between 0 and 255, then A has data type uint8.
» For all other cases, A has data type double.

Data Types: double | uint8 | logical

Algorithms

applylut performs a neighborhood operation on a binary image by producing a matrix
of indices into lut, and then replacing the indices with the actual values in Lut. The
specific algorithm used depends on whether you use 2-by-2 or 3-by-3 neighborhoods.

2-by-2 Neighborhoods

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image BW with this
matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0, 15]. applylut uses the
central part of the convolution, of the same size as BW, and adds 1 to each value to shift

1-79



1 Functions — Alphabetical List

1-80

the range to [1, 16]. The function then constructs A by replacing the values in the cells of
the index matrix with the values in lut that the indices point to.

3-by-3 Neighborhoods

For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image BW with this
matrix.

256 32 4
128 16 2
64 8 1

The resulting convolution contains integer values in the range [0, 511]. applylut uses
the central part of the convolution, of the same size as BW, and adds 1 to each value to
shift the range to [1, 512]. It then constructs A by replacing the values in the cells of the
index matrix with the values in lut that the indices point to.

Compatibility Considerations

applylut is not recommended
Not recommended starting in R2012b

Starting in R2012b, use bwlookup to perform neighborhood operations on binary images
using lookup tables. For bwlookup, the data type of the returned image is the same as
the data type of the lookup table. bwlookup supports code generation. There are no plans
to remove applylut at this time.

To update your code, replace instances of applylut with bwlookup. You do not need to
change the input arguments.

See Also

makelut



applylut

Introduced before R2006a

1-81



1 Functions — Alphabetical List

1-82

axes2pix

Convert axes coordinates to pixel coordinates

Syntax

pixelCoord = axes2pix(n,extent,axesCoord)

Description

pixelCoord = axes2pix(n,extent,axesCoord) converts an axes coordinate into an
intrinsic ("pixel") coordinate.

Note The imref2d object has several methods that facilitate conversion between
intrinsic coordinates, world coordinates and array indices.

Examples

Convert Axes Coordinate into Intrinsic Coordinate
Display image.

h = imshow( 'pout.tif');



axes2pix

Get the size of the image.
[nrows,ncols] = size(get(h, 'CData'));

Get the image XData and YData.

xdata = get(h, 'XData')
xdata = Ix2

1 240
ydata = get(h, 'YData')
ydata = 1Ix2

1-83



1 Functions — Alphabetical List

1-84

1 291

Convert an axes coordinate into an intrinsic coordinate for the x and y dimensions.

px axes2pix(ncols,xdata,30)
px = 30
py = axes2pix(nrows,ydata,b30)

py = 30

Convert Axes Coordinate to Intrinsic Coordinate with Nondefault XData and
YData

Read an image and display it. Get the size of the image.

I = imread('pout.tif');
[nrows,ncols] = size(I)

nrows = 291

ncols = 240

Create a spatial referencing object for this image, with default property settings. By
default, the upper-left corner of the image has intrinsic coordinate (1,1).

RI = imref2d(size(I));
h = imshow(I,RI);



axes2pix

xData = get(h, 'XData')

xData 1x2

1 240

yData = get(h, 'YData')

1x2

yData

1 291

For illustrative purposes, specify an arbitrary image extent in the x- and y-directions. This
example shifts the image up by 20 pixels and to the right by 400 pixels. The example also

1-85



1 Functions — Alphabetical List

shifts the image to the right by 100 pixels and compresses the image horizontally by a

factor of 2.

xWorldLimits = 0.5*xData + 400;

yWorldLimits = yData - 20;

RA = imref2d(size(I),xWorldLimits,yWorldLimits);

imshow(I,RA)

420 460 500

Select a pixel, such as a pixel near the nose of the child. This pixel occurs around the axes
coordinate (%, y) = (450, 90) in the modified image.

Convert the axes coordinate to an intrinsic coordinate.

px = axes2pix(ncols,xWorldLimits,450)
px = 100
py = axes2pix(nrows,yWorldLimits,90)

1-86



axes2pix

py = 110

The intrinsic coordinate of the point is at (100, 110). This agrees with the location of the
nose in the original image.

Input Arguments

n — Number of image rows or columns
positive integer

Number of image rows or columns, specified as a positive integer. n is the number of
image columns for the x-coordinate, or the number of image rows for the y-coordinate.

extent — Image world extent
2-element numeric vector

Image world extent, specified as a 2-element numeric vector. extent is returned by
get(image handle, 'XData') or get(image handle, 'YData').

axesCoord — Axes coordinates to convert
numeric vector

Axes coordinate to convert to intrinsic coordinates, specified as a numeric vector.

Output Arguments

pixelCoord — Intrinsic coordinates
numeric vector

Intrinsic coordinates, returned as a numeric vector.

Data Types: double

Tips
* axes2pix performs minimal checking on the validity of the n, axesCoord, or extent

arguments. For example, axes2pix can extrapolate from extent to return a negative
coordinate. The function calling axes2pix bears responsibility for error checking.

1-87



1 Functions — Alphabetical List

See Also

bwselect | impixel | impixelinfo | improfile | imref2d | roipoly

Topics
“Image Coordinate Systems”

Introduced before R2006a

1-88



bestblk

bestblk

Determine optimal block size for block processing

Syntax

siz

= bestblk([M N],k)
[m,n] =

bestblk([M NJ, k)

Description

siz = bestblk([M N], k) returns the optimal block size for block processing of an M-
by-N image. The optimal block size minimizes the padding required along the outer partial
blocks. k specifies the maximum row and column dimensions for the block.

[m,n] = bestblk([M NI, k) returns the row and column dimensions for the block in m
and n, respectively.

Examples

Determine Optimal Block Size

siz bestblk([640 800],72)
siz = 1Ix2

64 50

Input Arguments

[M N] — Image size
2-element vector of positive integers

1-89



1 Functions — Alphabetical List

1-90

Image size, specified as a 2-element vector of positive integers. M is the number of rows
and N is the number of columns in the image.

Data Types: double

k — Maximum number of block rows or columns
100 (default) | positive integer

Maximum number of block rows or columns, specified as a positive integer.

Data Types: double

Output Arguments

siz — Optimal block size
2-element numeric row vector

Optimal block size, returned as a 2-element numeric row vector. siz is equivalent to [m
nJ.

m, n — Optimal number of block rows or columns
numeric scalar

Optimal number of block rows or columns, returned as a numeric scalar.

Algorithms

The algorithm for determining the optimal value of m from M and k is:

* IfMis less than or equal to k, return M.

» IfMis greater than k, consider all values between min (M/10,k/2) and k. Return the
value that minimizes the padding required.

The same algorithm is used to find the optimal value of n from N and k.

See Also
blockproc



bestblk

Introduced before R2006a

1-91



1 Functions — Alphabetical List

1-92

bfscore

Contour matching score for image segmentation

Syntax

score = bfscore(prediction,groundTruth)
[score,precision,recall] = bfscore(prediction,groundTruth)
[ 1 = bfscore(prediction,groundTruth,threshold)

Description

score = bfscore(prediction,groundTruth) computes the BF (Boundary F1)
contour matching score between the predicted segmentation in prediction and the true
segmentation in groundTruth. prediction and groundTruth can be a pair of logical
arrays for binary segmentation, or a pair of label or categorical arrays for multiclass
segmentation.

[score,precision, recall] = bfscore(prediction,groundTruth) also returns
the precision and recall values for the prediction image compared to the
groundTruth image.

[ 1 = bfscore(prediction,groundTruth,threshold) computes the BF score
using a specified threshold as the distance error tolerance, to decide whether a boundary
point has a match or not.

Examples

Compute BF Score for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the
result.

A
I

imread('handsl.jpg');
rgb2gray(A);



bfscore

figure
imshow(I)
title('Original Image')

Original Image

Use the active contours (snakes) method to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read the ground truth segmentation.

BW groundTruth = imread('handsl-mask.png');

Compute the BF score of the active contours segmentation against the ground truth.

similarity = bfscore(BW, BW groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

1-93



1 Functions — Alphabetical List

1-94

figure
imshowpair(BW, BW groundTruth)
title(['BF Score = ' num2str(similarity)])

BF Score = 0.76266

Compute BF Score for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then
computes the BF score for each region.

Read an image with several regions to segment.
RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The
first region classifies the yellow flower. The second region classifies the green stem and
leaves. The last region classifies the brown dirt in two separate patches of the image.
Regions are specified by a 4-element vector, whose elements indicate the x- and y-



bfscore

coordinate of the upper left corner of the ROI, the width of the ROI, and the height of the
ROL.

regionl = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(regionl(2):regionl(2)+regionl(4),regionl(1l):regionl(1)+regionl(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1l):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];

BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3))
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3))

Display the seed regions on top of the image.

figure

imshow (RGB)

hold on

visboundaries(BW1, 'Color','r'");
visboundaries(BW2, 'Color','g');
visboundaries(BW3, 'Color','b");
title('Seed regions')

1-95



1 Functions — Alphabetical List

Seed regions

1-96



bfscore

Segment the image into three regions using geodesic distance-based color segmentation.
L = imseggeodesic(RGB,BW1,BW2,BW3, 'AdaptiveChannelWeighting', true);

Load a ground truth segmentation of the image.

L groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth), 'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Comparison of Segmentation Results (Left) and Ground Truth (Right)

Compute the BF score for each segmented region.

similarity = bfscore(L, L groundTruth)

1-97



1 Functions — Alphabetical List

1-98

similarity = 3x1

0.7992
0.5333
0.7466

The BF score is noticeably smaller for the second region. This result is consistent with the
visual comparison of the segmentation results, which erroneously classifies the dirt in the
lower right corner of the image as leaves.

Input Arguments

prediction — Predicted segmentation
2-D or 3-D logical, numeric, or categorical array

Predicted segmentation, specified as a 2-D or 3-D logical, numeric, or categorical
array. If prediction is a numeric array, then it represents a label array and must contain
nonnegative integers of data type double.

Data Types: logical | double | categorical

groundTruth — Ground truth segmentation
2-D or 3-D logical, numeric, or categorical array

Ground truth segmentation, specified as a 2-D or 3-D logical, numeric, or categorical
array of the same size and data type as prediction. If groundTruth is a numeric array,
then it represents a label array and must contain nonnegative integers of data type
double.

Data Types: logical | double | categorical

threshold — Distance error tolerance threshold
positive scalar

Distance error tolerance threshold in pixels, specified as a positive scalar. The threshold
determines whether a boundary point has a match or not. If threshold is not specified,
then the default value is 0.75% of the length of the image diagonal.

Example: 3
Data Types: double



bfscore

Output Arguments

score — BF score
numeric scalar | numeric vector

BF score, returned as a numeric scalar or vector with values in the range [0, 1]. A score
of 1 means that the contours of objects in the corresponding class in prediction and
groundTruth are a perfect match. If the input arrays are:

* logical arrays, score is a scalar and represents the BF score of the foreground.

* label or categorical arrays, score is a vector. The first coefficient in score is the BF
score for the first foreground class, the second coefficient is the score for the second
foreground class, and so on.

precision — Precision
numeric scalar | numeric vector

Precision, returned as a numeric scalar or numeric vector with values in the range [0, 1].
Each element indicates the precision of object contours in the corresponding foreground
class.

Precision is the ratio of the number of points on the boundary of the predicted
segmentation that are close enough to the boundary of the ground truth segmentation to
the length of the predicted boundary. In other words, precision is the fraction of
detections that are true positives rather than false positives.

recall — Recall
numeric scalar | numeric vector

Recall, returned as a numeric scalar or numeric vector with values in the range [0, 1].
Each element indicates the recall of object contours in the corresponding foreground
class.

Recall is the ratio of the number of points on the boundary of the ground truth
segmentation that are close enough to the boundary of the predicted segmentation to the
length of the ground truth boundary. In other words, recall is the fraction of true positives
that are detected rather than missed.

1-99



1 Functions — Alphabetical List

1-100

Definitions

BF (Boundary F1) Score

The BF score measures how close the predicted boundary of an object matches the
ground truth boundary.

The BF score is defined as the harmonic mean (F1-measure) of the precision and
recall values with a distance error tolerance to decide whether a point on the predicted
boundary has a match on the ground truth boundary or not.

score =2 *precision * recall/(recall + precision)

References

[1] Csurka, G., D. Larlus, and E. Perronnin. "What is a good evaluation measure for
semantic segmentation?" Proceedings of the British Machine Vision Conference,
2013, pp. 32.1-32.11.

See Also

dice|jaccard

Introduced in R2017b



blendexposure

blendexposure

Create well-exposed image from images with different exposures

Syntax

J = blendexposure(Il,I2,...,In)

J = blendexposure(Il,I2,...,In,Name,Value)

Description

J = blendexposure(Il,I2,...,In) blends grayscale or RGB images that have

different exposures. blendexposure blends the images based on their contrast,
saturation, and well-exposedness, and returns the well-exposed image, J.

J = blendexposure(Il1l,I2,...,In,Name,Value) blendsimages that have different
exposures, using name-value pairs to adjust how each input image contributes to the
blended image.

Examples

Blend Images with Strong Light Sources

Read a series of images with different exposures that were captured from a fixed camera
with no moving objects in the scene.

I1 = imread('car _1.jpg"');
I2 = imread('car 2.jpg"');
I3 = imread('car 3.jpg"');
I4 = imread('car 4.jpg"');

Display the images. In the underexposed images, only bright regions like headlights have
informative details. Conversely, the headlights are saturated in the overexposed images,
and the best contrast comes from darker regions such as the brick floor and the roof.

montage({I1,I2,13,I4})

1-101



1 Functions — Alphabetical List

Blend the images using exposure fusion. By default, the blendexposure function
attempts to suppress highlights from strong light sources. For comparison, also blend the
images without suppressing the highlights. Display the two results.

E blendexposure(Il,I12,1I3,14);

F = blendexposure(Il,I2,I3,1I4, 'ReduceStrongLight', false);

montage({E,F})

title('Exposure Fusion With (Left) and Without (Right) Strong Light Suppression')

1-102



blendexposure

Exposure Fusion With (Left) and Without (Right) Strong Light Suppression

In the fused images, bright regions and dark regions retain informative details. With
strong light suppression, the shape of the headlights is identifiable, and saturated pixels
do not extend past the boundary of the headlights. Without strong light perception, the
shape of the headlights is not identifiable, and there are saturated pixels in the reflection
of the headlights on the ground and on some parts of the other cars.

Blend Images of Stationary Scene Using Exposure Fusion

Read a series of images with different exposures. The images were captured from a fixed
camera, and there are no moving objects in the scene.

I1 = imread('office 1.jpg');
I2 = imread('office 2.jpg');
I3 = imread('office 3.jpg');
I4 = imread('office 4.jpg');
I5 = imread('office 5.jpg');
I6 = imread('office 6.jpg');

montage({I1,I12,13,I4,15,16})
title('Images with Different Exposures')

1-103



1 Functions — Alphabetical List

Images with Different Exposures

Blend the registered images using exposure fusion, optionally varying the weight of
contrast, saturation and well-exposedness in the fusion, and without reducing strong light
sources. Display the result.

1-104



blendexposure

E = blendexposure(Il,I2,I3,14,15,16, 'contrast',0.8,...
'saturation',0.8, 'wellexposedness',0.8, 'reduceStrongLight', false);

imshow(E)

title('Blended Image Using Exposure Fusion')

Input Arguments

I1,12,...,In— Grayscale or RGB images
m-by-n numeric matrices | m-by-n-by-3 numeric arrays

Grayscale or RGB images, specified as a series of m-by-n numeric matrices or m-by-n-by-3
numeric arrays. All images must have the same size and data type.

Data Types: single | double | uint8 | uint16

1-105



1 Functions — Alphabetical List

1-106

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: blendexposure(I1,I2,I3, 'Contrast',0.5, 'Saturation',0.9)

Contrast — Relative weight given to contrast
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to contrast during blending, specified as the comma-separated pair
consisting of 'Contrast' and a numeric scalar in the range [0, 1].

Saturation — Relative weight given to saturation
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to saturation during blending, specified as the comma-separated
pair consisting of 'Saturation' and a numeric scalar in the range [0, 1].

Wellexposedness — Relative weight given to exposure quality
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to exposure quality during blending, specified as the comma-
separated pair consisting of 'Wellexposedness' and a numeric scalar in the range [0,
1]. The exposure quality of each image is based on the divergence of the pixel intensities
from a model of pixels with good exposure.

ReduceStrongLight — Reduce strong light
true (default) | false

Reduce strong light, specified as the comma-separated pair consisting of
'ReduceStronglLight' and true or false. If 'ReduceStronglLight' is true, then
blendexposure attempts to suppress highlights from strong light sources in the images.

Note If the input images do not have strong light sources and you specify
ReduceStrongLight as true, then the output image J has less contrast.




blendexposure

Output Arguments

J — Fused image
numeric matrix or array

Fused image, returned as a numeric matrix or array of the same size and data type as the
input images I1,12,...,1In.

Tips

* To blend images of moving scenes or with camera jitter, first register the images by
using the imregmtb function. imregmtb considers only translations, not rotations or
other types of geometric transformations, when registering the images.

Algorithms

The blendexposure function computes the weight of each quality measure as follows:

* Contrast weights are computed using Laplacian filtering.
* Saturation weights are computed from the standard deviation of each image.

* Well-exposedness is determined by comparing parts of the image to a Gaussian
distribution with a mean of 0.5 and a standard deviation of 0.2.

» Strong light reduction weights are computed as a mixture of the other three weights,
multiplied by a Gaussian distribution with a fixed mean and variance.

The weights are decomposed using Gaussian pyramids for seamless blending with a
Laplacian pyramid of the corresponding image, which helps preserve scene details.

References
[1] Mertens, T., ]J. Kautz, and F. V. Reeth. "Exposure Fusion." Pacific Graphics 2007:

Proceedings of the Pacific Conference on Computer Graphics and Applications.
Maui, HI, 2007, pp. 382-390.

1-107



1 Functions — Alphabetical List

See Also

imregmtb | makehdr | tonemap

Introduced in R2018a

1-108



blockproc

blockproc

Distinct block processing for image

Syntax

blockproc(A,[m n],fun)
blockproc(src filename, [m n], fun)
blockproc(adapter, [m n],fun)
lockproc( ___ ,Name,Value)

O 0w

Description

B = blockproc(A, [m n], fun) processes the image A by applying the function fun to
each distinct block of size [m n] and concatenating the results into the output matrix, B.

B = blockproc(src filename, [m n], fun) processes the image with file name
src_filename, reading and processing one block at a time. This syntax is useful for
processing large images.

B = blockproc(adapter, [m n], fun) processes the source image specified by
adapter, an ImageAdapter object.

blockproc( _ ,Name,Value) processes the input image, specifying arguments and

corresponding values that control various aspects of the block behavior. Argument names
are case insensitive.

Examples

Create Thumbnail of Image

Read image into the workspace.

I = imread('pears.png');

1-109



1 Functions — Alphabetical List

Create block processing function.

fun = @(block struct) imresize(block struct.data,0.15);

Process the image, block-by-block.

I2 = blockproc(I,[100 1001, fun);

Display the original image and the processed image.

figure;
imshow(I);

figure;
imshow(I2);

1-110



blockproc

Set Pixels in 32-by-32 blocks to Standard Deviation

Create block processing function.

fun = @(block struct) .
std2(block struct.data) * ones(size(block struct.data));

Perform the block processing operation, specifying the input image by filename.

I2 = blockproc('moon.tif"',[32 32],fun);

Display the original image and the processed version.

figure;
imshow( 'moon.tif"');

1-111



1 Functions — Alphabetical List

1-112



blockproc

figure;
imshow(I2,[]);

1-113



1 Functions — Alphabetical List

1-114



blockproc

Switch Red and Green Bands of RGB Image

Read image into the workspace.

I = imread('peppers.png');

Create block processing function.

fun = @(block struct) block struct.data(:,:,[2 1 3]);
Perform the block processing operation.

blockproc(I,[200 200],fun, 'Destination', 'grb peppers.tif');
Display original image and the processed image.

figure;
imshow( 'peppers.png');

1-115



1 Functions — Alphabetical List

figure;
imshow('grb peppers.tif');

1-116



blockproc

Convert Large TIFF Image into JPEG2000 Image

Note: To run this example, you must replace ' largeImage.tif' with the name of your
file.

Create block processing function.

fun = @(block struct) block struct.data;

Convert a TIFF image into a new JPEG2000 image. Replace 'largeImage.tif' with the
name of an actual image file.

1-117



1 Functions — Alphabetical List

blockproc('largeImage.tif',[1024 1024], fun, 'Destination', 'New.jp2');

Input Arguments

A — Input image
numeric matrix

Input image, specified as a numeric matrix.

src_filename — Source file name
character vector

Source file name, specified as a character vector. Files must have one of these file types
and must be named with one of the listed file extensions.

o TIFF (*.tif, *.tiff)

+ JPEG2000 (*.jp2, *.jpf, *.jpx, *.j2c, *.j2k)

Data Types: char

adapter — Image adapter
ImageAdapter object

Image adapter, specified as an ImageAdapter object. An ImageAdapter is a user-
defined class that provides blockproc with a common API for reading and writing to a
particular image file format. For more information, see “Perform Block Processing on
Image Files in Unsupported Formats”.

[m n] — Block size
2-element vector

Block size, specified as a 2-element vector. m is the number of rows and n is the number of
columns in the block.

fun — Function handle
handle

Function handle, specified as a handle. The function must accept a block_struct on page

1-121 as input and return a matrix, vector, or scalar. If fun returns empty, then
blockproc does not generate any output and returns empty after processing all blocks.

1-118



blockproc

For more information about function handles, see “Create Function Handle” (MATLAB).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'BorderSize', [8 4]

Destination — Destination
character vector | ImageAdapter object

Destination for the output, specified as the comma-separated pair consisting of
'Destination' and one of the following.

* A character vector with a destination filename. Files must have one of these file types
and must be named with one of the listed file extensions.

o TIFF (*.tif, * tiff)
«  JPEG2000 (*jp2, *j2c, *.j2k)

If a file with this name exists, it is overwritten.

* An ImageAdapter object, which provides a common API for reading and writing to a
particular image file format. For more information, see “Perform Block Processing on
Image Files in Unsupported Formats”.

When you specify the 'Destination' argument, blockproc does not return the
processed image as an output argument, but instead writes the output to the
'Destination'. The 'Destination' argument is useful when you expect your output
to be too large to fit into memory. It provides a workflow for file-to-file image processing
for arbitrarily large images.

Note You cannot request an output argument when the 'Destination' argument is
specified.

BorderSize — Border size
[0 O] (default) | 2-element vector of positive integers

1-119



1 Functions — Alphabetical List

1-120

Number of border pixels to add to each block, specified as the comma-separated pair
consisting of 'BorderSize' and a 2-element vector of positive integers, of the form [v
h]. The function adds v rows above and below each block and h columns left and right of
each block. The size of each resulting block is:

[m+2*v, n+2*h]

By default, the function automatically removes the border from the result of fun. See the
TrimBorder argument for more information.

The function pads blocks with borders extending beyond the image edges with zeros.

PadPartialBlocks — Pad partial blocks
false (default) | true

Pad partial blocks to make them full-sized, specified as the comma-separated pair
consisting of 'PadPartialBlocks' and false or true. Partial blocks arise when the
image size is not exactly divisible by the block size. If they exist, partial blocks lie along
the right and bottom edge of the image.

When set to true, blockproc pads partial blocks to make them full-sized m-by-n blocks.
The default is false, meaning that the function does not pad the partial blocks, but
processes them as-is. blockproc uses zeros to pad partial blocks when necessary.

PadMethod — Pad method
0 (default) | 'replicate' | 'symmetric' | numeric scalar

Method used to pad the image boundary, specified as the comma-separated pair
consisting of 'PadMethod' and one of the following.

Value Description

'replicate’ Repeat border elements.

'symmetric' Pad image with mirror reflections of itself.

numeric scalar Pad image with a scalar value. By default, the image
boundary is padded with the value 0.

Data Types: char | string

TrimBorder — Remove border pixels
true (default) | false




blockproc

Remove border pixels from the output of the user function, specified as the comma-
separated pair consisting of 'TrimBorder' and true or false. When set to true, the
blockproc function removes border pixels from the output of the user function, fun. The
function removes v rows from the top and bottom of the output of fun, and h columns
from the left and right edges. The BorderSize argument defines v and h.

UseParallel — Use parallel processing
false (default) | true

Use parallel processing, specified as the comma-separated pair consisting of
'UseParallel' and false or true. If you have Parallel Computing Toolbox™ installed,
when set to true, MATLAB automatically opens a parallel pool of workers on your local
machine. blockproc runs the computation across the available workers. For more
information, see “Parallel Block Processing on Large Image Files”.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as the comma-separated pair consisting of
'DisplayWaitbar' and true or false. When set to true, blockproc displays a
waitbar to indicate progress for long-running operations. To prevent blockproc from
displaying a waitbar, set DisplayWaitbar to false.

Output Arguments

B — Output matrix
numeric matrix

Output matrix, returned as a numeric matrix.

Definitions

Block Struct

A block struct is a MATLAB structure that contains the block data and other information
about the block. Fields in the block struct are:

1-121



1 Functions — Alphabetical List

Field Description

border 2-element vector of the form [v h]. The border field specifies
the size of the vertical and horizontal padding around the block of
data. See the BorderSize argument for more information.

blockSize 2-element vector of the form [rows cols]. The blockSize field
specifies the size of the block data. If a border has been specified,
the size does not include the border pixels.

data m-by-n or m-by-n-by-p matrix of block data.

imageSize 2-element vector of the form [rows cols]. The imageSize field
specifies the full size of the input image.

location 2-element vector of the form [row col]. The location field
specifies the position of the first pixel (minimum-row, minimum-
column) of the block data in the input image. If a border has been
specified, the location refers to the first pixel of the discrete block
data, not the added border pixels.

Tips

* Choosing an appropriate block size can significantly improve performance. For more
information, see “Block Size and Performance”.

» If the output matrix B is too large to fit into memory, omit the output argument and
instead use the Destination name-value pair argument to write the output to a file.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

Usage notes and limitations:

» This function supports automatic parallel processing (requires Parallel Computing
Toolbox). To run in parallel, specify the 'UseParallel' argument as true. For more
information, see “Parallel Block Processing on Large Image Files”.

1-122



blockproc

* Control parallel behavior with the parallel preferences, including scaling up to a
cluster. See parpool for information on configuring your parallel environment.

* To run in parallel, this function requires a parallel pool with SPMD enabled.
» Parallel processing does not support an adapter source image.

See Also
ImageAdapter | colfilt | nlfilter

Topics
“Distinct Block Processing”
“Parallel Block Processing on Large Image Files”

Introduced in R2009b

1-123



1 Functions — Alphabetical List

1-124

boundarymask

Find region boundaries of segmentation

Syntax

mask
mask
mask

boundarymask(L)
boundarymask (BW)
boundarymask( __ ,conn)

Description

mask = boundarymask(L) computes a mask that represents the region boundaries for
the input label matrix L. The output, mask, is a logical image that is true at boundary
locations and false at non-boundary locations.

mask = boundarymask(BW) computes the region boundaries for the input binary image
BW.

mask = boundarymask( ,conn) computes the region boundaries using a
connectivity specified by conn.

Examples

Create Rasterized Grid of Region Boundaries

Read image into the workspace.

A = imread('kobi.png');

Create a superpixel representation of the image, returned as a label matrix.
L = superpixels(A,100);

Create the rasterized grid of the regions in the label matrix.



boundarymask

mask = boundarymask(L);

Display the boundary mask binary image.

figure
imshow(mask, 'InitialMagnification',67)

Igi
I
vy

-l

ey
NnniRpe:

R
-
.
e
(¢

&
e
»

£
o6

I-g.glll

1-125



1 Functions — Alphabetical List

1-126

Input Arguments

L — Label matrix
2-D numeric matrix | 2-D logical matrix

Label matrix, specified as a 2-D numeric matrix of nonnegative numbers or a 2-D logical
matrix.

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32 |
logical

BW — Binary image
numeric matrix | logical matrix

Binary image, specified as a numeric or logical matrix of the same size as L.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 4 or 8.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. i
The neighborhood of a pixel are the
adjacent pixels in the horizontal or -t
vertical direction. ¥

¥

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the -t

horizontal, vertical, or diagonal direction. |[ & ¥ [~

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32




boundarymask

Output Arguments

mask — Rasterized grid of region boundaries
2-D logical matrix

Rasterized grid of region boundaries, specified as a 2-D logical matrix of the same size as
the input image. A pixel in mask is true when the corresponding pixel in the input image
with value P has a neighboring pixel with a different value than P.

Data Types: Llogical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* boundarymask supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
boundarymask generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

* When generating code, the input argument conn must be a compile-time constant.

See Also

imoverlay | label2idx | superpixels

Introduced in R2016a

1-127



1 Functions — Alphabetical List

1-128

brisque

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) no-reference image
quality score

Syntax
score = brisque(A)
score = brisque(A,model)

Description

score = brisque(A) calculates the no-reference image quality score for image A using
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). brisque compare A
to a default model computed from images of natural scenes with similar distortions. A
smaller score indicates better perceptual quality.

score = brisque(A,model) calculates the image quality score using a custom feature
model.

Examples

Calculate BRISQUE Score Using Default Feature Model

Compute the BRISQUE score for a natural image and its distorted versions using the
default model.

Read an image into the workspace. Create copies of the image with noise and blurring
distortions.

I = imread('lighthouse.png');
Inoise = imnoise(I, 'salt & pepper',0.02);
Iblur = imgaussfilt(I,2);

Display the images.



brisque

montage({I,Inoise,Iblur}, 'Size',[1 3], 'ThumbnailSize"',([1))
title('Original Image | Noisy Image | Blurry Image')

Original Image | Noisy Image | Blurry Image

Calculate the BRISQUE score for each image using the default model, and display the
score.

brisquel = brisque(I);
fprintf('BRISQUE score for original image is %0.4f.\n',brisquel)

BRISQUE score for original image is 20.6586.

brisquelnoise = brisque(Inoise);
fprintf('BRISQUE score for noisy image is %0.4f.\n',brisqueInoise)

BRISQUE score for noisy image is 52.6074.

brisqueIblur = brisque(Iblur);
fprintf('BRISQUE score for blurry image is %0.4f.\n',brisquelIblur)

BRISQUE score for blurry image is 47.7552.

The original undistorted image has the best perceptual quality and therefore the lowest
BRISQUE score.

1-129



1 Functions — Alphabetical List

1-130

Calculate BRISQUE Score Using Custom Feature Model

Train a custom BRISQUE model from a set of quality-aware features and corresponding
human opinion scores. Use the custom model to calculate a BRISQUE score for an image
of a natural scene.

Save images from an image datastore. These images all have compression artifacts
resulting from JPEG compression.

setDir = fullfile(toolboxdir('images'), 'imdata');
imds = imageDatastore(setDir, 'FileExtensions',{'.jpg'});

Specify the opinion score for each image. The following differential mean opinion score
(DMOS) values are for illustrative purposes only. They are not real DMOS values obtained
through experimentation.

opinionScores = 100*rand(1l,size(imds.Files,1));

Create the custom model of quality-aware features using the image datastore and the
opinion scores. Because the scores are random, the property values will vary.

model = fitbrisque(imds,opinionScores')
Extracting features from 37 images.

éémpleted 4 of 37 images. Time: Calculating...
Completed 13 of 37 images. Time: 00:26 of 01:02

Completed 23 of 37 images. Time: 00:37 of 00:55
..... Training support vector regressor...

Done.

model =
brisqueModel with properties:

Alpha: [35x1 double]
Bias: 56.2632
SupportVectors: [35x36 double]
Kernel: 'gaussian'
Scale: 0.2717



brisque

Read an image of a natural scene that has the same type of distortion as the training
images. Display the image.

I = imread('carl.jpg');
imshow(I)

Calculate the BRISQUE score for the image using the custom model. Display the score.

brisquel = brisque(I,model);
fprintf('BRISQUE score for the image is %0.4f.\n',brisquel)

BRISQUE score for the image is 78.7367.

1-131



1 Functions — Alphabetical List

1-132

Input Arguments

A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale or RGB image.
Data Types: single | double | int16 | uint8 | uint16

model — Custom model
brisqueModel object

Custom model trained on a set of quality-aware features, specified as a brisqueModel
object. model is derived from natural scene statistics.

Output Arguments

score — No-reference image quality score
nonnegative scalar

No-reference image quality score, returned as a nonnegative scalar. The BRISQUE score
is usually in the range [0, 100]. Lower values of score reflect better perceptual quality of
image A with respect to the input model.

Data Types: double

Algorithms

brisque predicts the BRISQUE score by using a support vector regression (SVR) model
trained on an image database with corresponding differential mean opinion score (DMOS)
values. The database contains images with known distortion such as compression
artifacts, blurring, and noise, and it contains pristine versions of the distorted images.
The image to be scored must have at least one of the distortions for which the model was
trained.



brisque

References

[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in
the Spatial Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12,
December 2012, pp. 4695-4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality
Evaluation Engine." Presentation at the 45th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2011.

See Also

Functions
fitbrisque | fitniqe | nige | pige

Objects
brisqueModel

Topics
“Image Quality Metrics”

Introduced in R2017b

1-133



1 Functions — Alphabetical List

1-134

brisqueModel

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) model

Description

A brisqueModel object encapsulates a model used to calculate the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) perceptual quality score of an image. The
object contains a support vector regressor (SVR) model.

Creation

You can create a brisqueModel object using the following methods:
+ fitbrisque — Train a BRISQUE model containing a custom trained support vector
regressor (SVR) model. Use this function if you do not have a pretrained model.

* The brisqueModel function described here. Use this function if you have a
pretrained SVR model, or if the default model is sufficient for your application.

Syntax
m = brisqueModel
m = brisqueModel(alpha,bias,supportVectors,scale)

Description

m = brisqueModel creates a BRISQUE model object with default property values that
are derived from the LIVE IQA image database [1] [2].

m = brisqueModel(alpha,bias, supportVectors,scale) creates a custom
BRISQUE model and sets the Alpha on page 1-0 ,Bias on page 1-0 ,
SupportVectors on page 1-0 ,andScale on page 1-0 properties. You must
provide all four arguments to create a custom model.



brisqueModel

Note It is difficult to predict good property values without running an optimization
routine. Use this syntax only if you are creating a brisqueModel object using a
pretrained SVR model with known property values.

Properties

Alpha — Coefficients obtained by solving dual problem
m-by-1 numeric vector

Coefficients obtained by solving the dual problem, specified as an m-by-1 numeric vector.
The length of Alpha must match the number of support vectors (the number of rows of
SupportVectors on page 1-0 ).

Example: rand(10,1)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Bias — Bias term in SVM model
43.4582 (default) | numeric scalar

Bias term in SVM model, specified as a numeric scalar.
Example: 47.4
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SupportVectors — Support vectors
m-by-36 numeric vector

Support vectors, specified as an m-by-36 numeric vector. The number of rows, m, matches
the length of Alpha on page 1-0

Example: rand (10, 36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Kernel — Kernel function
"gaussian' (default)

This property is read-only.

Kernel function, specified as 'gaussian’'.

1-135



1 Functions — Alphabetical List

Scale — Kernel scale factor
0.3210 (default) | numeric scalar

Kernel scale factor, specified as a numeric scalar. The scale factor divides predictor values
in the SVR kernel.

Example: 0. 25
Data Types: single | double | int8 | int16 | int32 | uint8 | uint1l6 | uint32

Examples

Create BRISQUE Model Object with Default Properties
model = brisqueModel

model =
brisqueModel with properties:

Alpha: [593x1 double]
Bias: 43.4582
SupportVectors: [593x36 double]
Kernel: 'gaussian'
Scale: 0.3210

Create BRISQUE Model Object with Custom Properties

Create a brisqueModel object using precomputed Alpha, Bias, SupportVectors, and
Scale properties. Random initializations are shown for illustrative purposes only.

model = brisqueModel(rand(10,1),47,rand(10,36),0.25)

model =
brisqueModel with properties:

Alpha: [10x1 double]
Bias: 47
SupportVectors: [10x36 double]
Kernel: 'gaussian'

1-136



brisqueModel

Scale: 0.2500

You can use the custom model to calculate the BRISQUE score for an image.

I = imread('lighthouse.png');
score = brisque(I,model)

score = 47

Algorithms

The support vector regressor (SVR) calculates regression scores for predictor matrix X as:
F = G(X,SupportVectors on page 1-0 ) x Alpha on page 1-0 + Bias
on page 1-0

G(X,SupportVectors) is an n-by-m matrix of kernel products for n rows in X and m rows
in SupportVectors. The SVR has 36 predictors, which determine the number of
columns in SupportVectors.

The SVR computes a kernel product between vectors x and z using Kernel on page 1-
® (x/Scale on page 1-0 ,z/Scale).

References

[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in
the Spatial Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12,
December 2012, pp. 4695-4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality

Evaluation Engine." Presentation at the 45th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2011.

See Also

Functions
brisque | fitbrisque

1-137



1 Functions — Alphabetical List

Objects
CompactRegressionSVM | nigeModel

Topics
“Image Quality Metrics”
“Train and Use a No-Reference Quality Assessment Model”

Introduced in R2017b

1-138



burstinterpolant

burstinterpolant

Create high-resolution image from set of low-resolution burst mode images

Syntax

B = burstinterpolant(imds,tforms,scale)
B = burstinterpolant(images,tforms,scale)

Description

B = burstinterpolant(imds,tforms,scale) creates a high-resolution image, B
from a set of low-resolution burst mode images stored as an ImageDatastore object,
imds. scale specifies the magnification value for high-resolution image. The size of B is
scale times the size of input images.

B = burstinterpolant(images,tforms,scale) creates a high-resolution image, B
from a set of low-resolution burst mode images stored in cell array images. The size of B
is scale times the size of input images.

Examples

Create High-Resolution Image from Burst Mode Images in Image Datastore

Specify the location of low-resolution burst mode images to be stored as an image
datastore object. The input images are 2-D RGB images.

setDir = fullfile(toolboxdir('images'), 'imdata', 'notebook"');

Use the imageDatastore function to read and store the low-resolution burst mode
images as an image datastore object.

imds = imageDatastore(setDir, 'FileExtensions',{'.png'});

Display the images as a montage.

1-139



1 Functions — Alphabetical List

montage (imds)
title('Set of Low-Resolution Burst Mode Images')

Set of Low-Resolution Burst Mode Images

Bl 1otehook Nofehook “NoTobook NoTehook

300

400

Notebook . Notebook ~Notebook “NoTenooR

500
600

700

Notehopk “NotebooR Nofehook ' Notebook

100 200 300 400 500 600 700 800 900 1000 1100

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into
lightness images by using rgb21lightness function. The burst mode lightness images
are stored as an image datastore object.

imdsTransformed = transform(imds,@(x) rgb2lightness(x));

Read the first lightness image into the workspace and use it as the reference image for
estimating geometric transformations.

refImg = read(imdsTransformed);

1-140



burstinterpolant

Get the optimal configuration parameters required for registration of the burst mode
lightness images by using imregconfig function. Specify the image capture modality as
'monomodal’.

[optimizer,metric] = imregconfig('monomodal');

Find the total number of images stored in the image datastore object by using
numpartitions function.

numImages = numpartitions(imds);

Create an array of 2-D affine transformation object to store 2-D affine transformations of
each low-resolution burst mode lightness image excluding the reference image. Set the
number of rows in the transformation array as total number of images in the image
datastore object minus one.

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each
low-resolution burst mode lightness image with respect to the reference image.

idx = 1;

while hasdata(imdsTransformed)
movingImg = read(imdsTransformed);
tforms(idx) = imregtform(refImg,movingImg, 'rigid',optimizer,metric);
idx = idx + 1;

end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.
scale = 4;

Create the high-resolution image from the set of low-resolution burst mode RGB images.
Specify the transformation parameter to robustly estimate the high-resolution pixel
values.

B = burstinterpolant(imds,tforms,scale);
Display the high-resolution image.
figure('WindowState', 'maximized")

imshow(B)
title ('High-Resolution Image')

1-141



1 Functions — Alphabetical List

igh-Resolution Image

100

200

300

400

500

600

100 200 300 400 500 600 700

Read a low-resolution burst mode RGB image from the image datastore and display its
size.

Img = read(imds);
inputDim = [size(Img,1l) size(Img,2)]

inputDim = Ix2

1-142



burstinterpolant

lol 186

Display the size of the high-resolution image. Because the scale factor is 4, the size of the
high-resolution image is 4 times the size of the low-resolution burst mode RGB images.

outputDim [size(B,1) size(B,2)]
outputDim = Ix2

644 744

Create High-Resolution Image from Cell Array of Burst Mode Images

Load cell array data containing the low-resolution burst mode image into the workspace.

The input images are monomodal and 2-D RGB images.
load('LRData')
Display images in the cell array data as a montage.

montage(images, 'Size',[2 4], 'BackgroundColor',[1 1 11);
title('Set of Low-Resolution Burst Mode Images')

Set of Low-Resolution Burst Mode Images

{ : :
Toffee el Toffee \f @l Toffee & 8 Toffee
v migcne carorhnt [ v weene coxouot T BB ¢ wiene coxoust _ v uLtent coxoiof
MILE CHOCOLATE IR MILK CHOCOLATE EERESEEAR 1)\ cHOCOLATE IRSSEEC MILK CHOCOLATE |

Toffee

v MLEEHE CokouADl
MILK CHOCOLATE |

Tolfee
v uLien coroLAet
MILK CHOCOLATE /.

Toflfee

W MLEENE COKOLADE

MILK CHOCOLATE 8

1-143



1 Functions — Alphabetical List

1-144

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into
lightness images by using rgb21lightness function.

imagesT = cellfun(@rgb2lightness,images, 'UniformOutput’', false);

Read the first lightness image into the workspace and use it as the reference image for
estimating geometric transformations.

refImg = imagesT{1l};

Get the optimal configuration parameters required for registration of the burst mode
lightness images by using imregconfig. Specify the image capture modality as
'monomodal’.

[optimizer,metric] = imregconfig('monomodal');
Find the total number of images stored in the cell array.
numImages = length(images);

Create an array of 2-D affine transformation object to store 2-D affine transformations of
each low-resolution burst mode lightness image excluding the reference image. Set the
number of rows in the transformation array as total number of images in the cell array
minus one.

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each
low-resolution burst mode lightness image with respect to the reference image.

for i= 2:1length(images)

movingImg = imagesT{i};

tforms(i-1) = imregtform(refImg,movingImg, 'rigid',optimizer,metric);
end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.

scale = 3;



burstinterpolant

Construct the high-resolution image from the set of low-resolution burst mode RGB
images. Specify the transformation parameter to robustly estimate the high-resolution
pixel values.

B = burstinterpolant(images,tforms,scale);
Display the high-resolution image.
figure

imshow(B);
title ('High-Resolution Image')

High-Resolution Image

v MLEENE COxOLADE
MILK CHOCOLATE

Read a low-resolution burst mode RGB image from the cell array and display its size.

Img = images{1};
inputDim = [size(Img,1l) size(Img,2)]

inputDim = Ix2

1-145



1 Functions — Alphabetical List

1-146

154 265

Display the size of the high-resolution image. Because the scale factor is 3, the size of the
high-resolution image is 3 times the size of the low-resolution burst mode images.

ouputDim = [size(B,1) size(B,2)]
ouputDim = 1Ix2

462 795

Input Arguments

imds — Input image datastore
ImageDatastore object

Input image datastore, specified as an ImageDatastore object. The input image
datastore contains multiple low-resolution burst mode images used for creating the high-
resolution image output.

* Images in the input image datastore must be 2-D grayscale images of size m-by-n or 2-
D RGB images of size m-by-n-by-3.

* All images in the input image datastore must be of the same size and data type.

* The number of images in the input image datastore must be greater than or equal to 2.

Data Types: single | double | uint8 | uintl6

images — Input images
k-by-1 cell array

Input images, specified as a k-by-1 cell array. k is the number of input images stored in
the cell array. All the input images must have same size.

Data Types: single | double | uint8 | uint16

tforms — Transformation parameter
affine2d object array

Transformation parameter, specified as an affine2d object array of size (k-1)-by-1 or 1-
by-(k-1). k is the number of images in input imds or images.



burstinterpolant

scale — Resize factor
scalar greater than or equal to 1

Resize factor, specified as a scalar greater than or equal to 1.

Data Types: single | double | uint8 | uintl6

Output Arguments

B — High-resolution image
2-D grayscale image | 2-D RGB image

High-resolution image, returned as a 2-D grayscale image or 2-D RGB image. B is of the
same data type as the input images. The size of B is the value of scale times the size of
the images in input imds or images.

For example, let L be the value of scale, and m-by-n be the size of the low-resolution
burst mode images. Then, the size of the high-resolution image is mL-by-nL.

Tips

* Compute tforms with respect to each input image using the imregtform function.
The first image in the input can be used as the reference image for estimating rigid
geometric transformations (rotations and translations only).

* Compute input arguments optimizer and metric in imregtform using
imregconfig function. optimizer must be a RegularStepGradientDescent
object and metric must be a MeanSquares object.

* To improve the high-resolution output, you can modify the input argument value of
RegularStepGradientDescent optimizer object in imregtform. For more details
about these modifications, see the properties of RegularStepGradientDescent.

Algorithms

The burstinterpolant function uses the inverse distance weighting method [1] to
generate high-resolution image from a set of low-resolution burst mode images. The
function predicts a high-resolution pixel value from a set of pixels in the low-resolution
burst mode images, selected based on the transformation parameter. The use of

1-147



1 Functions — Alphabetical List

transformation parameter tforms makes the pixel selection robust to any rigid geometric
transformations (rotations and translations only).

Note

+ If the input images are 2-D RGB images, estimate tforms from the lightness
component. You can use the rgh21lightness function to compute lightness values
from the RGB color values.

References

[1] Shepard, Donald. “A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data”, In Proceedings of the 1968 23rd ACM National Conference, 517-524. New
York, NY: ACM, 1968.

See Also

imregconfig | imregtform | rgb2lightness | scatteredInterpolant

Introduced in R2019a

1-148



bwarea

bwarea

Area of objects in binary image

Syntax

total = bwarea(BW)

Description

total = bwarea(BW) estimates the area of the objects in binary image BW. total is a
scalar whose value corresponds roughly to the total number of on pixels in the image, but
might not be exactly the same because different patterns of pixels are weighted
differently.

Examples

Calculate Area of Objects in Binary Image
Read a binary image and display it.

BW = imread('circles.png');
imshow (BW)

1-149



1 Functions — Alphabetical List

Calculate the area of objects in the image.
bwarea (BW)
ans = 1.4187e+04

Input Arguments

BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be 1 (true).

Example: BW = imread('text.png'); L = bwlabel(BW);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 |uint64 | logical

1-150



bwarea

Output Arguments

total — Estimated number of on pixels
numeric scalar
Estimated number of on pixels in binary image BW, returned as a numeric scalar.

Data Types: double

Algorithms

bwarea estimates the area of all of the on pixels in an image by summing the areas of
each pixel in the image. The area of an individual pixel is determined by looking at its 2-
by-2 neighborhood. There are six different patterns, each representing a different area:
» Patterns with zero on pixels (area = 0)

» Patterns with one on pixel (area = 1/4)

» Patterns with two adjacent on pixels (area = 1/2)

» Patterns with two diagonal on pixels (area = 3/4)

* Patterns with three on pixels (area = 7/8)

* Patterns with all four on pixels (area = 1)

Each pixel is part of four different 2-by-2 neighborhoods. This means, for example, that a
single on pixel surrounded by of f pixels has a total area of 1.

References

[1] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991,
p. 634.

See Also

bweuler | bwferet | bwperim

Introduced before R2006a

1-151



1 Functions — Alphabetical List

1-152

bwareafilt

Extract objects from binary image by size

Syntax

BW2 = bwareafilt(BW, range)
BW2 = bwareafilt(BW,n)

BW2 = bwareafilt(BW,n, keep)
BW2 = bwareafilt( __ ,conn)
Description

BW2 = bwareafilt(BW, range) extracts all connected components (objects) from the
binary image BW, where the area of the objects is in the specified range, producing
another binary image BW2. bwareafilt returns a binary image BW2 containing only
those objects that meet the criteria.

BW2 = bwareafilt(BW,n) keeps the n largest objects. In the event of a tie for n-th
place, only the first n objects are included in BW2.

BW2 = bwareafilt(BW,n, keep) specifies whether to keep the n largest objects or the
n smallest objects.

BW2 = bwareafilt( __ ,conn) specifies the pixel connectivity that defines the
objects.

Examples

Filter Binary Image by Area of Objects

Read image.

BW = imread('text.png');



bwareafilt

Filter image, retaining only those objects with areas between 40 and 50.
BW2 = bwareafilt(BW, [40 50]);
Display the original image and filtered image side by side.

imshowpair(BW,BW2, 'montage")

The term watershed
refers to a ridge that ...

d
=
o
o
=
=
e
=)
T
@
=
o
[
=

W
SE 4
2T £
S aa
35 2
=TT
= o
L
TE2
H -

Filter Binary Image by Size of Objects

Read image.

BW = imread('text.png');

Filter image, retaining only the 5 objects with the largest areas.
BW2 = bwareafilt(BW,5);

Display the original image and the filtered image side by side.

1-153



1 Functions — Alphabetical List

imshowpair(BW,BW2, 'montage")

The term watershed
refers to a ridge that ...

ol
c
4
<
&
T
e
a
°
]
=
<
[
T

n
SE &
R
-
S5 2
Sao b
= e
T
TES

: -

Input Arguments

BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.

Data Types: logical

range — Minimum and maximum areas
2-by-1 numeric vector

Minimum and maximum values of the area, specified as a 2-by-1 numeric vector of the
form [low high].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 |uint64

1-154



bwareafilt

n — Number of objects to include
numeric scalar

Number of objects to include when filtering image objects by size, specified as a numeric
scalar.

Data Types: double

keep — Size of objects to include
"largest’' (default) | 'smallest’

Size of objects to include in the output image, specified as 'largest' or 'smallest'. In
the event of a tie for n-th place, bwareafilt includes only the first n objects.

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are -
connected along the horizontal or vertical ¥
direction.

¥

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are

part of the same object if they are both on || s
and are connected along the horizontal, ¥ ™
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.

Data Types: double | logical

1-155



1 Functions — Alphabetical List

Output Arguments

BW2 — Filtered image
binary image

Filtered image, returned as a binary image of the same size and class as the input image
BW.

See Also

bwareaopen | bwconncomp | bwpropfilt | conndef | regionprops

Topics
“Filter Images on Region Properties Using Image Region Analyzer App”

Introduced in R2014b

1-156



bwareaopen

bwareaopen

Remove small objects from binary image

Syntax

Bw2
Bw2

bwareaopen (BW,P)
bwareaopen(BW, P, conn)

Description

BW2 = bwareaopen(BW,P) removes all connected components (objects) that have fewer
than P pixels from the binary image BW, producing another binary image, BW2. This
operation is known as an area opening.

BW2 = bwareaopen(BW,P, conn) removes all connected components, where conn
specifies the desired connectivity.

Examples

Remove Objects in Image Containing Fewer Than 50 Pixels

Read binary image.

BW = imread('text.png');

Remove objects containing fewer than 50 pixels using bwareaopen function.
BW2 = bwareaopen(BW, 50);

Display original image next to morphologically opened image.

imshowpair(BW,BW2, 'montage")

1-157



1 Functions — Alphabetical List

The term watershed The & mwa e shed
refers to a ridge that ... efe s oa dge ha

d v des a eas
d aned by dffe en

Ve SyS ems

ol
c
@
@
=
=
-
£
=
@
£
[
[
=

W
SE 4
2T £
S aa
35 2
=TT
= o
L
TE2
H -

Input Arguments

BW — Binary image

logical array | numeric array

Binary image, specified as a logical or numeric array of any dimension.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical

P — Maximum number of pixels in objects
nonnegative integer

Maximum number of pixels in objects, specified as a nonnegative integer.
Example: 50
Data Types: double

1-158



bwareaopen

conn — Pixel connectivity

4186|1826 | 3-by-3-by-

... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value

Meaning

Two-Dimensional Connectivities

4-connected

Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

¥

8-connected

Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

¥

w 4

Three-Dimensional Connectivities

6-connected

Pixels are connected if their faces touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected in:

* One of these directions: in, out, left,
right, up, and down

b fores

18-connected

Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

* One of these directions: in, out, left,
right, up, and down

e A combination of two directions, such
as right-down or in-up

b foces
12 edges

1-159



1 Functions — Alphabetical List

1-160

Value Meaning

26-connected Pixels are connected if their faces, edges, b foceg+
or corners touch. Two adjoining pixels are 1EEdgEE+
part of the same object if they are both on B com grs

and are connected in
* One of these directions: in, out, left,
right, up, and down

* A combination of two directions, such
as right-down or in-up

* A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwareaopen uses the default value
conndef (ndims (BW), 'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood

locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Data Types: double | logical

Output Arguments

BW2 — Area-opened image
logical array

Area-opened image, returned as a logical array of the same size as BW.

Algorithms

The basic steps are
1 Determine the connected components:

CC = bwconncomp(BW, conn);



bwareaopen

2 Compute the area of each component:

S = regionprops(CC, 'Area');
3 Remove small objects:

L

= labelmatrix(CC);
BW2 =

ismember(L, find([S.Area] >= P));

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* bwareaopen supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

* BW must be a 2-D binary image. N-D arrays are not supported.

* conn can only one of the two-dimensional connectivities (4 or 8) or a 3-by-3 matrix.
The 3-D connectivities (6, 18, and 26) are not supported. Matrices of size 3-by-3-by-...-
by-3 are not supported.

* conn must be a compile-time constant.

See Also

bwconncomp | conndef

Introduced before R2006a

1-161



1 Functions — Alphabetical List

1-162

bwboundaries

Trace region boundaries in binary image

Syntax

B = bwboundaries (BW)

B = bwboundaries(BW, conn)

B = bwboundaries(BW,conn,options)

[B,L]= bwboundaries( )

[B,L,n,A] = bwboundaries( )

Description

B = bwboundaries(BW) traces the exterior boundaries of objects, as well as boundaries
of holes inside these objects, in the binary image BW. bwboundaries also descends into
the outermost objects (parents) and traces their children (objects completely enclosed by
the parents). Returns B, a cell array of boundary pixel locations.

B = bwboundaries(BW, conn) traces the exterior boundaries of objects, where conn
specifies the connectivity to use when tracing parent and child boundaries.

B = bwboundaries(BW, conn,options) traces the exterior boundaries of objects,
where options is either 'holes' or 'noholes’, specifying whether you want to
include the boundaries of holes inside other objects.

[B,L]= bwboundaries( ) returns a label matrix L where objects and holes are
labeled.
[B,L,n,A] = bwboundaries( ) returns n, the number of objects found, and A, an

adjacency matrix.

Examples



bwboundaries

Overlay Region Boundaries on Image

Read grayscale image into the workspace.

I = imread('rice.png');

Convert grayscale image to binary image using local adaptive thresholding.

BW = imbinarize(I);

Calculate boundaries of regions in image and overlay the boundaries on the image.

[B,L] = bwboundaries(BW, 'noholes"');
imshow(label2rgb(L, @jet, [.5 .5 .5]1))
hold on
for k = 1:length(B)
boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

1-163



1 Functions — Alphabetical List

1-164

Overlay Region Boundaries on Image and Annotate with Region Numbers
Read binary image into the workspace.

BW = imread('blobs.png');

Calculate boundaries of regions in the image.

[B,L,N,A] = bwboundaries(BW);

Display the image with the boundaries overlaid. Add the region number next to every
boundary (based on the label matrix). Use the zoom tool to read individual labels.

imshow(BW); hold on;
colors=['b' 'g'" 'r' ‘'
for k=1:1length(B),
boundary = B{k};
cidx = mod(k,length(colors))+1;
plot(boundary(:,2), boundary(:,1),...
colors(cidx), 'LineWidth',2);

C m

y'l;

%srandomize text position for better visibility

rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));

col = boundary(rndRow,2); row = boundary(rndRow,1);

h = text(col+l, row-1, num2str(L(row,col)));

set(h, 'Color',colors(cidx), 'FontSize', 14, 'FontWeight', 'bold"');
end



bwboundaries

Display the adjacency matrix using the spy function.

figure
spy(A);

1-165



1 Functions — Alphabetical List

151 ]

25

301 by 1

4'} i i i i i i i

Display Object Boundaries in Red and Hole Boundaries in Green
Read binary image into workspace.

BW = imread('blobs.png');

Calculate boundaries.

[B,L,N] = bwboundaries(BW);

Display object boundaries in red and hole boundaries in green.

1-166



bwboundaries

imshow(BW); hold on;
for k=1:1length(B),
boundary = B{k};

if(k > N)
plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
else
plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
end
end

Display Parent Boundaries in Red and Holes in Green

Read image into workspace.

BW = imread('blobs.png');

1-167



1 Functions — Alphabetical List

1-168

Display parent boundaries in red and their holes in green.

[B,L,N,A] = bwboundaries (BW);
figure; imshow(BW); hold on;
% Loop through object boundaries

for

end

K =
% B
0

end

1:N

oundary k is the parent of a hole if the k-th column
f the adjacency matrix A contains a non-zero element
(nnz(A(:,k)) > 0)

boundary = B{k};
plot(boundary(:,2),...
boundary(:,1),"'r', 'LineWidth',2);
% Loop through the children of boundary k
for 1 = find(A(:,k))"
boundary = B{l};
plot(boundary(:,2),...
boundary(:,1),'g", 'LineWidth"',2);
end



bwboundaries

Input Arguments

BW — Input binary image
2-D numeric matrix | 2-D logical matrix

Binary input image, specified as a 2-D logical or numeric matrix. BW must be a binary
image where nonzero pixels belong to an object and zero-valued pixels constitute the
background. The following figure illustrates these components.

1-169



1 Functions — Alphabetical List

Hale

Parent - Parent

abject

Chid ———— =

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of the values in this table.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are

connected along the horizontal or vertical ¥
direction.

F
Y

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

)

w 4
|

Data Types: double

options — Determine whether to search for both parent and child boundaries
"holes"' (default) | 'noholes'

Determine whether to search for both parent and child boundaries, specified as either of
the following:

1-170



bwboundaries

Option Meaning

"holes' Search for both object and hole boundaries. This is the default.

‘'noholes' |Search only for object (parent and child) boundaries. This can provide
better performance.

Data Types: char | string

Output Arguments

B — Row and column coordinates of boundary pixels
p-by-1 cell array

Row and column coordinates of boundary pixels, returned as a p-by-1 cell array, where p
is the number of objects and holes. Each cell in the cell array contains a g-by-2 matrix.
Each row in the matrix contains the row and column coordinates of a boundary pixel. q is
the number of boundary pixels for the corresponding region.

L — Label matrix
2-D matrix of nonnegative integers

Label matrix of contiguous regions, returned as a 2-D matrix of nonnegative integers. The
kth region includes all elements in L that have value k. The number of objects and holes
represented by L is equal to max (L (:)). The zero-valued elements of L make up the
background.

Data Types: double

n — Number of objects found
nonnegative integer

Number of objects found, returned as a nonnegative integer.

Data Types: double

A — Parent-child dependencies between boundaries and holes
square, sparse, logical matrix

Parent-child dependencies between boundaries and holes, returned as a square, sparse,
logical matrix of class double with side of length max(L(:) ). The rows and columns of A
correspond to the positions of boundaries stored in B. The first n cells in B are object

1-171



1 Functions — Alphabetical List

1-172

boundaries. A(1i,j)=1 means that object i is a child of object j. .The boundaries that
enclose or are enclosed by the k-th boundary can be found using A as follows:

find(A(m,:))
find(A(:,m))

enclosing boundary
enclosed boundaries

’
’

Algorithms

The bwboundaries function implements the Moore-Neighbor tracing algorithm modified
by Jacob's stopping criteria. This function is based on the boundaries function
presented in the first edition of Digital Image Processing Using MATLAB, by Gonzalez, R.
C., R. E. Woods, and S. L. Eddins, New Jersey, Pearson Prentice Hall, 2004.

References

[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using
MATLAB, New Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwboundaries supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
bwboundaries generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

* The parameter conn must be a compile-time constant.
* The parameter options must be a compile-time constant.
* The return value A can only be a full matrix, not a sparse matrix.



bwboundaries

See Also

bwlabel | bwlabeln | bwperim | bwtraceboundary

Introduced before R2006a

1-173



1 Functions — Alphabetical List

1-174

bwconncomp

Find connected components in binary image

Syntax
CC = bwconncomp (BW)
CC = bwconncomp(BW, conn)

Description

CC = bwconncomp (BW) returns the connected components CC found in the binary image
BW. bwconncomp uses a default connectivity of 8 for two dimensions, 26 for three
dimensions, and conndef (ndims (BW), 'maximal"') for higher dimensions.

CC = bwconncomp (BW, conn) returns the connected components where conn specifies
the desired connectivity for the connected components.

Examples

Calculate Centroids of 3-D Objects

Create a small sample 3-D array.

BW = cat(3,

[ocNoNo)
[oNoN
[l SN o)
= oo

[110;
[010;
[011;

[cNoNo)
[ocNoNo)

’ ’
’ s
’ )I

Find the connected components in the array.

CcC bwconncomp (BW)

CC = struct with fields:
Connectivity: 26
ImageSize: [3 3 3]
NumObjects: 2



bwconncomp

PixelIdxList: {[5x1 double] [3x1 doublel}

Calculate centroids of the objects in the array.
S = regionprops(CC, 'Centroid")

S = 2x1 struct array with fields:
Centroid

Erase Largest Component from Image

Read image into the workspace and display it.

BW = imread('text.png');
imshow (BW)

The term watershed
refers to aridge that ...

tems.

el
c
L
" O
ol =
ol
-
® 2
o
IE
o
| .
o

ivi

.d
river sys

1-175



1 Functions — Alphabetical List

Find the number of connected components in the image.

CC bwconncomp (BW)

CC = struct with fields:
Connectivity: 8
ImageSize: [256 256]
NumObjects: 88
PixelIdxList: {1x88 cell}

Determine which is the largest component in the image and erase it (set all the pixels to
0).

numPixels = cellfun(@numel,CC.PixelIdxList);

[biggest,idx] = max(numPixels);

BW(CC.PixelIdxList{idx}) = 0;

Display the image, noting that the largest component happens to be the two consecutive
f's in the word different.

figure
imshow (BW)

1-176



bwconncomp

The term watershed
refers to aridge that ...

el
c
«
| .
@ o
l_m
5 g
T
wa g
N -
2o b
E.EE
S5¢
Bk

Input Arguments

BW — Input binary image
numeric array | logical array

Input binary image, specified as a numeric or logical array of any dimension. For numeric
input, any nonzero pixels are considered to be on.

Example: BW = imread('text.png');

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
418|618 |26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

1-177



1 Functions — Alphabetical List

1-178

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value

Meaning

Two-Dimensional Connectivities

4-connected

Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

¥

8-connected

Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

)

w 4

Three-Dimensional Connectivities

6-connected

Pixels are connected if their faces touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected in:

* One of these directions: in, out, left,
right, up, and down

b foees

18-connected

Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

* One of these directions: in, out, left,
right, up, and down

* A combination of two directions, such
as right-down or in-up

b foces
172 edges




bwconncomp

Value

Meaning

26-connected

Pixels are connected if their faces, edges,
or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

* One of these directions: in, out, left,
right, up, and down

* A combination of two directions, such
as right-down or in-up

* A combination of three directions,
such as in-right-up or in-left-down

b foces
12 edqe

8 comn

b

For higher dimensions, bwconncomp uses the default value
conndef (ndims (BW), 'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Data Types: double | Llogical

Output Arguments

CC — Connected components

struct

Connected components, returned as a structure with four fields.

Field Description

Connectivity Connectivity of the connected components (objects)
ImageSize Size of BW

NumObjects Number of connected components (objects) in BW
PixelIdxList 1-by-NumObjects cell array where the k-th element in the cell

array is a vector containing the linear indices of the pixels in the

k-th object.

1-179

+

+
5



1 Functions — Alphabetical List

Tips

» The functions bwlabel, bwlabeln, and bwconncomp all compute connected
components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other

functions.
Function Input Dimension [Output Form Memory Use |Connectivity
bwlabel 2-D Label matrix with High 4or8
double-precision
bwlabeln N-D Double-precision label |High Any
matrix
bwconncomp N-D CC struct Low Any

» To extract features from a binary image using regionprops with default connectivity,
just pass BW directly into regionprops (i.e., regionprops (BW)).

* To compute a label matrix having more memory-efficient data type (e.g., uint8 versus
double), use the labelmatrix function on the output of bwconncomp. See the
documentation for each function for more information.

Algorithms

The basic steps in finding the connected components are:

Search for the next unlabeled pixel, p.

Use a flood-fill algorithm to label all the pixels in the connected component

containing p.

Repeat steps 1 and 2 until all the pixels are labeled.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-180




bwconncomp

Usage notes and limitations:

* bwconncomp supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

* bwconncomp only supports 2-D inputs.

* The conn arguments must be a compile-time constant and the only connectivities
supported are 4 or 8. You can also specify connectivity as a 3-by-3 matrix, but it can
onlybe [0 1 0;1 1 1;0 1 O] orones(3)

* The PixelIdxList field in the CC struct return value is not supported.

See Also

bwlabel | bwlabeln | labelmatrix | regionprops

Introduced in R2009a

1-181



1 Functions — Alphabetical List

1-182

bwconvhull

Generate convex hull image from binary image

Syntax

CH = bwconvhull(BW)

CH = bwconvhull(BW,method)

CH = bwconvhull(BW, 'objects', conn)
Description

CH = bwconvhull(BW) computes the convex hull of all objects in BW and returns CH, a
binary convex hull image.

CH = bwconvhull(BW,method) specifies the desired method for computing the convex
hull image.

CH = bwconvhull(BW, 'objects', conn) specifies the desired connectivity used when
defining individual foreground objects.

Examples

Display Binary Convex Hull of Image

Read a grayscale image into the workspace. Convert it into a binary image and calculate
the union binary convex hull. Finally, calculate the objects convex hull and display all the
images in one figure window.

subplot(2,2,1);

I = imread('coins.png');
imshow(I);
title('Original');

subplot(2,2,2);



bwconvhull

BW = I > 100;
imshow(BW) ;
title('Binary');

subplot(2,2,3);

CH = bwconvhull(BW);
imshow(CH) ;

title('Union Convex Hull');

subplot(2,2,4);

CH objects = bwconvhull(BW, 'objects"');
imshow(CH objects);

title('Objects Convex Hull');

Original

Union Convex Hull

Objects Convex Hull

1-183



1 Functions — Alphabetical List

1-184

Input Arguments

BW — Input binary image
2-D logical matrix

Input binary image, specified as a 2-D logical matrix.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Method used to compute the convex hull
‘union' (default) | 'objects'

Method used to compute the convex hull, specified as one of the following:

Value Description

‘union’ Compute the convex hull of all foreground objects,
treating them as a single object

'objects' Compute the convex hull of each connected component
of BW individually. CH contains the convex hulls of each
connected component.

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values The conn parameter is only valid when
the method is 'objects’.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. i
Two adjoining pixels are part of the same
object if they are both on and are -
connected along the horizontal or vertical ¥

¥

direction.




bwconvhull

Value Meaning

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are

part of the same object if they are both on || -
and are connected along the horizontal, AR
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.

Data Types: double

Output Arguments

CH — Binary mask of the convex hull of all foreground objects in the input image
2-D logical matrix

Binary mask of the convex hull of all foreground objects in the input image, returned as a
2-D logical matrix.

See Also

bwconncomp | bwlabel | labelmatrix | regionprops

Introduced in R2011a

1-185



1 Functions — Alphabetical List

1-186

bwdist

Distance transform of binary image

Syntax

D = bwdist(BW)
[D,idx] = bwdist(BW)
[D,idx] = bwdist(BW,method)

Description

D = bwdist(BW) computes the Euclidean distance transform of the binary image BW.
For each pixel in BW, the distance transform assigns a number that is the distance
between that pixel and the nearest nonzero pixel of BW.

You optionally can compute the Euclidean distance transform of a 2-D binary image using
a GPU (requires Parallel Computing Toolbox). For more information, see “Image
Processing on a GPU”.

[D,idx] = bwdist (BW) also computes the closest-pixel map in the form of an index
array, 1dx. Each element of idx contains the linear index of the nearest nonzero pixel of
BW. The closest-pixel map is also called the feature map, feature transform, or nearest-
neighbor transform.

[D,idx] = bwdist (BW,method) computes the distance transform using an alternate
distance metric, specified by method.

Only the 'euclidean' method is supported on a GPU.

Examples



bwdist

Compute the Euclidean Distance Transform

This example shows how to compute the Euclidean distance transform of a binary image,

and the closest-pixel map of the image.

Create a binary image.

bw = zeros(5,5);

bw(2,2) = 1;

bw(4,4) =1

bw = 5x5
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

Calculate the distance transform.
[D,IDX] = bwdist(bw)

D = 5x5 single matrix

1.4142 1.0000 1.4142
1.0000 0 1.0000
1.4142 1.0000 1.4142
2.2361 2.0000 1.0000
3.1623 2.2361 1.4142
IDX = 5x5 uint32 matrix
7 7 7 7 7
7 7 7 7 19
7 7 7 19 19
7 7 19 19 19
7 19 19 19 19

In the nearest-neighbor matrix IDX the values 7 and 19 represent the position of the

2.2361
2.0000
1.0000

1.0000

3.1623
2.2361
1.4142
1.0000
1.4142

nonzero elements using linear matrix indexing. If a pixel contains a 7, its closest nonzero

neighbor is at linear position 7.

1-187



1 Functions — Alphabetical List

Compute Euclidean Distance Transform on a GPU

Create an image.

b Array zeros(5,5);

= gpu
bw(2,2) =
bw(4,4)
Calculate the distance transform.

[D,IDX] = bwdist(bw)

Compare 2-D Distance Transforms for Supported Distance Methods

This example shows how to compare the 2-D distance transforms for supported distance
methods. In the figure, note how the quasi-Euclidean distance transform best
approximates the circular shape achieved by the Euclidean distance method.

bw = zeros(200,200);

bw(50,50) = 1; bw(50,150) = 1; bw(150,100) = 1;
D1 = bwdist(bw, 'euclidean');

D2 = bwdist(bw,'cityblock );

D3 = bwdist(bw, 'chessboard');

D4 = bwdlst(bw quasi-euclidean');
RGB1 = repmat(rescale(D1l), [1 1 3]);
RGB2 = repmat(rescale(D2), [1 1 3]);
RGB3 = repmat(rescale(D3), [1 1 3]);
RGB4 = repmat(rescale(D4), [1 1 3]);
figure

subplot(2,2,1), imshow(RGB1l), title('Euclidean')

hold on, imcontour(D1)

subplot(2,2,2), imshow(RGB2), title('City block')

hold on, imcontour(D2)

subplot(2,2,3), imshow(RGB3), title('Chessboard')

hold on, imcontour(D3)

subplot(2,2,4), imshow(RGB4), title('Quasi-Euclidean')
hold on, imcontour(D4)

1-188



bwdist

Euclidean

Chessboard Quasi-Euclidean

Compare Isosurface Plots for Distance Transforms of 3-D Image

This example shows how to compare isosurface plots for the distance transforms of a 3-D
image containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);

D2 = bwdist(bw, 'cityblock');

D3 = bwdist(bw, 'chessboard');

D4 = bwdist(bw, 'quasi-euclidean');
figure

1-189



1 Functions — Alphabetical List

subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block")
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard")
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')

Euclidean

40
30
20
10
40
20 20
10
Chessboard

City block

40
30
20

10
40

Quasi-Euclidean

40
30
20

10



bwdist

Input Arguments

BW — Binary image
numeric array | logical array | gpuArray

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).

To compute the Euclidean distance transform using a GPU, specify BW as a gpuArray that
contains a 2-D numeric or logical matrix with fewer than 232 elements.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Distance metric
‘euclidean’ (default) | 'chessboard' | ‘cityblock' | 'quasi-euclidean'

Distance metric, specified as one of the these values.

Method Description
‘chessboard’ In 2-D, the chessboard distance between (x;,y;) and (x,,y»)
is
max(|x; - x;|,|y1 - ¥ ).
'cityblock! In 2-D, the cityblock distance between (x;,y;) and (x,,y,) is
Ix1 - x2| + [y1 - 32
'euclidean’ In 2-D, the Euclidean distance between (x;,y;) and (x,,y,) is
\/(Xl —x)* + (v — o).
'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x;,y;) and
(x2,y2) is

Ix1 = X2 + (V2 = Dly1 = yal, Ix1 = xa| > |y1 = 2l

/2 = 1DJx1 = x| + |y1 = yo|, otherwise.

Only the 'euclidean' method is supported on a GPU.

For more information, see “Distance Transform of a Binary Image”.

1-191



1 Functions — Alphabetical List

1-192

Data Types: char | string

Output Arguments

D — Distance array
numeric array | gpuArray

Distance, returned as a numeric array of the same size as BW. The value of each element
is the distance between that pixel and the nearest nonzero pixel in BW, as defined by the
distance metric, method.

If the Euclidean distance transform is computed using a GPU, then D is returned as a
gpuArray containing a 2-D numeric matrix.

Data Types: single

idx — Index array
numeric array | gpuArray

Index array, returned as a numeric array of the same size as BW. Each element of idx
contains the linear index of the nearest nonzero pixel of BW. The class of idx depends on
the number of elements in the input image, and is determined as follows.

Class Range
'uint32' numel (BW) <= 232 -1
'uint64' numel (BW) >= 232

If the Euclidean distance transform is computed using a GPU, then idx is returned as a
gpuArray containing a 2-D numeric matrix of data type uint32.

Data Types: uint32 | uint64

Tips

* bwdist uses fast algorithms to compute the true Euclidean distance transform,
especially in the 2-D case. The other methods are provided primarily for pedagogical
reasons. However, the alternative distance transforms are sometimes significantly
faster for multidimensional input images, particularly those that have many nonzero
elements.




bwdist

* The function bwdist changed in version 6.4 (R2009b). Previous versions of the Image
Processing Toolbox used different algorithms for computing the Euclidean distance
transform and the associated label matrix. If you need the same results produced by
the previous implementation, use the function bwdist old.

Algorithms

» For Euclidean distance transforms, bwdist uses the fast algorithm. [1]

+ For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist uses the
two-pass, sequential scanning algorithm. [2]

» The different distance measures are achieved by using different sets of weights in the
scans, as described in [3].

References

[1] Maurer, Calvin, Rensheng Qi, and Vijay Raghavan, "A Linear Time Algorithm for
Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary
Dimensions," IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 25, No. 2, February 2003, pp. 265-270.

[2] Rosenfeld, Azriel and John Pfaltz, "Sequential operations in digital picture processing,"
Journal of the Association for Computing Machinery, Vol. 13, No. 4, 1966, pp.
471-494,

[3] Paglieroni, David, "Distance Transforms: Properties and Machine Vision Applications,"

Computer Vision, Graphics, and Image Processing: Graphical Models and Image
Processing, Vol. 54, No. 1, January 1992, pp. 57-58.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1-193



1 Functions — Alphabetical List

1-194

* bwdist supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, bwdist generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

* When generating code, the optional second input argument, method, must be a
compile-time constant. Input images must have fewer than 232 pixels.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

+ Input images must be 2-D and have less than 232 elements.
* Euclidean is the only distance metric supported.

For more information, see “Image Processing on a GPU”.

See Also

bwulterode | watershed

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a



bwdistgeodesic

bwdistgeodesic

Geodesic distance transform of binary image

Syntax

D = bwdistgeodesic(BW,mask)

D = bwdistgeodesic(BW,C,R)

D = bwdistgeodesic(BW,idx)

D = bwdistgeodesic(  ,method)
Description

= bwdistgeodesic(BW,mask) computes the geodesic distance transform, given the
binary image BW and the seed locations specified by mask. Regions where BW is true
represent valid regions that can be traversed in the computation of the distance
transform. Regions where BW is false represent constrained regions that cannot be
traversed in the distance computation. For each true pixel in BW, the geodesic distance
transform assigns a number that is the constrained distance between that pixel and the
nearest true pixel in mask. Output matrix D contains geodesic distances.

= bwdistgeodesic(BW,C,R) computes the geodesic distance transform of the
binary image BW. Vectors C and R contain the column and row coordinates of the seed
locations.

= bwdistgeodesic(BW, idx) computes the geodesic distance transform of the
binary image BW. idx is a vector of linear indices of seed locations.

= bwdistgeodesic( ,method) computes the geodesic distance transform using
an alternate distance metric, specified by method.

Examples

1-195



1 Functions — Alphabetical List

Compute Geodesic Distance Transformation of Binary Image

Create a sample binary image for this example.

1111111111;...

BW = [
1
1
1
0
0
0
0
0
0

ORFRPFHOOKRR R
ORHROOOKHRRF
OCOHOOORR KK
OHHMFHOOOOOO
OHOOHROOOO
ORFROHKRRKRR
COOOOOH KRR

et e Ns ws we ws owa owa o~

1
1
1
1
1
1
1
0
0

BW = logical(BW);

Create two vectors of seed locations.

C
R

[1 233 3];
[33312];
Calculate the geodesic distance transform. Output pixels for which BW is false have

undefined geodesic distance and contain NaN values. Because there is no connected path
from the seed locations to element BW(10,5), the output D(10,5) has a value of Inf.

D = bwdistgeodesic(BW,C,R)
D = 10x10 single matrix
2 1 0 1 2 3 4 5 6 7
1 1 0 1 2 3 NaN NaN 6 7
0 0 0 1 2 3 NaN NaN 7 7
1 1 1 1 2 3 NaN NaN 8 8
NaN NaN NaN NaN NaN 3 NaN NaN 9 NaN
NaN NaN NaN NaN 4 4 NaN 10 10 NaN
NaN 8 NaN NaN 5 5 NaN NaN NaN NaN
NaN 8 7 6 6 6 6 NaN 8 NaN
NaN 8 7 NaN NaN NaN 7 7 8 NaN

NaN NaN NaN NaN Inf NaN NaN NaN NaN NaN

1-196



bwdistgeodesic

Input Arguments

BW — Binary image
real, nonsparse, numeric or logical array of any dimension

Binary image, specified as a real, nonsparse, numeric or logical array of any dimension.
For numeric input, any nonzero pixels are considered to be on.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

mask — Seed locations
logical array

Seed locations, specified as a logical array of the same size as BW.

C, R — Column or row coordinates of seed locations
vector of positive integers

Column or row coordinates of seed locations, specified as a vector of positive integers.
Coordinate values are valid C,R subscripts in BW.

idx — Linear indices of seed locations
vector of positive integers

Linear indices of seed locations, specified as a vector of positive integers.

method — Distance metric
‘chessboard' (default) | 'cityblock' | "quasi-euclidean’

Distance metric, specified as one of the following.

Method Description

'chessboard' In 2-D, the chessboard distance between (x;,y;) and (x,,y-)
is

max (abs (x;-x,) ,abs(y;-y,))

"cityblock' In 2-D, the cityblock distance between (x;,y;) and (x,,y,) is

abs(x;-x;) + abs(y;-y»)

1-197



1 Functions — Alphabetical List

1-198

Method Description
'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x;,y;) and
(X2,)) is

Ix1 = X2 + (V2 = Dly1 = yal, Ix1 = x2| > |y1 =yl

(2 = 1)|x; = x3| + |y1 — yo|, otherwise.

Data Types: char | string

Output Arguments

D — Geodesic distances
numeric array

Geodesic distances, returned as a numeric array of the same size as BW.

Data Types: single

Algorithms

bwdistgeodesic uses the geodesic distance algorithm described in Soille, P,
Morphological Image Analysis: Principles and Applications, 2nd Edition, Secaucus, N]J,
Springer-Verlag, 2003, pp. 219-221.

See Also
bwdist | graydist

Introduced in R2011b



bweuler

bweuler

Euler number of binary image

Syntax

eul = bweuler(BW, conn)

Description

eul = bweuler(BW, conn) returns the Euler number for the binary image BW. The
Euler number is the total number of objects in the image minus the total number of holes
in those objects. conn specifies the connectivity. Objects are connected sets of on pixels,
that is, pixels having a value of 1.

Examples

Calculate Euler Number for Binary Image

Read binary image into workspace, and display it.

BW = imread('circles.png');
imshow (BW)

1-199



1 Functions — Alphabetical List

Calculate the Euler number. In this example, all the circles touch so they create one
object. The object contains four "holes", which are the black areas created by the
touching circles. Thus the Euler number is 1 minus 4, or -3.

bweuler (BW)

ans = -3

Input Arguments

BW — Binary image
2-D real, nonsparse, numeric or logical matrix

Binary image, specified as a 2-D, real, nonsparse, numeric or logical matrix. For numeric
input, any nonzero pixels are considered to be on.

1-200



bweuler

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Connectivity
8 (default) | 4

Connectivity, specified as the values 4, for 4-connected objects, or 8, for 8-connected
objects.

Example: BW = imread('text.png'); L = bweuler(BWw,4);
Data Types: double

Output Arguments

eul — Euler number
numeric scalar

Euler number, returned as a numeric scalar.

Data Types: double

Algorithms

bweuler computes the Euler number by considering patterns of convexity and concavity
in local 2-by-2 neighborhoods. See [2] on page 1-201 for a discussion of the algorithm
used.

References
[1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp. 73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991,
p. 633.

1-201



1 Functions — Alphabetical List

1-202

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bweuler supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bweuler generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

See Also

bwmorph | bwperim

Introduced before R2006a



bwferet

bwferet

Measure Feret properties

Syntax

out = bwferet(BW,properties)
out = bwferet(CC,properties)
out = bwferet(L,properties)
out = bwferet(input)

[out,LM] = bwferet( )

Description

out = bwferet(BW, properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each object in input binary image BW. The measured Feret
properties include the minimum and maximum Feret diameters, Feret angles, and
endpoint coordinates of Feret diameters.

out = bwferet(CC,properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each connected component in the input CC. The measured
Feret properties include the minimum and the maximum Feret diameters, Feret angles,
and endpoint coordinates of Feret diameters.

out = bwferet(L,properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each object in the input label matrix L. The measured Feret
properties include the minimum and the maximum Feret diameter, Feret angles, and
endpoint coordinates of Feret diameters.

out = bwferet(input) measures the maximum Feret diameter, its relative angle, and
coordinate values measured from the input. The function returns the measurements in a
table. The input can be binary image BW, connected component CC, or label matrix L.

[out,LM] = bwferet( ) also returns a label matrix containing label values that
represent the row indices of the table out. You can use any of the input arguments from

1-203



1 Functions — Alphabetical List

1-204

previous syntaxes. Each row entry in out corresponds to a labeled region (object) in label
matrix LM.

Examples

Measure Feret Properties of Objects in Binary Image

Read an image into the workspace.

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I, 'adaptive');

Extract the first two largest objects from the binary image.

bw = bwareafilt(bw,2);

Fill holes in the extracted object regions.

bw = imfill(bw, 'holes"');

Calculate the minimum Feret properties and the label matrix of the extracted objects.
[out,LM] = bwferet(bw, 'MinFeretProperties');

Get the maximum number of objects in the output label matrix.
maxLabel = max(LM(:));

Display the output containing the table of minimum Feret properties.
out

out=2x3 table

MinDiameter MinAngle MinCoordinates
116.23 99.462 {2x2 double}
132.08 -159.27 {2x2 double}



bwferet

Display the minimum Feret properties of the object with label-value 1 from the output
label matrix.

out.MinDiameter(1)
ans = 116.2301
out.MinAngle(1)

ans = 99.4623
out.MinCoordinates{1}
ans = 2x2

120.5000 311.5000
139.6081 196.8514

Display the minimum Feret properties of the object with label-value 2 from the output
label matrix.

out.MinDiameter(2)
ans = 132.0776
out.MinAngle(2)

ans = -159.2744
out.MinCoordinates{2}
ans = 2x2

215.5000 197.5000
339.0304 244.2412

Display the output label matrix. Plot the endpoint coordinates and minimum Feret
diameter of objects with different label values from the output label matrix.

h = imshow(LM, []);
axis = h.Parent;
for labelvalues = 1l:maxLabel

xmin = [out.MinCoordinates{labelvalues}(1,1) out.MinCoordinates{labelvalues}(2,
[out.MinCoordinates{labelvalues}(1,2) out.MinCoordinates{labelvalues}(2,

ymin

1-205

I
I



1 Functions — Alphabetical List

imdistline(axis,xmin,ymin);
end
title(axis, 'Minimum Feret Diameter of Objects');
colorbar('Ticks',l:maxLabel)

Minimum Feret Diameter of Objects

Measure Feret Properties of Connected Components

Read an image into the workspace.

1-206



bwferet

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I, 'adaptive');

Fill holes in the object regions of the input binary image.
bw = imfill(bw, 'holes"');

Use the bwconncomp function to generate connected components from the resulting
image.

cc = bwconncomp(bw);

Measure the maximum Feret properties of the connected components.
[out,LM] = bwferet(cc, 'MaxFeretProperties');

Get the maximum number of objects in the output label matrix.
maxLabel = max(LM(:));

Inspect the table to verify the measured maximum Feret properties.
out

out=4x3 table

MaxDiameter MaxAngle MaxCoordinates
162.6 -175.06 {2x2 double}
156.21 -127.46 {2x2 double}
187.96 121.07 {2x2 double}
63.781 -131.19 {2x2 double}

Display the maximum Feret diameters of objects with different label values from output
label matrix.

out.MaxDiameter(1l:maxLabel)
ans = 4x1

162.6038
156.2082

1-207



1 Functions — Alphabetical List

187.9628
63.7809

Display the directional angles of the maximum Feret diameters specific to objects with
different label values from output label matrix.

out.MaxAngle(1l:maxLabel)
ans = 4x1

-175.0608

-127.4568

121.0683
-131.1859

Display the endpoint coordinates of the maximum Feret diameters specific to objects with
different label values from output label matrix.

out.MaxCoordinates{l:maxLabel}
ans = 2x2
186.5000 113.5000
24.5000 99.5000
ans = 2x2
156.5000 315.5000
61.5000 191.5000
ans = 2x2
337.5000 174.5000
240.5000 335.5000
ans = 2x2

288.5000 129.5000
246.5000 81.5000

1-208



bwferet

Display the output label matrix. Plot the endpoint coordinates and the maximum Feret
diameter of objects with different label values from output label matrix.

h = imshow(LM, []);

axis = h.Parent;

for labelvalues = 1:maxLabel
xmax = [out.MaxCoordinates{labelvalues}(1,1) out.MaxCoordinates{labelvalues}(2,1)]
ymax = [out.MaxCoordinates{labelvalues}(1,2) out.MaxCoordinates{labelvalues}(2,2)]
imdistline(axis,xmax,ymax);

end

title(axis, 'Maximum Feret Diameter of 0Objects');

colorbar('Ticks',l:maxLabel)

1-209



1 Functions — Alphabetical List

Maximum Feret Diameter of Objects

Input Arguments

BW — Input binary image
numeric matrix | logical matrix

Input binary image, specified as a logical or numeric matrix. BW must be a binary image
where nonzero pixels correspond to an object and zero-valued pixels correspond to the

background.

1-210



bwferet

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32 |
logical

CC — Connected components
structure

Connected components, specified as a structure with the four fields shown in this table.

Field Description

Connectivity Connectivity of the connected components (objects)

ImageSize Size of input binary image

NumObjects Number of connected components (objects) in the input binary
image

PixelIdxList 1-by-NumObjects cell array, where the kth element is a vector
containing the linear indices of the pixels in the kth object

You can use the bwconncomp function to generate connected components from a binary
image.

Data Types: struct

L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, specified as a matrix of nonnegative integers. The
pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on. The number of objects represented by L is
equal to the maximum value of L. You can use the bwlabel function to generate label
matrix from a binary image.

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32 |
logical

properties — Label for Feret properties
MaxFeretProperties | MinFeretProperties | all

Label for Feret properties, specified as MaxFeretProperties, MinFeretProperties,
orall.

Data Types: char | string

1-211



1 Functions — Alphabetical List

1-212

input — Generic input
numeric matrix | logical matrix | structure | matrix of nonnegative integers

Generic input, specified as one of these values:

* Numeric matrix or logical matrix — When input is a binary image, BW.
* Structure — When input is the connected component, CC.
* Matrix of nonnegative integers — When input is the label matrix, L.

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32 |
logical | struct

Output Arguments

out — Table of Feret properties
m-by-n table

Table of Feret properties, returned as an m-by-n table. m is the number of objects for
which the Feret properties are measured. n is 3 or 6, depending on the properties
input.

 Ifpropertiesis 'MaxFeretProperties’, then the table out is of size m-by-3 with
columns MaxDiameter, MaxAngle, and MaxCoordinates.

+ Ifpropertiesis 'MinFeretProperties', then the table out is of size m-by-3 with
columns MinDiameter, MinAngle, and MinCoordinates.

* Ifpropertiesis 'all’, then the table out is of size m-by-6 with all columns listed in
this table.

Column Name Description

MaxDiameter Maximum Feret diameter of an object, measured as the maximum
distance between any two boundary points on the antipodal
vertices of the convex hull that encloses that object

MaxAngle Directional angle of the maximum Feret diameter with respect to
the horizontal axis of the image. The value, in degrees, is in the

range [-180°,180°]




bwferet

Column Name Description
MaxCoordinates Endpoint coordinates of the maximum Feret diameter, returned in
X1 W
the form
X2 W2
MinDiameter Minimum Feret diameter of an object, measured as the minimum

distance between any two boundary points on the antipodal
vertices of the convex hull that encloses that object

MinAngle Directional angle of the minimum Feret diameter with respect to
the horizontal axis of the image. The value, in degrees, is in the
range [-180°,180°]

MinCoordinates Endpoint coordinates of the minimum Feret diameter, returned in
X1 W

X2 Y2

the form

LM — Output label matrix
matrix of nonnegative integers

Output label matrix of contiguous regions, specified as a matrix of nonnegative integers.
The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the
pixels labeled 2 make up a second object; and so on. The Feret properties in the kth row
entry of out correspond to the kth region (object) in LM that have the value k. The
number of objects represented by LM is equal to the maximum value of LM.

Note If the input to bwferet is a label matrix, then the output label matrix LM is same
as the input label matrix.

Data Types: uint8

Algorithms

The Feret properties of an object are measured by using boundary points on the antipodal
vertices of the convex hull that encloses that object.

1-213



1 Functions — Alphabetical List

Maximum Feret Diameter Minimum Feret Diameter

(i, pi,

I - Convex hull
@ - Endpoints (boundary points)
I - Antipodal vertices of convex hull

iy Yinin, ) —

Given the endpoint coordinates of the maximum (or minimum) Feret diameter, *2

angle = tan_l[uJ
the maximum (or minimum) Feret angle is measured as 270 )

See Also

bwconncomp | bwlabel | bwlabeln | Labelmatrix | regionprops

Introduced in R2019a

1-214

N
Y2

|



bwhitmiss

bwhitmiss

Binary hit-miss operation

Syntax

BW2
BW2

bwhitmiss (BW,SE1,SE2)
bwhitmiss (BW,interval)

Description

BW2 = bwhitmiss(BW,SE1,SE2) performs the hit-miss operation defined by the
structuring elements SE1 and SE2. The hit-miss operation preserves pixels in binary
image BW whose neighborhoods match the shape of SE1 and don't match the shape of
SE2.

This syntax is equivalent to imerode (BW,SE1) & imerode(~BW,SE2).

BW2 = bwhitmiss(BW,interval) performs the hit-miss operation defined in terms of a
single array, called an interval. An interval is an array whose elements are 1, 0, or -1. The
1-valued elements make up the domain of SE1, the - 1-valued elements make up the
domain of SE2, and the 0-valued elements are ignored.

This syntax is equivalent to bwhitmiss (BW,interval==1,interval==-1).

Examples

Perform Hit-miss Operation on Binary Image

Create sample binary image for this example.

bw = [00 0000

0061100
0111180
0111180

1-215



1 Functions — Alphabetical List

001100
00100 0]
bw = 6x6
0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 1 0 0 0

Define an interval.
interval = [0 -1 -1

1 1-1
0 1 0];

Perform hit-miss operation.

bw2

bwhitmiss (bw,interval)

bw?2 6x6 logical array

[cNoNoNoNOoNO]
[cNoNoNoNOoNO]
[cNoNoNoNOoNG]
[cNoNoNoN T No]
[cNoNoN SNOoNO)
[cNoNoNoNOoNG]

Input Arguments

BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).

SE1, SE2 — Structuring element
strel object | numeric array

1-216



bwhitmiss

Flat structuring element, specified as a strel object or a numeric matrix with values of 1
and 0. The neighborhoods of SE1 and SE2 should not have overlapping elements.

interval — Interval
numeric array

Interval, specified as a numeric array with values of 1, 0, and - 1.
Data Types: single | double | int8 | intl6 | int32 | int64

Output Arguments

BW2 — Processed binary image
logical array

Processed binary image after the hit-miss operation, specified as a logical array of the
same size as BW.

Data Types: logical

See Also

imdilate | imerode | strel

Introduced before R2006a

1-217



1 Functions — Alphabetical List

bwlabel

Label connected components in 2-D binary image

Syntax

bwlabel (BW)
bwlabel (BW, conn)
n] = bwlabel( )

L =
L =
[L

’

Description

L = bwlabel (BW) returns the label matrix L that contains labels for the 8-connected
objects found in BW.

You optionally can label connected components in a 2-D binary image using a GPU
(requires Parallel Computing Toolbox). For more information, see “Image Processing on a
GPU".

L = bwlabel (BW, conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabel( ) also returns n, the number of connected objects found in BW.

Examples

Label Components Using 4-connected Objects

Create a small binary image.

BW = logical ([

R e
e el
[oNoNoNoNoNO]
[cNoNoN TN Nl
[oNoNoN N SN o]
FRPROO®O®
[oNoNoNoNoNO]

1
1
1
1
1
1

1-218



bwlabe

1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 01);

Create the label matrix using 4-connected objects.

L = bwlabel(BW,4)

L = 8x8
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 3 3 0
1 1 1 0 0 0 0 0

Use the find command to get the row and column coordinates of the object labeled "2".

[r, c] = find(L==2);
rc = [r cl

rc = 4x2

WNWN
[e) @) IO, 0,

Label Components Using 4-connected Objects on a GPU
Create a small binary image and create a gpuArray object to contain it.

BW = gpuArray(logical([1 1100000

N e N
e
R
cooo®
[cRcRcoRE=g=
[cRcRC NS
PFHHOO®
[cRoNoNoNo)

1-219



1 Functions — Alphabetical List

1-220

11100110
11100000]));
Create the label matrix using 4-connected objects.

L = bwlabel(BWw,4)

Use the find command to get the row and column coordinates of the object labeled "2".

[r,c] = find(L == 2)

Input Arguments

BW — Binary image
2-D numeric matrix | 2-D logical matrix | gpuArray

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be on.

To label connected components using a GPU, specify BW as a gpuArray that contains a 2-
D numeric or logical matrix.

Example: BW = imread('text.png');

Example: BW = gpuArray(imread('text.png'));

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of these values.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are -
connected along the horizontal or vertical ¥

¥

direction.




bwlabel

Value Meaning

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

y

w 4
|

Data Types: double | logical

Output Arguments

L — Label matrix
matrix of nonnegative integers | gpuArray

Label matrix of contiguous regions, returned as matrix of nonnegative integers with the
same size as BW. The pixels labeled 0 are the background. The pixels labeled 1 make up
one object; the pixels labeled 2 make up a second object; and so on.

If connected components are labeled using a GPU, then L is returned as a gpuArray
containing a matrix of nonnegative integers.

Data Types: double

n — Number of connected objects

nonnegative integer

Number of connected objects in BW, returned as a nonnegative integer.

Data Types: double

Tips

* The functions bwlabel, bwlabeln, and bwconncomp all compute connected
components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other
functions.

1-221



1 Functions — Alphabetical List

Input Dimension [Output Form Memory Use |Connectivity
bwlabel 2-D Double-precision label [High 4or8
matrix
bwlabeln N-D Double-precision label [High Any
matrix
bwconncomp N-D CC struct Low Any

1-222

You can use the MATLAB find function in conjunction with bwlabel to return vectors
of indices for the pixels that make up a specific object. For example, to return the
coordinates for the pixels in object 2, enter the following:.

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object
appears in a different color, so the objects are easier to distinguish than in the original
image. For more information, see label2rgb.

To compute a label matrix having a more memory-efficient data type (e.g., uint8
versus double), use the labelmatrix function on the output of bwconncomp.

To extract features from a binary image using regionprops with default connectivity,
just pass BW directly into regionprops by using the command regionprops (BW).

The bwlabel function can take advantage of hardware optimization for data types
logical, uint8, and single to run faster. Hardware optimization requires marker
and mask to be 2-D images and conn to be either 4 or 8.

Algorithms

bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

Run-length encode the input image.

Scan the runs, assigning preliminary labels and recording label equivalences in a
local equivalence table.

Resolve the equivalence classes.
Relabel the runs based on the resolved equivalence classes.




bwlabel

References

[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I,
Addison-Wesley, 1992, pp. 28-48.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwlabel supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

* When generating code, the parameter n must be a compile-time constant.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also

bwconncomp | bwlabeln | bwselect | label2rgb | labelmatrix | regionprops

Introduced before R2006a

1-223



1 Functions — Alphabetical List

bwlabeln

Label connected components in binary image

Syntax

L = bwlabeln(BW)

L = bwlabeln(BW,conn)
[L,n] = bwlabeln( )

Description

= bwlabeln(BW) returns a label matrix, L, containing labels for the connected
components in BW.

= bwlabeln(BW, conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabeln( ) also returns n, the number of connected objects found in BW.

Examples

Calculate Centroids of 3-D Objects

Create simple sample 3-D binary image.

BW = cat(3, [110; 00 0; 100]

[610; 000; 610],
[611; 0600; 601])
BW =
BW(:,:,1) =
1 1 0
0 0 0
1 0 0

1-224



bwlabeln

[ocNoNo)

[ocNoNo)

Label connected components in the image.

bwlabeln (BW)

ans =

ans(:,:

1
0
2

ans(:,:

loNoNo]

ans(:,:

loNoNo]

'1)

1
0
0

[ocNoNo)

oM

loNoNo] loNoNo]

N OB

1-225



1 Functions — Alphabetical List

1-226

Input Arguments

BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be on.

Example: BW = imread('text.png');

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4|18|6|18]| 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. i
Two adjoining pixels are part of the same
object if they are both on and are -
connected along the horizontal or vertical ¥
direction.

¥

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

)

w 4
|

Three-Dimensional Connectivities

6-connected Pixels are connected if their faces touch. b foces
Two adjoining pixels are part of the same
object if they are both on and are
connected in:

* One of these directions: in, out, left,
right, up, and down




bwlabeln

Value Meaning
18-connected Pixels are connected if their faces or b foces+
edges touch. Two adjoining pixels are part 12 edyes

of the same object if they are both on and
are connected in

* One of these directions: in, out, left,
right, up, and down

* A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges, b foceg+
or corners touch. Two adjoining pixels are ]EEﬂgEE+
part of the same object if they are both on B com rs

and are connected in
* One of these directions: in, out, left,
right, up, and down

» A combination of two directions, such
as right-down or in-up

* A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwlabeln uses the default value
conndef (ndims (BW), 'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Data Types: double | Llogical

Output Arguments

L — Label matrix
array of nonnegative integers

1-227



1 Functions — Alphabetical List

Label matrix, returned as an array of nonnegative integers with the same size as BW. The
pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on.

Data Types: double

L — Label matrix
2-D array of nonnegative integers

Label matrix of contiguous regions, returned as a 2-D array of nonnegative integers of
class double. The kth region includes all elements in L that have value k. The number of
objects and holes represented by L is equal to max (L (:) ). The zero-valued elements of L
make up the background.

Data Types: double

n — Number of connected objects
nonnegative integer

Number of connected objects in BW, returned as a nonnegative integer.

Data Types: double

Tips

* The functions bwlabel, bwlabeln, and bwconncomp all compute connected
components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other
functions.

Function Input Dimension [Output Form Memory Use |Connectivity
bwlabel 2-D Label matrix with High 4or8
double-precision
bwlabeln N-D Double-precision label |High Any
matrix
bwconncomp N-D CC struct Low Any

1-228

» To extract features from a binary image using regionprops with default connectivity,
just pass BW directly into regionprops, i.e. regionprops (BW).

* To compute a label matrix having a more memory-efficient data type (e.g., uint8
versus double), use the labelmatrix function on the output of bwconncomp:




bwlabeln

bwconncomp (BW) ;
labelmatrix(CC);

ro

CC = bwconncomp(BW,n);
S = regionprops(CC);

Algorithms

bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels and recording
label equivalences in a union-find table.

Resolve the equivalence classes using the union-find algorithm [1].
Relabel the pixels based on the resolved equivalence classes.

References

[1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp. 11-20.

See Also

bwconncomp | bwlabel | label2rgb | labelmatrix | regionprops

Introduced before R2006a

1-229



1 Functions — Alphabetical List

1-230

bwlookup

Nonlinear filtering using lookup tables

Syntax

J = bwlookup(BW, lut)

Description

J = bwlookup (BW, Llut) performs a 2-by-2 or 3-by-3 nonlinear neighborhood filtering
operation on binary or grayscale image I and returns the results in output image J. The
neighborhood processing determines an integer index value used to access values in
lookup table Lut. The fetched lut value becomes the pixel value in output image J at the
targeted position.

You optionally can perform the filtering using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Perform Erosion Along Edges of Binary Image

Construct the vector Lut such that the filtering operation places a 1 at the targeted pixel
location in the input image only when all four pixels in the 2-by-2 neighborhood of BW are
set to 1.

lutfun = @(x) (sum(x(:))==4);
lut = makelut(lutfun,?2)

lut = 16x1

0
0
0



bwlookup

[ocNoNoNoNoNoNO]

Load a binary image.
BW1 = imread('text.png');
Perform 2-by-2 neighborhood processing with 16-element vector lut .

BW2 = bwlookup(BW1,lut);

Show zoomed before and after images.

figure;

hl = subplot(1,2,1); imshow(BW1l), axis off; title('Original Image')
h2 = subplot(1,2,2); imshow(BW2); axis off; title('Eroded Image')
% 16X zoom to see effects of erosion on text

set(hl, 'Ylim',[1 64], 'Xlim',[1 64]1);

set(h2,'Ylim',[1 641, 'Xlim',[1 64]);

1-231



1 Functions — Alphabetical List

Original Image

The te

Eroded Image

refers

Input Arguments

BW — Input image
binary image

Input image transformed by nonlinear neighborhood filtering operation, specified as a
binary image. For numeric input, any nonzero pixels are considered to be 1 (true).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 |uint64 | logical

1-232



bwlookup

lut — Lookup table of output pixel values
16-element vector | 512-element vector

Lookup table of output pixel values, specified as a 16- or 512-element vector. The size of
lut determines which of the two neighborhood operations is performed.

» If Lut contains 16 data elements, then the neighborhood matrix is 2-by-2.
o If Lut contains 512 data elements, then the neighborhood matrix is 3-by-3.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 |
uint32 |uint64 | logical

Output Arguments

J — Output image
binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values
are determined by the content of the lookup table, Lut. The output image J is the same
size as the input image I and the same data type as lut.

Algorithms

The first step in each iteration of the filtering operation performed by bwlookup entails
computing the index into vector lut based on the binary pixel pattern of the
neighborhood matrix on image I. The value in lut accessed at index, lut(index), is
inserted into output image J at the targeted pixel location. This results in image J being
the same data type as vector lut.

Since there is a 1-to-1 correspondence in targeted pixel locations, image J is the same
size as image I. If the targeted pixel location is on an edge of image I and if any part of
the 2-by-2 or 3-by-3 neighborhood matrix extends beyond the image edge, then these non-
image locations are padded with 0 in order to perform the filtering operation.

The following figures show the mapping from binary 0 and 1 patterns in the neighborhood

matrices to its binary representation. Adding 1 to the binary representation yields index
which is used to access lut.

1-233



1 Functions — Alphabetical List

2-by-2 Neighborhood Lookup

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations

is 24 = 16.

1-234



bwlookup

8 4 2

1

Targeted Pixel Position for
2x2 MNeighborhood

Color coded mapping from Pixel Patterns to
Binary Representation for 2x2 Matrix

1-235



1 Functions — Alphabetical List

1-236

To illustrate, this example shows how the pixel pattern in a 2-by-2 matrix determines
which entry in lut is placed in the targeted pixel location.

1

Create random 16-element lut vector containing uint8 data.

scurr = rng; % save current random number generator seed state
rng('default"') % always generate same set of random numbers

lut = uint8( round( 255*rand(16,1) ) ) % generate lut

rng(scurr); % restore

lut =

208
231
32
233
161
25
71
139
244
246
40
248
244
124
204
36

Create a 2-by-2 image and assume for this example that the targeted pixel location is
location I(1,1).

I=1010;01]
I-=
1 0
0 1

By referring to the color coded mapping figure above, the binary representation for
this 2-by-2 neighborhood can be computed as shown in the code snippet below. The
logical 1 at I(1,1) corresponds to blue in the figure which maps to the Least
Significant Bit (LSB) at position 0 in the 4-bit binary representation (,2°= 1). The
logical 1 at I(2,2) is red which maps to the Most Significant Bit (MSB) at position 3
in the 4-bit binary representation (23= 8) .



bwlookup

% I(1,1): blue square; sets bit position 0 on right
% I(2,2): red square; sets bit position 3 on left
binNot = '1 0 0 1'; % binary representation of 2x2 neighborhood matrix
X = bin2dec( binNot ); % convert from binary to decimal
index = X + 1 % add 1 to compute index value for uint8 vector lu
All = lut(index) % value at A(1,1)
index =
10

All =

246

4 The above calculation predicts that output image A should contain the value 246 at
targeted position A(1,1).

A = bwlookup(I,lut) % perform filtering
A —

246 32

161 231

A(1,1) does in fact equal 246.

3-by-3 Neighborhood Lookup

For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 29 = 512.

The process for computing the binary representation of 3-by-3 neighborhood processing
is the same as for 2-by-2 neighborhoods.

1-237



1 Functions — Alphabetical List

1-238

256 128 64 32 16 8 g 2

Targeted Pixel Position for
3x3 Meighborhood

Figure 1: Color coded mapping from Pixel Patterns to
Binary Representation for 3x3 Matrix




bwlookup

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwlookup supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwlookup
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

* When generating code, specify an input image of class Llogical.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU".

See Also

makelut

Introduced in R2012b

1-239



1 Functions — Alphabetical List

1-240

bwmorph

Morphological operations on binary images

Syntax

Bw2
Bw2

bwmorph (BW, operation)
bwmorph (BW,operation,n)

Description

BW2 = bwmorph(BW,operation) applies a specific morphological operation to the
binary image BW.

Note To perform morphological operations on a 3-D volumetric image, use bwmorph3.

You optionally can perform the morphological operation using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf, in
which case the operation is repeated until the image no longer changes.

Examples

Perform Morphological Operations on Binary Image

Read binary image and display it.

BW = imread('circles.png');
imshow(BW) ;



bwmorph

Remove interior pixels to leave an outline of the shapes.
BW2 = bwmorph(BW, 'remove');

figure
imshow (BW2)

1-241



1 Functions — Alphabetical List

Get the image skeleton.
BW3 = bwmorph(BW, 'skel',Inf);

figure
imshow(BW3)

1-242



bwmorph

Perform Morphological Operations on a GPU

This example performs the same operations as the previous example but performs them
on a GPU. The example starts by reading the image into a gpuArray.

BW1 = gpuArray(imread('circles.png'));
figure
imshow(BW1)

BW2 = bwmorph(BW1, 'remove');
figure
imshow (BW2)

BW3 = bwmorph(BW1, 'skel',Inf);

figure
imshow (BW3)

1-243



1 Functions — Alphabetical List

Input Arguments

BW — Input image
binary image | gpuArray

Input image, specified as a binary image. The input image can be numeric or logical, and
must be 2-D, real and nonsparse.

To perform the morphological operation using a GPU, specify BW as a gpuArray that
contains a binary image.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following.

Operation Description

'bothat'’ Performs the morphological “bottom hat” operation, returning the
image minus the morphological closing of the image (dilation
followed by erosion).

'branchpoints' Find branch points of skeleton. For example:
06 06 1 0 O 0 06 06 0 0
O 0 1 0 0 becomes 0 0 0 0 O
1 1 1 11 06 06 1 0 O
06 06 1 0 O 0 06 06 0 0
06 06 1 0 O 0 06 06 0 0

Note: To find branch points, the image must be skeletonized. To
create a skeletonized image, use bwmorph (BW, 'skel"').

'bridge’ Bridges unconnected pixels, that is, sets 0-valued pixels to 1 if
they have two nonzero neighbors that are not connected. For
example:

1 0 0 1 1 0
1 06 1 becomes 1 1 1
0 0 1 0 1 1

1-244



bwmorph

Operation Description
'clean’ Removes isolated pixels (individual 1s that are surrounded by 0s),
such as the center pixel in this pattern.
0 0 0
0 1 0
0 0 0
‘close’ Performs morphological closing (dilation followed by erosion).
'diag’ Uses diagonal fill to eliminate 8-connectivity of the background.
For example:
0 1 0 0 1 0
1 0 0 becomes 1 1 0
0 0 0 06 0 0
"endpoints’ Finds end points of skeleton. For example:
1 06 0 0 1 06 0 0
O 1 0 O becomes 06 0 0 0
0 06 1 0 0 06 1 0
0 6 0 0 0 6 0 0
Note: To find end points, the image must be skeletonized. To
create a skeletonized image, use bwmorph (BW, 'skel"').
Fill! Fills isolated interior pixels (individual Os that are surrounded by
1s), such as the center pixel in this pattern.
1 1 1
1 0 1
1 1 1
"hbreak! Removes H-connected pixels. For example:
1 1 1 1 1 1
O 1 0 becomes 0 0 0
1 1 1 1 1 1
'majority’ Sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood
are 1s; otherwise, it sets the pixel to 0.
"open’ Performs morphological opening (erosion followed by dilation).

1-245




1 Functions — Alphabetical List

1-246

Operation

Description

'remove’

Removes interior pixels. This option sets a pixel to 0 if all its 4-
connected neighbors are 1, thus leaving only the boundary pixels
on.

'shrink'

With n = Inf, shrinks objects to points. It removes pixels so that
objects without holes shrink to a point, and objects with holes
shrink to a connected ring halfway between each hole and the
outer boundary. This option preserves the Euler number.

'skel!

With n = Inf, removes pixels on the boundaries of objects but
does not allow objects to break apart. The pixels remaining make
up the image skeleton. This option preserves the Euler number.

When working with 3-D volumes, or when you want to prune a
skeleton, use the bwskel function.

"spur’

Removes spur pixels. For example:

becomes

[EcNoNoNo]
[l N o NoNo]
[cNol TN oNO)
[cNoNoNoNo)
EcNoNoNo]
[l N o NoNo]
[cNoNoNoNo
[cNoNoNoNo]

'thicken'

With n = Inf, thickens objects by adding pixels to the exterior of
objects until doing so would result in previously unconnected
objects being 8-connected. This option preserves the Euler
number.

"thin'

With n = Inf, thins objects to lines. It removes pixels so that an

object without holes shrinks to a minimally connected stroke, and
an object with holes shrinks to a connected ring halfway between

each hole and the outer boundary. This option preserves the Euler
number. See “Algorithms” on page 1-247 for more detail.

"tophat'

Performs morphological "top hat" operation, returning the image
minus the morphological opening of the image (erosion followed
by dilation).

Example: BW3 = bwmorph(BW, 'skel');

Data Types: char | string




bwmorph

n — Number of times to perform the operation
numeric value

Number of times to perform the operation, specified as a numeric value. n can be Inf, in
which case bwmorph repeats the operation until the image no longer changes.

Example: BW3 = bwmorph(BW, 'skel',100);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical

Output Arguments

BW2 — Output image
binary image | gpuArray

Output image, returned as a binary image.

If the morphological operation is performed using a GPU, then BW2 is returned as a
gpuArray that contains a binary image.

Data Types: logical

Tips

* To perform erosion or dilation, use the imerode or imdilate functions. If you want to
duplicate the dilation or erosion performed by bwmorph, then specify the structuring
element ones (3) with these functions.

Algorithms

When used with the 'thin' option, bwmorph uses the following algorithm [3]:

1 In the first subiteration, delete pixel p if and only if the conditions G, G,, and G; are
all satisfied.

2 In the second subiteration, delete pixel p if and only if the conditions G;, G,, and G3’
are all satisfied.

1-247



1 Functions — Alphabetical List

1-248

Condition G1:

_ 1, ifXZi_l =0 and (X2i =1 orXgj4+1 = 1)
e 0, otherwise

X1, X3, ..., Xg are the values of the eight neighbors of p, starting with the east neighbor and
numbered in counter-clockwise order.

Condition G2:
2 = min{n(p), ()} =3

where

4
ni(p) = k21X2k—1 V X2k

4
ny(p) = kElxzk V X2k + 1

Condition G3:

(XxoVXx3VXg)Ax; =0
2 3 8 1

Condition G3'":
(XgVX7VXg)Ax5=0

The two subiterations together make up one iteration of the thinning algorithm. When the
user specifies an infinite number of iterations (n=Inf), the iterations are repeated until
the image stops changing. The conditions are all tested using applylut with
precomputed lookup tables.



bwmorph

References

[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Vol. 1,
Addison-Wesley, 1992.

[2] Kong, T. Yung and Azriel Rosenfeld, Topological Algorithms for Digital Image
Processing, Elsevier Science, Inc., 1996.

[3] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning Methodologies-A
Comprehensive Survey," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 14, No. 9, September 1992, page 879, bottom of first column
through top of second column.

[4] Pratt, William K., Digital Image Processing, John Wiley & Sons, Inc., 1991.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwmorph supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwmorph generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

* When generating code, the character vectors or string scalars specifying the operation
must be a compile-time constant and, for best results, the input image must be of class
logical.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1-249



1 Functions — Alphabetical List

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also

bweuler | bwmorph3 | bwperim | bwskel | imdilate | imerode

Introduced before R2006a

1-250



bwmorph3

bwmorph3

Morphological operations on binary volume

Syntax

J = bwmorph3(V,operation)

Description

J = bwmorph3(V,operation) applies the morphological operation specified by the
string or character vector operation to the binary volume V. bwmorph3 returns the
results of the operation in logical volume J, which has the same dimensions as the input
volume.

Examples

Compare the Clean and Majority Operations of bwmorph3

Load 3-D MRI volumetric data and create a binary volume. Use volshow to view the
volumetric data.

load mristack;

BW1 = mristack > 127;
volshow(BW1);

1-251



1 Functions — Alphabetical List

1-252

To remove voxels that are set to 1 and that are also surrounded by voxels set to 0,
perform the 'clean' operation on the volumetric data. When determining which voxels
to remove, the 'clean' operation considers 26 neighboring voxels. Use volshow to view
the results.

BW2 = bwmorph3(BW1, 'clean');
volshow(BW2);




bwmorph3

For comparison, perform the 'majority' operation on the volumetric data. The
'majority' operation performs a similar task to the 'clean' operation but only retains
voxels if more than half (the majority) of the voxels in the neighborhood of the target
voxel are set to 1. When determining which voxels to retain, the 'majority' operation
also considers 26 neighboring voxels. Use volshow to view the results.

BW3 = bwmorph3(BW1, 'majority');
volshow(BW3);

lllustrations of Morphological Operations

This example shows how each of the morphological operations supported by bwmorph3
works on simple volumes.

Make a 9-by-9-by-3 cuboid of Os that contains a 3-by-3-by-3 cube of 1s at its center.

innercube = ones(3,3,3);
cube center = padarray(innercube,[3 3],0, 'both")

cube center =

cube center(:,:,1) =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1-253



1 Functions — Alphabetical List

0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
cube center(:,:,2) =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
cube center(:,:,3) =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Turning Pixels Off with the Remove Operation

Set the center voxel of the inner cube to 0 using the ' remove' operation. This operation
sets the value of any 'on' voxel completely surrounded by 'on' voxels to 'off"'.

remove center = bwmorph3(cube center, 'remove')

remove center = 9x9x3 logical array
remove center(:,:,1) =

6 o 6 0 06 06 06 0 O0

1-254



bwmorph3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
remove center(:,:,2) =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
remove center(:,:,3) =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Setting Pixels to On with the Fill Operation

Set the center voxel of the inner cube to 1 using the ' fill' operation. This operation
sets the value of any 'off' voxel completely surrounded by 'on' voxels to 'on".

fill center bwmorph3(remove center,'fill"')

fill center = 9x9x3 logical array
fill center(:,:,1) =

1-255



1 Functions — Alphabetical List

6 6 6 06 06 06 0 o0 o
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 0 o0 o
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 0 o0 o
6 6 6 06 06 06 o0 o0 o
fill center(:,:,2) =
6 6 6 06 06 06 0 o0 o
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 o0 o0 o
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 0 o0 o
6 6 6 06 06 06 o0 o0 o
fill center(:,:,3) =
6 6 6 06 06 06 0 o0 o
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 o0 o0 o
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
O 0 0 1 1 1 06 0 o0
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 o0 o0 o
6 6 6 06 06 06 o0 o0 o

Removing Unconnected Pixels with the Clean Operation

Use the 'clean' operation to remove any stray voxels that are set to 1 but are not
connected to a component in the volume. The example creates a stray voxel by setting a
random voxel on the second plane to 1 and then uses the 'clean' operation to remove it.

cube center(2,2,2) =1

1-256



bwmorph3

cube center =

cube center(:

1) =

L

oo oNoNooNoNoNo)

[clcojojooNoNoNo)

oo oNoNooNoNoNo)

OO0 HHOOO

[ocNoNoRuNoNoNoNoNo)

[cNoNoRo N NeNoNoNO)

[cjooNoNooNoNoNo)

[ecNoNoNoNoNoNoNoNO)

[coooooNoNoNo)

1,2) =

’

cube center(:

oo oNoNooNoNoNo)

[clcojojooNoNoNo)

oo oNoNooNoNoNo)

OO0 HHOOO

[ocNoNoRuNRoNoNoNoNo)

[cNoNoRo N NeNoNoNo)

[cooNoNooNoNoNo)

[cRaNoNoNoNoNoNOoNO)

[clooNoooNoNoNo)

1,3) =

=

cube center(:

oo oNoNooNoNoNo)

[clcojoooNoNoNo)

[cooNoNooNoNoNo)

OO0 HHOOO

[ocNoNoRuNoNoNoNoNo)

[cNoNoRo N NoNoNoNO)

[ojooNoNooNoNoNo)

[cNoNoNoNoNoNoNoNO)

[coooooNoNoNo)

bwmorph3(cube center, 'clean')

cube cleaned

cube cleaned = 9x9x3 logical array
cube cleaned(:

1) =

-

1-257



1 Functions — Alphabetical List

e 06 6 06 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e 06 6 06 0 0 0 0 o
e o © 1 1 1 0 o0 o
e o 6 1 1 1 0 o0 o
e o © 1 1 1 0 o0 o
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
cube cleaned(:,:,2) =
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e o 6 1 1 1 0 o0 o
e o 6 1 1 1 0 o0 o
e o © 1 1 1 0 o0 o
e 06 06 06 0 0 0 0 o
e 06 06 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
cube cleaned(:,:,3) =
e 06 6 0 0 0 0 0 o
e 06 06 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e o © 1 1 1 0 o0 o
e o © 1 1 1 0 o0 o
e o © 1 1 1 0 o0 o
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o
e 06 6 0 0 0 0 0 o

Finding the Majority
Find the majority of the cube center using the 'majority' operation. This operation

retains a voxel only if more than half (the majority) of the voxels in the 26-connected
neighborhood around the voxel are set to 1.

cube major = bwmorph3(cube center, 'majority")

1-258



bwmorph3

9x9x3 logical array

0, 1) =

cube major
cube major(:

[cNoNoNoNoNoNoNoNO)

[cjooNoNooNoNoNo)

oo oNoNooNoNoNo)

[cNoNoNoNoNoNoNoNO)

[clooNoRaNoNoNoNo)

oo oNoNooNoNoNo)

[ecNoNoNoNoNoNoNoNO)

[cNoNoNoNoNoNoNoNO)

[cooNoNooNoNoNo)

1,2) =

cube major(:

[cNoNoNoNoNoNoNoNO)

[cjooNoNooNoNoNo)

oo oNoNooNoNoNo)

[cNoNoNoNoNoNoNoNo)

[cNoNoR_ Rl sNoNo ol

[cNoNoNoRmNoNoNoNo]

[eNoNoNoNoNoNoNOoNO)

[cNoNoNoNoNoNoNoNO)

[cooNoNooNoNoNo)

:,3) =

cube major(:

[cNoNoNoNoNoNoNoNO)

[cjoooNooNoNoNo)

oo oNoNooNoNoNo)

[ecNoNoNoNoNoNoNoNO)

oo oNoRoNoNoNoNo)

oo oNoNooNoNoNo)

[cNoNoNoNoNoNoNoNO)

[cNoNoNoNoNoNoNoNO)

oo oNoNooNoNoNo)

1-259

To illustrate the branch points and end points options, create another small matrix, this

Creating a Shape Similar to a Skeleton
time with a linear shape, like a skeleton.



1 Functions — Alphabetical List

x1l = eye(5);

x2 = zeros(5);

x2(3,3) = 1;

X3 = X2;

shape = cat(3,x1,x2,x3)

shape =

shape(:,:,1) =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

shape(:,:,2) =
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

shape(:,:,3) =
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Finding End Points

Find the end points of the shape using the 'endpoints' operation. The shape has three
end points, one at each end of the diagonal in the first plane and one at the end of the line
through the center, on the third plane.

shape _endpts = bwmorph3(shape, 'endpoints')

shape _endpts = 5x5x3 logical array
shape endpts(:,:,1) =

1-260



bwmorph3

[cNoNoNON ]
[ocNoNoNOoNO]
[cNoNoNOoNO]
[cNoNoNOoNO]
o oNoNO]

shape endpts(:,:,2) =

[cNoNoNOoNO]
[ocNoNoNOoNO]
[cNoNoNOoNO]
[cNoNoNOoNO]
[cNoNoNOoNO]

shape endpts(:,:,3) =

[cNoNoNOoNO]
[ocNoNoNOoNO]
OCOHOO
[cNoNoNOoNO]
[cNoNoNOoNO]

Finding Branch Points

Find the branch points of the shape using the 'branchpoints' operation. The shape has
a single branch point, where the diagonal line and the horizontal line meet.

shape brpts = bwmorph3(shape, 'branchpoints')

shape brpts = 5x5x3 logical array
shape brpts(:,:,1) =

[cNoNoNOoNO]
[ocNoNoN TN o]
OCOHOO
[l SNoNoNo]
[cNoNoNOoNO]

shape brpts(:,:,2) =

O 0 0 0 0

1-261



1 Functions — Alphabetical List

1-262

[cNoNoNO]
[ocNoNoNO]
[cNoNoNO]
[ocNoNoNO]

[cNoN TN O]

shape brpts(:,:,3)

[cNoNoNOoNO]
[ocNoNoNOoNO]
[cNoNoNOoNO]
[cNoNoNoNG]
[cNoNoNOoNO]

Input Arguments

V — Input volume
real, nonsparse, numeric or logical array

Input volume, specified as a real, nonsparse, numeric or logical array. bwmorph3 accepts
1-D, 2-D, or 3-D arrays. If you specify 1-D or 2-D input arrays, bwmorph3 performs the
morphogical operation as defined for a 3-D volume. If you want 2-D behavior, use
bwmorph instead.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following character vectors or
string scalar. For examples of these operations, see “Illustrations of Morphological
Operations” on page 1-253.



bwmorph3

'branchpoi
nts'

Find branch points of skeleton. Branch
points are the voxels at the junction where
multiple branches meet.

To find branch points, the image must be
skeletonized. To create a skeletonized
image, use bwskel.

'clean'

Remove isolated voxels, setting them to 0.
An isolated voxel is an individual, 26-
connected voxel that is set to 1 that are
surrounded by voxels set to 0.

'endpoints

Find end points of skeleton. End points are
voxels at the ends of branches.

Note: To find end points, the image must be
skeletonized. To create a skeletonized
image, use bwskel.

ittt

Fill isolated interior voxels, setting them to
1. Isolated interior voxels are individual
voxels that are set to 0 that are surrounded
(6-connected) by voxels set to 1.

1-263



1 Functions — Alphabetical List

Operation Description Illustration

'majority' |Keep avoxel setto 1if 14 or more voxels |See “Illustrations of
(the majority) in its 3-by-3-by-3, 26- Morphological Operations”
connected neighborhood are set to 1; on page 1-253.

otherwise, set the voxel to 0.

‘remove’ Remove interior voxels, setting it to 0. 2
Interior voxels are individual voxels that are }
set to 1 that are surrounded (6-connected)
by voxels set to 1.

Data Types: char | string

Output Arguments

J — Output volume
logical array

Output volume, returned as a logical array.

Tips
» To perform the morphological operations erosion or dilation on 3-D volumes, use the
imerode or imdilate functions, specifying the structuring element ones (3,3, 3).

» To perform morphological closing, opening, top-hat filtering, or bottom-hat filtering on
3-D volumes, use the imclose, imopen, imtophat, or imbothat functions,
specifying the structuring element ones (3,3, 3).

See Also

bwmorph | bwskel | imbothat | imclose | imdilate | imerode | imopen | imtophat

1-264



bwmorph3

Topics
“Types of Morphological Operations”

Introduced in R2018a

1-265



1 Functions — Alphabetical List

bwpack

Pack binary image

Syntax

BWP = bwpack(BW)

Description

BWP = bwpack(BW) packs the binary image BW into the uint32 array BWP, which is
known as a packed binary image. Because each pixel value in the binary image has only
two possible values, 1 and 0, bwpack can map each pixel to a single bit in the packed
output image.

Examples

Pack, Dilate, and Unpack Binary Image
Read binary image into the workspace.

BW = imread('text.png');
imshow (BW)

1-266



bwpack

The term watershed
refers to aridge that ...

et
c
L
o
=
L=
-
=)
=
@
=
o
T
L=

77}
SE 4
e =
C>a
S5 2
= 7
= -
=
e
: "

Pack the image.

BWp = bwpack(BW);

Dilate the packed image.

BWp dilated = imdilate(BWp,ones(3,3), 'ispacked');
Unpack the dilated image and display it.

BW dilated = bwunpack(BWp dilated, size(BW,1));
imshow(BW dilated)

1-267



1 Functions — Alphabetical List

Input Arguments

BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be 1 (true).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical

Output Arguments

BWP — Packed binary image
numeric matrix

1-268



bwpack

Packed binary image, returned as a numeric matrix of type uint32.

Data Types: uint32

Tips

* Binary image packing is used to accelerate some binary morphological operations,
such as dilation and erosion. If the input to imdilate or imerode is a packed binary
image, then the function uses a specialized routine to perform the operation faster.

* Use bwunpack to unpack packed binary images.

Algorithms

bwpack processes the input image pixels by column, mapping groups of 32 pixels into the
bits of a uint32 value. The first pixel in the first row corresponds to the least significant
bit of the first uint32 element of the output array. The first pixel in the 32nd input row
corresponds to the most significant bit of this same element. The first pixel of the 33rd
row corresponds to the least significant bit of the second output element, and so on. If BW
is M-by-N, then BWP is ceil(M/32) -by-N. This figure illustrates how bwpack maps the
pixels in a binary image to the bits in a packed binary image.

1-269



1 Functions — Alphabetical List

i mage (each pizel isuind value]

i Aoy 32hit

A2 v

001 101100...

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwpack supports the generation of C code (requires MATLAB Coder). The code
generated for bwpack uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

See Also

bwunpack | imdilate | imerode

1-270



bwpack

Introduced before R2006a

1-271



1 Functions — Alphabetical List

bwperim

Find perimeter of objects in binary image

Syntax
BW2 = bwperim(BW)
BW2 = bwperim(BW, conn)

Description

BW2 = bwperim(BW) returns a binary image that contains only the perimeter pixels of
objects in the input image BW. A pixel is part of the perimeter if it is nonzero and it is
connected to at least one zero-valued pixel.

BW2 = bwperim(BW, conn) specifies the pixel connectivity, conn.

Examples

Find Perimeter of Objects in Binary Image

Read binary image into workspace.

BW = imread('circles.png');

Calculate the perimeters of objects in the image.

BW2 = bwperim(BW,8);

Display the original image and the perimeters side-by-side.

imshowpair(BW,BW2, 'montage")

1-272



bwperim

Find Perimeter Pixels in Binary Image

This example shows how to find the perimeter pixels in a binary image using the bwperim
function.

Read a binary image into the workspace.

BW1 = imread('circbw.tif"');

Find the perimeters of objects in the image.

BW2 = bwperim(BW1);

Display the original image and the image showing perimeters side-by-side.

montage({BW1,BW2}, 'BackgroundColor', 'blue', 'BorderSize"',5)

1-273



1 Functions — Alphabetical List

Input Arguments

BW — Input binary image

2-D numeric matrix | 2-D logical matrix

Input binary image, specified as a 2-D numeric or logical matrix.

Example: BW = imread('circles.png');

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
418|618 |26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 4
for 2-D images, and 6 for 3-D images.

1-274



b

wperim

Value

Meaning

Two-Dimensional Connectivities

4-connected

Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

¥

8-connected

Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

¥

w 4

Three-Dimensional Connectivities

6-connected

Pixels are connected if their faces touch.
Two adjoining pixels are part of the same
object if they are both on and are
connected in:

* One of these directions: in, out, left,
right, up, and down

b foces

18-connected

Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

* One of these directions: in, out, left,
right, up, and down

» A combination of two directions, such
as right-down or in-up

b foces
12 edges

1-275



1 Functions — Alphabetical List

1-276

Value Meaning

26-connected Pixels are connected if their faces, edges, b foceg+
or corners touch. Two adjoining pixels are 1EEdgEE+
part of the same object if they are both on B com grs

and are connected in
* One of these directions: in, out, left,
right, up, and down

* A combination of two directions, such
as right-down or in-up

* A combination of three directions,

such as in-right-up or in-left-down

For higher dimensions, bwperim uses the default value
conndef (ndims (BW), 'minimal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Data Types: double | logical

Output Arguments

BW2 — Output binary image containing only perimeter pixels of objects
logical array

Output image containing only perimeter pixels of objects, returned as a logical array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:



bwperim

* bwperim supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwperim generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

* bwperim supports only 2-D images.
* bwperim does not support a no-output-argument syntax.
* The connectivity matrix input argument, conn, must be a constant.

See Also

bwarea | bwboundaries | bweuler | bwferet | bwtraceboundary | conndef | imfill

Topics
“Types of Morphological Operations”

Introduced before R2006a

1-277



1 Functions — Alphabetical List

1-278

bwpropfilt

Extract objects from binary image using properties

Syntax

BW2 = bwpropfilt(BW,attrib, range)
BW2 = bwpropfilt(BW,attrib,n)

BW2 = bwpropfilt(BW,attrib,n, keep)
BW2 = bwpropfilt(BW I,attrib, )
BW2 = bwpropfilt(BW, ,conn)
Description

BW2 = bwpropfilt(BW,attrib, range) extracts all connected components (objects)
from a binary image BW whose value of property attrib is in the specified range.
bwpropfilt returns a binary image BW2 containing only those objects that meet the
criteria.

BW2 = bwpropfilt(BW,attrib,n) sorts the objects based on the value of the
specified property, attrib, returning a binary image that contains only the top n largest
objects. In the event of a tie for n-th place, bwpropfilt keeps only the first n objects in
BW2.

BW2 = bwpropfilt(BW,attrib,n,keep) specifies whether to keep the n largest
objects or the n smallest objects when sorted by property attrib.

BW2 = bwpropfilt(BW,I,attrib, ) sorts objects based on the intensity values in
the grayscale image I and the property attrib.

BW2 = bwpropfilt(BW, ,conn) specifies the pixel connectivity, conn.

Examples



bwpropfilt

Find Regions Without Holes
Read image and display it.

BW = imread('text.png');
figure

imshow (BW)
title('Original Image')

Original Image

The term watershed
refers to aridge that ...

el
o
)
@
=
=
-
£
=
@
£
"
[
=

"
SE &
=
-
35 L
=TT
- —
== O
°TEs

H -

Use filtering to create a second image that contains only those regions in the original
image that do not have holes. For these regions, the Euler number property is equal to 1.
Display filtered image.

BW2 = bwpropfilt(BW, 'EulerNumber',[1 1]);
figure

imshow (BW2)

title('Regions with Euler Number == 1'")

1-279



1 Functions — Alphabetical List

Regions with Euler Number ==

Th t rmw t rsh
rfrst ri th t..

et
c
| .

@
£
l
@
S
7
| =
=
=

Find Which Ten Objects Have Largest Perimeters

Read image.

BW = imread('text.png');

Find the ten objects in the image with the largest perimeters and display filtered image.
BW2 = bwpropfilt(BW, 'perimeter',10);

figure;

imshow (BW2)
title('Objects with the Largest Perimeters')

1-280



bwpropfilt

Objects with the Largest Perimeters

Input Arguments

BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.

Data Types: Logical

attrib — Name of attribute on which to filter
character vector | string scalar

Name of attribute on which to filter, specified as one of the following values. For detailed
information about these attributes, see regionprops.

1-281



1 Functions — Alphabetical List

Area EulerNumber MinorAxisLength
ConvexArea Extent Orientation
Eccentricity FilledArea Perimeter
EquivDiameter MajorAxisLength Solidity

If you specify a grayscale image, then attrib can have one of these additional values.

MaxIntensity |MeanIntensity MinIntensity

Data Types: char | string

range — Minimum and maximum property values
2-by-1 numeric vector

Minimum and maximum property values, specified as a 2-by-1 numeric vector of the form
[low high].

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Number of objects to return
positive integer
Number of object to return, specified as a positive integer.

Data Types: double

keep — Objects to retain

‘largest’' (default) | ‘'smallest’

Objects to retain, specified as ' largest' or 'smallest'.
Data Types: char | string

I — Marker image
grayscale image

Marker image, specified as a grayscale image, the same size as the input binary image.
Intensity values in the grayscale image define regions in the input binary image.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1-282



bwpropfilt

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of Os and 1s

Pixel connectivity, specified as one of these values.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch.
Two adjoining pixels are part of the same
object if they are both on and are -
connected along the horizontal or vertical ¥
direction.

¥

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are

part of the same object if they are both on || =&
and are conn'ected alopg the horizontal, ¥ [~
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.

Data Types: double | Llogical

Output Arguments

BW2 — Filtered image
binary image

Filtered image, returned as a binary image the same size as BW.

See Also

bwareafilt | bwareaopen | bwconncomp | conndef | regionprops

Topics
“Filter Images on Region Properties Using Image Region Analyzer App”

1-283



1 Functions — Alphabetical List

Introduced in R2014b

1-284



bwselect

bwselect

Select objects in binary image

Syntax

BW2 bwselect(BW,c,r,n)
BW2 bwselect (BW,n)
[BW2,idx] = bwselect( )

BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect( )

Description

BW2 = bwselect(BW,c, r,n) returns a binary image containing the objects that
overlap the pixel (r, c), where n specifies the connectivity. Objects are connected sets of
on pixels, that is, pixels having a value of 1. By default, bwselect looks for 4-connected
objects.

BW2 = bwselect(BW,n) displays the image BW on the screen and lets you select the
(r, c) coordinates using the mouse. If you omit BW, bwselect operates on the image in
the current axes. Use normal button clicks to add points. Press Backspace or Delete to
remove the previously selected point. A shift-click, right-click, or double-click selects the
final point; press Return to finish the selection without adding a point.

[BW2,idx] = bwselect( ) returns the linear indices of the pixels belonging to the
selected objects.

BW2 = bwselect(x,y,BW,xi,yi,n) uses the vectors x and y to establish a nondefault
spatial coordinate system for BW. The arguments xi and yi are scalars or equal-length
vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect( ) returnsthe XData and YDatain x and vy,

the output image in BW2, linear indices of all the pixels belonging to the selected objects
in idx, and the specified spatial coordinates in xi and yi.

1-285



1 Functions — Alphabetical List

Examples

Select Objects in Binary Image

Select objects in a binary image and create a new image containing only those objects.
Read binary image into the workspace.

BW = imread('text.png');

Specify the locations of objects in the image using row and column indices.

C
r

[43 185 212];
[38 68 181];

Create a new binary image containing only the selected objects. This example specifies 4-
connected objects.

BW2 = bwselect(BW,c,r,4);
Display the original image and the new image side-by-side.

imshowpair(BW,BW2, '‘montage');

1-286



bwselect

The term watershed
refers to a ridge that ...

ol
c
@
@
=
=
-
£
=
@
£
[
[
=

W
SE 4
2T £
S aa
35 2
=TT
= o
L
TE2
H -

Input Arguments

BW — Input binary image
2-D, nonsparse, logical or numeric matrix

Input binary image, specified as a 2-D, nonsparse, logical or numeric matrix. If you do not
specify an output argument, bwselect displays the output image in a new figure.
Example: BW = imread('text.png');

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

¢ — Column index
numeric scalar or vector

Column index, specified as a numeric scalar or vector. If ¢ and r are equal-length vectors,
BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).

1-287



1 Functions — Alphabetical List

1-288

Example: ¢ = [43 185 212];
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

r — Row index
numeric scalar or vector

Row index, specified as a numeric scalar or vector. If r and c are equal-length vectors,
BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).

Example: r = [38 68 181];
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Connectivity
8 (default) | 4

Connectivity, specified as either the value 4 or 8.

Value Description
4 4-connected objects
8 8-connected objects

Example: BW2 = bwselect(BW,c,r,4);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x — x coordinates of nondefault coordinate system
numeric scalar or vector

x coordinates of nondefault coordinate system, specified as a numeric scalar or vector.
Example: x = [19.5 23.5];

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

y — y coordinates of nondefault coordinate system
numeric scalar or vector

y coordinates of nondefault coordinate system, specified as a numeric scalar or vector.



bwselect

Example:y = [8.0 12.0];
Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x1i — x coordinates of locations in nondefault coordinate system
numeric scalar or vector

x coordinates of locations in nondefault coordinate system, specified as a numeric scalar
or vector.

Example: x = [19.5 23.5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

yi — y coordinates of locations in nondefault coordinate system
numeric scalar or vector

y coordinates of locations in nondefault coordinate system, specified as a numeric scalar
or vector.

Example:y = [8.0 12.0];

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments

BW2 — Binary image containing objects that overlap the specified pixels
logical array

Binary image containing objects that overlap the specified pixels, returned as a logical
array.

If you do not specify an output argument, bwselect displays the output image in a new
figure.

idx — Linear indices of the pixels belonging to the selected objects
numeric vector

Linear indices of the pixels belonging to the selected objects, returned as a numeric
vector.

1-289



1 Functions — Alphabetical List

1-290

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwselect supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwselect
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

* When generating code, bwselect only supports the following syntaxes:
* BW2 = bwselect(BW, c, r)
 [BW2, idx] = bwselect(BW, c, r)
* BW2 = bwselect(BW, c, r, n)
e [BW2, idx] = bwselect(BW, c, r, n)
* In addition, the optional fourth input argument, n, must be a compile-time constant.

See Also

bwlabel | bwselect3 | grayconnected | imfill | regionfill | roipoly

Introduced before R2006a



bwselect3

bwselect3

Select objects in binary image

Syntax

J bwselect3(V,C,R,P)

J bwselect3(X,Y,Z,V,Xi,Yi,Zi)

[J] = bwselect3(  ,N)

[J,idx] = bwselect3( )
[X,Y,Z,],Xi,Yi,Zi] = bwselect3( )
[X,Y,Z,]3,idx,Xi,Yi,Zi] = bwselect3( )

R,
Z,

Description

J = bwselect3(V,C,R,P) returns the binary volume J containing the objects that
overlap the pixel location (R,C,P). R,C, and P are scalars or equal-length vectors that
specify the row, column, and plane index of the pixel location. Objects are connected sets
of pixels with the value 1.

If you specify R,C, and P as vectors, J contains the set of objects overlapping with any of
the pixels (R(k),C(k),P(k)), where k is an index into the vector.

J = bwselect3(X,Y,Z,V,Xi,Yi,Zi) uses the vectors X, Y, and Z to establish a
nondefault spatial coordinate system for V. Xi, Yi, and Zi are scalars or equal-length
vectors that specify pixel locations in this coordinate system.

[J] = bwselect3(  ,N) returns a binary volume where N specifies the connectivity
used to define objects.

[J,idx] = bwselect3( ) returns idx, a column vector of linear indices specifying
the pixels belonging to the selected objects.

[X,Y,Z,],Xi,Yi,Zi] = bwselect3( ) returns the binary volume J, along with

the XData, YData, and ZData of the output volume in X,Y, and Z. Xi,Yi, and Zi contain
the specified spatial coordinates.

1-291



1 Functions — Alphabetical List

[X,Y,Z,],1idx,X1i,Yi,Zi] = bwselect3( _ )returns the binary volume J, along
with idx, a column vector of linear indices specifying the pixels belonging to the selected
objects.

Examples

Find Objects in Volume

Load a volume and change its name to V.

load mristack;
V = mristack;

Define a set of points in the volume.

[126 87 111;
[34 120 201;

C
R
P [20 2 12];

Return a volume that contains objects that intersect with the points specified.

J = bwselect3(V,C,R,P);

Input Arguments

V — Input volume
nonsparse, logical or numeric 3-D array

Input volume, specified as a nonsparse, 3-D, logical or numeric array.

Data Types: single | double | int8 | intl16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

R — Row index of object
numeric scalar | numeric vector

Row index of object, specified as a numeric scalar or vector. If you specify a vector, R must
be the same length as C and P.

1-292



bwselect3

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C — Column index of object
numeric scalar | numeric vector

Column index of object, specified as a scalar or vector. If you specify a vector, C must be
the same length as R and P.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

P — Plane index of object
numeric scalar | numeric vector

Plane index of object, specified as a scalar or vector. If you specify a vector, P must be the
same length as R and C.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

N — Connectivity
26 (default) | 6| 18

Connectivity, specified as 6, 18, or 26. Objects are connected sets of pixels with the value
1.

Connectivities

Value Connectivity

6 6-connected objects (Face-Face)

18 18-connected objects (Face-Face and Edge-Edge)

26 26-connected objects (Face-Face, Edge-Edge, and
Vertex-Vertex)

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Limits of nondefault coordinate system in X direction
vector

Limits of nondefault coordinate system in X direction, specified as a vector.

1-293



1 Functions — Alphabetical List

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — Limits of nondefault coordinate system in Y direction

vector

Limits of nondefault coordinate system in Y direction, specified as a vector.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — Limits of nondefault coordinate system in Z direction

vector

Limits of nondefault coordinate system in Z direction, specified as a vector.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Xi — X-coordinate of location in nondefault coordinate system

scalar | vector

X-coordinate of location in nondefault coordinate system, specified as a scalar or vector.
Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Yi — Y-coordinate of location in nondefault coordinate system

scalar | vector

Y-coordinate of location in nondefault coordinate system, specified as a scalar or vector.
Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Zi — Z-coordinate of location in nondefault coordinate system
scalar or vector

Z-coordinate of location in nondefault coordinate system, specified as a scalar or vector.

Data Types: single | double | int8 | intl16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1-294



bwselect3

Output Arguments

J — Output volume
N-D logical array

Output volume, returned as an N-D logical array. J contains the set of objects overlapping
with any of the pixels specified by R,C, and P, or Xi,Yi, and Zi.

idx — Linear indices of pixels belonging to selected objects
vector

Linear indices of pixels belonging to the selected objects, returned as a vector.

X — Volume Xdata property
vector

Volume Xdata property, returned as a vector.

Y — Volume Ydata property
vector

Volume Ydata property, returned as a vector.

Z — Volume Zdata property
vector

Volume Zdata property, returned as a vector.

Xi — X-coordinate of location in nondefault coordinate system
scalar | vector

X-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

Yi — Y-coordinate of location in nondefault coordinate system
scalar | vector

Y-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

Zi — Z-coordinate of location in nondefault coordinate system
scalar | vector

Z-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

1-295



1 Functions — Alphabetical List

See Also
bwlabel | bwselect | imfill | regionfill | roipoly

Introduced in R2017b

1-296



bwskel

bwskel

Reduce all objects to lines in 2-D binary image or 3-D binary volume

Syntax

bwskel(A)
bwskel (V)

B
B
B = bwskel(  ,'MinBranchLength',N)

Description

B = bwskel(A) reduces all objects in the 2-D binary image A to 1-pixel wide curved
lines, without changing the essential structure of the image. This process, called
skeletonization, extracts the centerline while preserving the topology and Euler number
of the objects.

B = bwskel (V) returns the skeleton of a 3-D binary volume.
B = bwskel( _ ,'MinBranchLength',N) specifies the minimum branch length N of
the skeleton. bwskel removes (prunes) all branches shorter than the specified length.

bwskel calculates the length as the number of pixels in a branch using 8-connectivity for
2-D and 26-connectivity for 3-D.

Examples

Skeletonize 2-D Grayscale Image

Read a 2-D grayscale image into the workspace. Display the image. Objects of interest are
dark threads against a light background.

I = imread('threads.png');
imshow(I)

1-297



1 Functions — Alphabetical List

Skeletonization requires a binary image in which foreground pixels are 1 (white) and the
background is 0 (black). To make the original image suitable for skeletonization, take the
complement of the image so that the objects are light and the background is dark. Then,

binarize the result.

1-298



bwskel

Icomplement = imcomplement(I);
BW = imbinarize(Icomplement);
imshow (BW)

_— N\

A—A

Perform skeletonization of the binary image using bwskel.

1-299



1 Functions — Alphabetical List

out = bwskel(BW);

Display the skeleton over the original image by using the labeloverlay function. The
skeleton appears as a 1-pixel wide cyan line over the dark threads.

imshow(labeloverlay(I,out, 'Transparency',0))

1-300



bwskel

Prune small spurs that appear on the skeleton and view the result. One short branch is
pruned from a thread near the center of the image.

out2 = bwskel(BW, 'MinBranchLength',15);
imshow(labeloverlay(I,out2, 'Transparency',0))

1-301



1 Functions — Alphabetical List

Skeletonize Binary Image

Read a binary image into the workspace.

BW1 = imread('circbw.tif"');

Skeletonize objects in the image using the bwskel function.
BW2 = bwskel(BW1);

View the original image and the skeletonized image side by side.

montage ({BW1,BW2}, 'BackgroundColor', 'blue', 'BorderSize',5)

1-302



bwskel

Skeletonize 3-D Volume

Load a volumetric data set into the workspace. The name of the data set is spiralVol.
Display the volume using volshow.

load spiralVol.mat;
volshow(spiralVol);

Convert the spiralVol data set to a binary format which is required by the bwskel
function.

spiralVolLogical = imbinarize(spiralVol);

Skeletonize the spiral shape in the data set. Display the skeletonized volume with
volshow.

spiralVolSkel = bwskel(spiralVolLogical);

1-303



1 Functions — Alphabetical List

Input Arguments

A — Binary image
2-D logical array

Binary image, specified as a 2-D logical array.

Data Types: logical

V — 3-D binary volume
3-D logical array

3-D binary volume, specified as a 3-D logical array.
Data Types: logical

N — Minimum branch length
0 (default) | nonnegative integer

Minimum branch length, specified as a nonnegative integer. bwskel prunes branches
shorter than N. By default, bwskel does not prune branches.

1-304



bwskel

Output Arguments

B — Skeletonized image or volume
2-D logical array | 3-D logical array

Skeletonized image or volume, returned as a 2-D or 3-D logical array of the same size as
the input image or volume.

Tips

* While both bwskel and bwmorph can skeletonize 2-D images, you might get different
results using bwmorph than when using bwskel. Because they use different
algorithms, the bwskel function uses 4-connectivity with 2-D images; bwmorph uses
8-connectivity.

* bwskel assumes that foreground objects in the binary image are white (logical true).
If your image has a white background and black objects, then use the complement of
your image as the input to bwskel. You can compute the complement using
imcomplement.

Algorithms

* The bwskel function uses the medial axis transform.

References

[1] Ta-Chih Lee, Rangasami L. Kashyap and Chong-Nam Chu. Building skeleton models
via 3-D medial surface/axis thinning algorithms. Computer Vision, Graphics, and
Image Processing, 56(6):462-478, 1994.

[2] Kerschnitzki, M, Kollmannsberger, P Burghammer, M. et al. Architecture of the

osteocyte network correlates with bone material quality. Journal of Bone and
Mineral Research, 28(8):1837-1845, 2013.

See Also
bwmorph | bwmorph3

1-305



1 Functions — Alphabetical List

Topics
“Types of Morphological Operations”

Introduced in R2018a

1-306



bwtraceboundary

bwtraceboundary

Trace object in binary image

Syntax

B = bwtraceboundary(BW,P, fstep)

B = bwtraceboundary(BW,P,fstep,conn)

B = bwtraceboundary(BW,P,fstep,conn,m,dir)

Description

B = bwtraceboundary(BW,P,fstep) traces the outline of an object in binary image
BW. Nonzero pixels belong to an object and zero-valued pixels constitute the background.
P specifies the row and column coordinates of the point on the object boundary where you
want the tracing to begin. fstep specifies the initial search direction for the next object
pixel connected to P. B holds the row and column coordinates of the boundary pixels for
the region.

B = bwtraceboundary(BW,P, fstep, conn) traces the boundary, where conn specifies
the desired connectivity.

B = bwtraceboundary(BW,P, fstep,conn,m,dir) specifies m, the maximum number

of boundary pixels to extract, and dir, the direction in which to trace the boundary. By
default, bwtraceboundary identifies all the pixels on the boundary.

Examples

Trace Boundary and Visualize Contours

Read an image and display it.

BW = imread('blobs.png');
imshow (BW)

1-307



1 Functions — Alphabetical List

1-308

Pick an object in the image and trace the boundary. To select an object, specify a pixel on
its boundary. This example uses the coordinates of a pixel on the boundary of the thick
white circle, obtained through visual inspection using impixelinfo. By default,
bwtraceboundary identifies all pixels on the boundary.

contour = bwtraceboundary(BW,[rl cl],'W");

Plot the contour on the image.

hold on
plot(contour(:,2),contour(:,1),'g", 'LineWidth',2)



bwtraceboundary

Pick a point on the boundary of a second object. This example uses the coordinates of a
pixel near the upper-left corner of the largest rectangle. Trace the first fifty boundary
pixels in the clockwise direction.

r2 = 68;

c2 = 95;
contourCW = bwtraceboundary(BW,[r2 c2],'W',8,50, 'clockwise');

Starting at the same point on the second object boundary, trace the first fifty boundary
pixels in the counterclockwise direction.

contourCCW = bwtraceboundary(BW,[r2 c2],'W',8,50, 'counterclockwise"');

Plot the clockwise contour on the image in red. Plot the conterclockwise contour on the
image in blue.

plot(contourCw(:,2),contourCW(:,1),'r"', 'LineWidth',2)
plot(contourCCW(:,2),contourCCW(:,1),'b", 'LineWidth"',2)

1-309



1 Functions — Alphabetical List

Input Arguments

BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 |uint64 | logical

P — Coordinates of starting point
2-element vector

Coordinates of starting point on the object boundary where you want the tracing to begin,
specified as a 2-element vector of the format [ row column].

1-310



bwtraceboundary

Data Types: double

fstep — Initial search direction
INI|INEI|IEI|ISEI|ISI|ISWI|IWI|INWI

Initial search direction for the next object pixel connected to P, specified as a character
vector or string scalar as depicted in the diagram.

TNW TR 'NE'
A I:I =P, starting paint of trace
IIII'II 1 - IEI
N
/ ¥ \
Iswl ISI |SE|

Note When the connectivity conn is 4, fstep is limited to the values 'N', 'E', 'S', and
W',

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 8 or 4.

Value Meaning

Two-Dimensional Connectivities

4-connected Pixels are connected if their edges touch. i
The neighborhood of a pixel are the
adjacent pixels in the horizontal or - L
vertical direction. ¥

1-311



1 Functions — Alphabetical List

1-312

Value Meaning

8-connected Pixels are connected if their edges or i
corners touch. The neighborhood of a
pixel are the adjacent pixels in the -
horizontal, vertical, or diagonal direction. |[ 3 Y

Data Types: double

m — Maximum number of boundary pixels to extract
Inf (default) | positive integer

Maximum number of boundary pixels to extract, specified as a positive integer. By default,
mis Inf and bwtraceboundary identifies all the pixels on the boundary.

Data Types: double

dir — Direction in which to trace boundary
'clockwise' (default) | 'counterclockwise'

Direction in which to trace boundary, specified as 'clockwise' or
"counterclockwise'.

Data Types: char | string

Output Arguments

B — Row and column coordinates of boundary pixels
q-by-2 matrix

Row and column coordinates of the boundary pixels for the region, returned as a g-by-2
matrix. Each row in B has the form [ row column].

Algorithms

The bwtraceboundary function implements the Moore-Neighbor tracing algorithm
modified by Jacob's stopping criteria. This function is based on the boundaries function
presented in the first edition of Digital Image Processing Using MATLAB, by Gonzalez, R.
C., R. E. Woods, and S. L. Eddins, New Jersey, Pearson Prentice Hall, 2004.




bwtraceboundary

References

[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using
MATLAB, New Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwtraceboundary supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

* When generating code, the dir, fstep, and conn arguments must be compile-time
constants.

See Also

bwboundaries | bwperim

Introduced before R2006a

1-313



1 Functions — Alphabetical List

bwulterode

Ultimate erosion

Syntax

BW2 = bwulterode(BW)

BW2 = bwulterode(BW,method)
BW2 = bwulterode(  ,conn)
Description

BW2 = bwulterode(BW) computes the ultimate erosion of the binary image BW. The
ultimate erosion of BW consists of the regional maxima of the Euclidean distance
transform of the complement of BW.

BW2 = bwulterode(BW,method) specifies the distance transform method.

BW2 = bwulterode(  ,conn) specifies the pixel connectivity.

Examples

Perform Ultimate Erosion of Binary Image

Read a binary image into the workspace and display it.

originalBW = imread('circles.png');
imshow(originalBW)

1-314



bwulterode

Perform the ultimate erosion of the image and display it.

ultimateErosion = bwulterode(originalBW);
figure, imshow(ultimateErosion)

1-315



1 Functions — Alphabetical List

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).

Example: BW = imread('circles.png');

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Distance transform method
'euclidean' (default) | 'quasi-euclidean' | 'cityblock' | 'chessboard’

Distance transform method, specified as one of the values in this table.

1-316



bwulterode

Method Description
"chessboard' In 2-D, the chessboard distance between (x;,y;) and (x,,y,)
is
max(|x1 - X201, [ W1 —y2|).
'cityblock! In 2-D, the cityblock distance between (x;,y;) and (x,,y,) is
Ix1 - %] + |y1 -y
'euclidean' In 2-D, the Euclidean distance between (x;,y;) and (x,,y,) is

\/(Xl —x)* + (1 - w)*.

'quasi-euclidean’

In 2-D, the quasi-Euclidean distance between (x;,y;) and
(X2,y) is

Ix1 — X2 + V2 = Dly1 — yal, X1 = x2| > |y1 —

(/2 = 1)|x; = xg| + |y1 — |, otherwise.

For more information, see “Distance Transform of a Binary Image”.

conn — Pixel connectivity

4|18|6|18]| 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value

Two-Dimensional Connectivities

4-connected

Pixels are connected if their edges touch. i
The neighborhood of a pixel are the

adjacent pixels in the horizontal or -t =
vertical direction. ¥

1-317




1 Functions — Alphabetical List

1-318

Value

Meaning

8-connected

Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the

)

The neighborhood of a pixel are the
adjacent pixels in:

* One of these directions: in, out, left,
right, up, and down

-
&
horizontal, vertical, or diagonal direction. |[ 3 .,
Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. b foees

18-connected

Pixels are connected if their faces or

* One of these directions: in, out, left,
right, up, and down

¢ A combination of two directions, such
as right-down or in-up

* A combination of three directions,
such as in-right-up or in-left-down

b focesj+
edges touch. The neighborhood of a pixel 12 edpes
are the adjacent pixels in:

* One of these directions: in, out, left,
right, up, and down
* A combination of two directions, such
as right-down or in-up
26-connected Pixels are connected if their faces, edges, b foces +
or corners touch. The neighborhood of a ]EEdgEE+
pixel are the adjacent pixels in: B comers

For higher dimensions, bwulterode uses the default value
conndef (ndims (BW), ‘maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood



bwulterode

locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Data Types: double | logical

Output Arguments

BW2 — Eroded image
logical array

Eroded image, returned as a logical array of the same size as BW.

Data Types: logical

See Also

bwdist | conndef | imregionalmax

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a

1-319



1 Functions — Alphabetical List

bwunpack

Unpack binary image

Syntax

BW = bwunpack(BWP,m)

Description

BW = bwunpack(BWP,m) unpacks the packed binary image BWP into binary image BW
with m rows.

Examples

Pack, Dilate, and Unpack Binary Image

Read binary image into the workspace.

BW = imread('text.png');
imshow (BW)

1-320



bwunpack

The term watershed
refers to aridge that ...

et
c
L
o
=
L=
-
=)
=
@
=
o
T
L=

77}
SE 4
e =
C>a
S5 2
= 7
= -
=
e
: "

Pack the image.

BWp = bwpack(BW);

Dilate the packed image.

BWp dilated = imdilate(BWp,ones(3,3), 'ispacked');
Unpack the dilated image and display it.

BW dilated = bwunpack(BWp dilated, size(BW,1));
imshow(BW dilated)

1-321



1 Functions — Alphabetical List

Input Arguments

BWP — Packed binary image
2-D numeric matrix

Packed binary image, specified as a 2-D numeric array of data type uint32.

Data Types: uint32

m — Number of image rows
positive integer

Number of image rows, specified as a positive integer. The default value of m is
32*size(BWP,1).

Data Types: uint32

1-322



bwunpack

Output Arguments

BW — Unpacked binary image
m-by-n logical matrix
Unpacked binary image, returned as a logical matrix with m rows.

Data Types: logical

Algorithms

When bwunpack unpacks BWP, the function maps the least significant bit of the first row
of BWP to the first pixel in the first row of BW. The most significant bit of the first element
of BWP maps to the first pixel in the 32nd row of BW, and so on.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* bwunpack supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwunpack
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

* When generating code, all input arguments must be compile-time constants.

See Also

bwpack | imdilate | imerode

1-323



1 Functions — Alphabetical List

Introduced before R2006a

1-324



camresponse

camresponse

Estimate camera response function

Syntax

crf = camresponse(files)
crf = camresponse(imds)
crf = camresponse( , 'ExposureTimes',expTimes)

Description

crf = camresponse(files) estimates the camera response function from a set of
spatially registered, low dynamic range (LDR) images listed in files.

crf = camresponse(imds) estimates the camera response function from a set of
spatially registered LDR images stored as an ImageDatastore object, imds.

crf = camresponse( , 'ExposureTimes',expTimes) specifies the exposure
time for each image in the input set using a name-value pair. You can specify this name-
value pair in addition to the input argument from any of the previous syntaxes.

Examples

Estimate Camera Response Function from Set of Images

Estimate the camera response function from a set of six low dynamic range (LDR) color
images and their exposure times read from the EXIF metadata. Plot the estimated output
values as a curve.

Specify a set of six spatially registered LDR images. These LDR images have same f-stop
values and varying exposure times.

files = ["office 1.jpg","office 2.jpg","office 3.jpg",...

"office 4.jpg","office 5.jpg","office 6.jpg"];

1-325



1 Functions — Alphabetical List

Estimate the camera response function from the set of specified images.

crf = camresponse(files);

Specify the range of intensity levels in the input images.
range = 0:length(crf)-1;

Plot the estimated camera response function for each of the red, green, and blue color
components. The plot shows the relationship between log-exposure and image intensity.

figure,

hold on
plot(crf(:,1),range,'--r', " 'LineWidth',2);
plot(crf(:,2),range,'-.g', " 'LineWidth',2);
plot(crf(:,3),range,'-.b', 'LineWidth',2);
xlabel('Log-Exposure');

ylabel('Image Intensity');

title('Camera Response Function');

grid on

axis('tight")
legend('R-component', 'G-component', 'B-component', 'Location', 'southeast')

1-326



camresponse

Image Intensity

250

200

150

100

50

Camera Response Function

i Yo
o,
S
F
-
L3
L #
I‘!*
'I
:"'
¥
L *J'
r
'I‘
*J’
f"
&
L ; /
#
’J
&
r #
"’\** = = = R-component
. ',-ﬁ G-component
_‘i#"* === B_component
L - I I I I | i
-4 -3 -2 -1 1] 1 2

Log-Exposure

Estimate Camera Response Function from Images in Datastore

Estimate the camera response function from a set of six low dynamic range color images
stored as an ImageDatastore object. Compute the output values using exposure times.

Plot the output values as a curve.

Read the set of six spatially registered LDR images into the workspace. Create an
ImageDatastore object containing these images..

setDir = fullfile(toolboxdir('images'), 'imdata', 'office *');

imds =

imageDatastore(setDir);

1-327



1 Functions — Alphabetical List

1-328

Specify the exposure time for each image in the ImageDatastore object.
expTimes = [0.0333 0.1000 0.3333 0.6250 1.3000 4.00001];

Specifying the exposure times, estimate the camera response function from the images in
the datastore.

crf = camresponse(imds, 'ExposureTimes',expTimes);

Specify the range of intensity values in the input images.
range = 0:length(crf)-1;

Plot the estimated camera response function for each of the R, G, and B color
components. The plot shows the relationship between log-exposure and image intensity.

figure,

hold on

plot(crf(:,1),range,'--r', 'LineWidth',2);
plot(crf(:,2),range,'-.g', 'LineWidth',2);
plot(crf(:,3),range,'-.b", 'LineWidth',2);
xlabel('Log-Exposure');

ylabel('Image Intensity');

title('Camera Response Function');

grid on

axis('tight")
legend('R-component', 'G-component', 'B-component', 'Location', 'southeast')



camresponse

Image Intensity

Camera Response Function

250 b 2
j;/’f
’d'
200 ;’
Vs
rs
4
150 | *,’
Vs
J/
r 4
100 ‘JJ!
ff
Py
50 e
#*’"’ = = = R-component
Jﬁ == == = G-component
e - e B-component
-
0 YL 1 1 1 1 1 I
-4 -3 -2 -1 1] 1 2

Log-Exposure

Input Arguments

files — Set of spatially registered LDR images
string array | cell array of character vectors

Set of spatially registered LDR images, specified as a string array or a cell array of
character vectors. These images can be color or grayscale of any bit depth. However, the

preferred bit depth for LDR images is 8 or 16.
Data Types: char | string | cell

1-329



1 Functions — Alphabetical List

1-330

imds — Set of spatially registered LDR images
ImageDatastore object

Set of spatially registered LDR images, specified as an ImageDatastore object. These
images can be color or grayscale of any bit depth. However, the preferred bit depth for
LDR images is 8 or 16.

expTimes — Exposure time of input images
numeric vector of positive values

Exposure time of input images, specified as a numeric vector of positive values. The kth
element in the vector corresponds to the kth LDR image in the input set. If you specify
expTimes, the function overrides the EXIF exposure metadata.

Example: camresponse(files, 'ExposureTimes',[0.1 0.3 0.4]);

Data Types: single | double

Output Arguments

crf — Estimate of camera response function
n-by-1 vector | n-by-3 matrix

Estimate of camera response function, returned as an n-by-1 vector for grayscale images
and n-by-3 matrix for color images. The camera response function maps the log-exposure
value (scene radiance) to the intensity levels in the input images. The value of n is 2P
depth For example, if the bit depth of the input set of images is 8, then n is 256.

Data Types: double

Note

» This function requires a minimum of two images with different exposure times. A
larger number of images yields a better estimate of crf at the expense of more
processing time.

* The input image files in files and imds must contain the Exchangeable Image File
Format (EXIF) exposure metadata. To estimate the crf values, the function reads the
exposure time in the EXIF metadata. If you specify expTimes, the function overrides
the exposure time in the EXIF metadata.



camresponse

References

[1] Debevec, PE., and ]J. Malik. "Recovering High Dynamic Range Radiance Maps from
Photographs." In ACM SIGGRAPH 2008 classes, Article No. 31. New York, NY:
ACM, 2008.

See Also

hdrread | hdrwrite | makehdr

Introduced in R2019a

1-331



1 Functions — Alphabetical List

1-332

checkerboard

Create checkerboard image

Syntax
I = checkerboard
I = checkerboard(n)

I checkerboard(n,p,q)

Description

I = checkerboard creates an 8-by-8 square checkerboard image that has four

identifiable corners. The checkerboard pattern is made up of tiles. Each tile contains four
squares, each with a default of 10 pixels per side. The light squares on the left half of the
checkerboard are white. The light squares on the right half of the checkerboard are gray.

TILE = [DARK LIGHT; LIGHT DARK]

"=

I = checkerboard(n) creates an 8-by-8 square checkerboard image where each
square has n pixels per side.

I = checkerboard(n,p,q) creates a rectangular checkerboard image where p
specifies the number of rows of tiles and q specifies the number of columns of tiles. If you
omit g, the number of columns defaults to p and the checkerboard is square. Each square
has n pixels per side.

Examples

Create Square Checkerboard

Create a checkerboard where the side of every square is 20 pixels in length.



checkerboard

I = checkerboard(20);

Display the checkerboard.

imshow(I)

Create Rectangular Checkerboard

Create a rectangular checkerboard that is 2 tiles high and 3 tiles wide. The side of every
square is 20 pixels in length.

J = checkerboard(20,2,3);
Display the checkerboard.

figure
imshow(J)

1-333



1 Functions — Alphabetical List

Create Black and White Checkerboard

Create a black and white checkerboard with the default tile size and the default number
of rows and columns.

K = (checkerboard > 0.5);
Display the checkerboard.

figure
imshow (K)

1-334



checkerboard

Input Arguments

n — Side length in pixels of each square in the checkerboard pattern
10 (default) | positive integer

Side length in pixels of each square in the checkerboard pattern, specified as a positive
integer.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

p — Number of rows of tiles in the checkerboard pattern
8 (default) | positive integer

Number of rows of tiles in the checkerboard pattern, specified as a positive integer. Since
there are four squares per tile, there are 2*p rows of squares in the checkerboard.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

g — Number of columns of tiles in the checkerboard pattern
positive integer

Number of columns of tiles in the checkerboard pattern, specified as a positive integer. If
you omit q, the value defaults to p and the checkerboard is square. Since there are four
squares per tile, there are 2*q columns of squares in the checkerboard.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

Output Arguments

I — Rectangular image with a checkerboard pattern
2-D numeric array

Rectangular image with a checkerboard pattern, returned as a 2-D numeric array. The
light squares on the left half of the checkerboard are white. The light squares on the right
half of the checkerboard are gray.

Data Types: double

1-335



1 Functions — Alphabetical List

See Also

fitgeotrans | imwarp

Introduced before R2006a

1-336



chromadapt

chromadapt

Adjust color balance of RGB image with chromatic adaptation

Syntax
B = chromadapt(A,illuminant)
B = chromadapt(A,illuminant,Name,Value)

Description

B = chromadapt(A,illuminant) adjusts the color balance of sSRGB image A according
to the scene illuminant. The illuminant must be in the same color space as the input
image.

B = chromadapt(A,illuminant,Name,Value) adjusts the color balance of A using
name-value pairs to control additional options.

Examples

Color Balance Image by Specifying Gray Pixel

Read an image with a strong yellow color cast. Display the image, specifying an optional
magnification to shrink the size of the displayed image.

A = imread('hallway.jpg');

figure

imshow(A, 'InitialMagnification',25)
title('Original Image')

1-337



1 Functions — Alphabetical List

1-338

Original Image

Pick a pixel in the image that should look white or gray, such as a point on a pillar. Do not
pick a saturated pixel, such as a point on the ceiling light.

X = 2800;
y = 1000;
gray_val = [A(y,x,1) A(y,x,2) A(y,x,3)];

Use the selected color as reference for the scene illumination, and correct the white
balance of the image.

B = chromadapt(A,gray_val);

Display the corrected image, setting an optional initial magnification.



chromadapt

figure
imshow(B, 'InitialMagnification',25)
title('White-Balanced Image')

White-Balanced Image

The pillars are now white as expected, and the rest of the image has no yellow tint.

Color Balance Image in Linear RGB Color Space

Open an image file containing minimally processed linear RGB intensities.

A = imread('foosballraw.tiff');

1-339



1 Functions — Alphabetical List

1-340

The image data is the raw sensor data after correcting the black level and scaling to 16
bits per pixel. Interpolate the intensities to reconstruct color. The color filter array
pattern is RGGB.

A = demosaic(A, 'rggb');

Display the image. Because the image is in linear RGB color space, apply gamma
correction so the image appears correctly on the screen. To shrink the image so that it
appears fully on the screen, set the optional initial magnification to a value less than 100

A sRGB = lin2rgb(A);

figure

imshow(A sRGB, 'InitialMagnification',25)
title('Original Image')

Original Image




chromadapt

The image has a ColorChecker chart in the scene. To get the color of the ambient light,
pick a pixel on one of the neutral patches of the chart.

x = 1510;
y 1250;
light color

[A(y,x,1) A(y,x,2) A(y,x,3)]

light color = Ix3 uintlé row vector

7361 14968 10258

The intensity of the red channel is lower than the intensity of the other two channels,
which indicates the light is bluish green.

Balance the color channels of the image. Use the 'ColorSpace' option to specify that
the image and the illuminant are expressed in linear RGB.

B = chromadapt(A,light color, 'ColorSpace', 'linear-rgb');

Display the corrected image, applying gamma correction and setting the initial
magnification.

B sRGB = lin2rgb(B);

figure

imshow(B sRGB, 'InitialMagnification',25)
title('White-Balanced Image')

1-341



1 Functions — Alphabetical List

1-342

White-Balanced Image

Confirm that the gray patch has been color balanced.
patch_color = [B(y,x,1) B(y,x,2) B(y,x,3)]
patch color = 1x3 uintl6é row vector

13010 13010 13010

The three color channels in the color-balanced gray patch have similar intensities, as
expected.



chromadapt

Input Arguments

A — Input RGB image

real, nonsparse, m-by-n-by-3 array

Input RGB image, specified as a real, nonsparse, m-by-n-by-3 array.
Data Types: single | double | uint8 | uintl6

illuminant — Scene illuminant
real, nonempty, 3-element vector

Scene illuminant, specified as a real, nonempty, 3-element vector. The illuminant must be
in the same color space as the input image, A.

Data Types: single | double | uint8 | uintl6

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: I2 = chromadapt(I,uint8([22 97 118]), 'ColorSpace', 'linear-
rgb') adjusts the color balance of an image, I, in linear RGB color space.

ColorSpace — Color space
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input image and illuminant, specified as the comma-separated pair
consisting of 'ColorSpace' and 'srgb', 'adobe-rgh-1998', or 'linear-rgb'. Use
the 'linear-rgb' option to adjust the color balance of an RGB image whose intensities
are linear.

Data Types: char | string

Method — Chromatic adaptation method
'bradford’' (default) | 'vonkries' | 'simple’

Chromatic adaptation method used to scale the RGB values in A, specified as the comma-
separated pair consisting of 'Method' and one of:

1-343



1 Functions — Alphabetical List

1-344

* 'bradford'—Scale using the Bradford cone response model
* 'vonkries'—Scale using the von Kries cone response model
* 'simple'—Scale using the illuminant

Data Types: char | string

Output Arguments

B — Color-balanced RGB image
m-by-n-by-3 array

Color-balanced RGB image, returned as an m-by-n-by-3 array. B has the same data type as
A

References

[1] Lindbloom, Bruce. Chromatic Adaptation. http://www.brucelindbloom.com/index.html?
Eqn ChromAdapt.html.

See Also

colorangle | illumgray | illumpca | illumwhite | whitepoint

Introduced in R2017b


http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html

col2im

col2im

Rearrange matrix columns into blocks

Syntax

A = col2im(B,[m n],[M N])

A = col2im(B,[m n],[M NJ, 'sliding"')
A = col2im(B,[m n],[M N], 'distinct"')

Description
A = col2im(B, [m n],[M N]) or

A = col2im(B,[m n],[M NJ, 'sliding') rearranges the row vector B into
neighborhoods of size m-by-n to create the matrix A of size (M-m+1)-by-(N-n+1).

The row vector B is usually the result of processing the output of
im2col(...,'sliding"') using a column compression function, such as sum.

A = col2im(B,[m n],[M NJ, 'distinct') rearranges each column of matrix B into a
distinct m-by-n block to create the matrix A of size M-by-N.

For example, if B consists of column vectors Bi( :) with length m*n, arranged as B =

[B1(:) B2(:) B3(:) B4(:)],thenA = [B1 B3; B2 B4] where each block Bi has
size m-by-n.

Examples

Rearrange Matrix Values into Row-wise Orientation

Create a matrix.

B = reshape(uint8(1:25),[5 5])"

1-345



1 Functions — Alphabetical List

1-346

B = 5x5 uint8 matrix

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Rearrange the values in the matrix into a column-wise arrangement.

C im2col(B,[1 51)

C = 5x5 uint8 matrix

1 6 11 l6 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

Rearrange the values in the matrix back into their original row-wise orientation.

A = col2im(C, [1 5]1,[5 5], 'distinct")

A

5x5 uint8 matrix

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Input Arguments

B — Image blocks
matrix | row vector

Image blocks, specified as one of the following.



col2im

» For distinct block processing, B is a numeric or logical matrix with m*n rows. Each
column corresponds to one block.

» For sliding neighborhood processing, B is a numeric or logical row vector of size 1-by-
(M-m+1)*(N-n+1).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows
and n is the number of columns in each block. m*n must be equal to the number of rows
of B.

Data Types: double

[M N] — Image size
2-element vector of positive integers

Image size, specified as a 2-element vector of positive integers. M is the number of rows
and N is the number of columns in the image.

Data Types: double

Output Arguments

A — Reconstructed image
numeric matrix

Reconstructed image, returned as a numeric matrix of size M-by-N for distinct block
processing, or (M-m+1)-by-(N-n+1) for sliding block processing. A has the same data
type as B.

See Also
blockproc | colfilt | im2col | nlfilter | reshape

Introduced before R2006a

1-347



1 Functions — Alphabetical List

1-348

colfilt

Columnwise neighborhood operations

Syntax

colfilt(A,[m n],block type,fun)
colfilt(A,[m n], [mblock nblock],block type,fun)

B
B
B = colfilt(A, 'indexed', )

Description

B = colfilt(A,[m n]l,block type, fun) processes the image A by rearranging each
m-by-n block of A into a column of a temporary matrix, and then applying the function fun
to this matrix. colfilt zero-pads A, if necessary.

B = colfilt(A,[m n], [mblock nblock],block type, fun) subdivides A into
regions of size mblock-by-nblock blocks to save memory. Note that the result of the
operation does not change when using the [mblock nblock] argument.

For example, if [mblock nblock] is [3 4] and the size of each block is 16-by-16 pixels,
then colfilt subdivides the image into regions of size 48-by-64 pixels and processes
each region separately.

B = colfilt(A, 'indexed', ) processes A as an indexed image, padding with 0s if
the class of Ais uint8, uint16, or logical, and padding with 1s otherwise.

Examples

Perform Columnwise Neighborhood Filtering on Image

This example shows how to set each output pixel to the mean value of the input pixel's 5-
by-5 neighborhood using columnwise neighborhood processing.

Read a grayscale image into the workspace.



colfilt

I = imread('tire.tif');

Perform columnwise filtering. The function mean is called on each 5-by-5 pixel
neighborhood.

I2 = uint8(colfilt(I,[5 5], 'sliding',@mean));
Display the original image and the filtered image.

imshow(I)
title('Original Image')

Original Image

figure
imshow(I2)
title('Filtered Image')

1-349



1 Functions — Alphabetical List

1-350

Filtered Image

N

Input Arguments

A — Image
array

Image, specified as an array of any class supported by fun.

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows
and n is the number of columns in each block.

[mblock nblock] — Block group size
2-element vector of positive integers

Block group size, specified as a 2-element vector of positive integers. mblock is the
number of blocks in the group in the vertical direction, and nblock is the number of
blocks in the group in the horizontal direction.



colfilt

block_type — Block type
‘sliding' | 'distinct’

Block type, specified as 'sliding' for sliding neighborhoods or 'distinct' for distinct
blocks.

Data Types: char | string

fun — Function handle
handle

Function handle, specified as a handle. The input and output arguments to this function
depend on the value of block type. For more information, see “Algorithms” on page 1-
351.

For more information about function handles, see “Create Function Handle” (MATLAB).

Output Arguments

B — Filtered image
numeric matrix

Filtered image, returned as a numeric matrix.

Algorithms

The algorithm that colfilt uses to process images depends on the value of
block type.

Value Description

‘distinct’ » First, colfilt rearranges each m-by-n block of A into a column in a
temporary matrix by using the im2col function.

* Next, colfilt applies the function fun to this temporary matrix.
fun must return a matrix the same size as the temporary matrix.

* Finally, colfilt rearranges the columns of the matrix returned by
fun into m-by-n distinct blocks, by using the col2im function.

1-351



1 Functions — Alphabetical List

1-352

Value Description

'sliding' » First, colfilt rearranges each m-by-n neighborhood of A into a
column in a temporary matrix by using the im2col function.

* Next, colfilt applies the function fun to this temporary matrix.
fun must return a row vector containing a single value for each
column in the temporary matrix. (Column compression functions
such as sum return the appropriate type of output.)

* Finally, colfilt reshapes the vector returned by fun into a matrix
the same size as A, by using the reshape function.

To save memory, the colfilt function might divide A into subimages and process one
subimage at a time. This implies that fun may be called multiple times, and that the first
argument to fun may have a different number of columns each time.

See Also

blockproc | col2im | im2col | nlfilter | reshape

Topics

“Use Column-wise Processing to Speed Up Sliding Neighborhood or Distinct Block
Operations”

“Border Padding Behavior in Sliding Neighborhood Operations”

“Anonymous Functions” (MATLAB)

“Parameterizing Functions” (MATLAB)

“Create Function Handle” (MATLAB)

Introduced before R2006a




colorangle

colorangle

Angle between two RGB vectors

Syntax

angle = colorangle(rgbl, rgb2)

Description

angle = colorangle(rgbl, rgb2) computes the angle in degrees between two RGB
vectors.

Examples

Compare Accuracy of llluminant Estimation Algorithms

Open a test image. The image is the raw data captured with a Canon EOS 30D digital
camera after correcting the black level and scaling the intensities to 16 bits per pixel. No
demosaicing, white balancing, color enhancement, noise filtering, or gamma correction
has been applied.

A = imread('foosballraw.tiff"');

Interpolate using the demosaic function to obtain a color image. The color filter array
pattern is RGGB.

A demosaiced = demosaic(A, 'rggb');

The image contains a ColorChecker chart. Specify the ground truth illuminant, which was
calculated in advance using the neutral patches of the chart.

illuminant_groundtruth = [0.0717 0.1472 0.0975];

To avoid skewing the estimation of the illuminant, exclude the ColorChecker chart by
creating a mask.

1-353



1 Functions — Alphabetical List

1-354

mask = true(size(A demosaiced,l), size(A demosaiced,2));
mask(920:1330,1360:1900) = false;

Run three different illuminant estimation algorithms: il1lumwhite, illumgray, and
illumpca.

illuminant whitepatch = illumwhite(A demosaiced, 'Mask',mask);
illuminant _grayworld = illumgray(A demosaiced, 'Mask',mask);
illuminant _pca = illumpca(A demosaiced, 'Mask',mask);

Compare each estimation against the ground truth by calculating the angle between each
estimated illuminant and the ground truth using the colorangle function. The smaller
the angle, the better the estimation. The magnitude of the estimation does not matter
because only the direction of the illuminant is used to white-balance an image with
chromatic adaptation.

angle whitepatch

colorangle(illuminant whitepatch, illuminant groundtruth)

angle whitepatch = 5.0921

angle grayworld = colorangle(illuminant grayworld, illuminant groundtruth)
angle grayworld = 5.1036
angle pca = colorangle(illuminant _pca, illuminant groundtruth)

angle pca = 5.0134

The value of angle pca is smallest, indicating that the PCA illuminant estimation
algorithm is closest to the ground truth illumination for this image.

Input Arguments

rghl — First RGB vector
3-element numeric vector

First RGB vector, specified as a 3-element numeric vector.

Data Types: single | double | uint8 | uintl6

rgb2 — Second RGB vector
3-element numeric vector



colorangle

Second RGB vector, specified as a 3-element numeric vector.

Data Types: single | double | uint8 | uint16

Output Arguments

angle — Angle between RGB vectors
numeric scalar

Angle between RGB vectors, returned as a numeric scalar.

Data Types: double

Definitions

Angular Error

Angular error is a useful metric to evaluate the estimation of an illuminant against the
ground truth. The smaller the angle between the ground truth illuminant and the
estimated illuminant, the better the estimate.

See Also

chromadapt | illumgray | illumpca | illumwhite | whitepoint

Introduced in R2017b

1-355



1 Functions — Alphabetical List

1-356

colorcloud

Display 3-D color gamut as point cloud in specified color space

Syntax

colorcloud(rgb)
colorcloud(rgb,colorspace)
colorcloud(  ,Name,Value)
hPanel = colorcloud( )
Description

colorcloud(rgb) displays the full color gamut of the color image rgb as a point cloud.
By default, colorcloud uses the RGB color space.

colorcloud(rgb,colorspace) displays the full color gamut of the color image rgb as
a point cloud in the color space specified by colorspace.

colorcloud( ,Name,Value) displays the full color gamut using name-value pairs
to control aspects of the visualization.

hPanel = colorcloud( ) returns the uipanel object created by colorcloud.

Examples

View 3D Color Gamut of RGB Image in HSV Color Space
Read in RGB image

RGB = imread('peppers.png');

View color gamut

colorcloud(RGB, 'hsv');



colorcloud

Input Arguments

rgb — Color image
m-by-n-by-3 array

Color image, specified as an m-by-n-by-3 array.

Data Types: single | double | uint8 | uintl6

colorspace — Colorspace name
'rgb' (default) | *hsv' | 'ycbcr' | 'lab’

1-357



1 Functions — Alphabetical List

1-358

Colorspace name, specified as one of the following values:

Value Description

"hsv' Color gamut in HSV color space

‘lab’ Color gamut in CIE 1976 L*a*b* color space
‘rgb' Color gamut in RGB color space

'ycber! Color gamut in YCbCr color space

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example:

Parent — Parent of the object created by colorcloud
new figure (default)

Parent of the object created by colorcloud, specified as a figure or uipanel object. If you
do not specify a valid object, colorcloud creates a new figure window.

BackgroundColor — Color used as background to the color cloud
[0.94 0.94 0.94] (default) | colorspec

Color used as background to the color cloud, specified as a MATLAB ColorSpec.

WireFrameColor — Color of the color space wire frame
"black’ (default) | colorspec

Color of the color space wire frame, defined as MATLAB ColorSpec. If you specify the
value 'none', colorcloud deletes the wire frame.

OrientationAxesColor — Color of the orientation axes and labels
"black' (default) | colorspec

Color of the orientation axes and labels, specified as a MATLAB ColorSpec. If you
specify the value 'none', colorcloud deletes the labels.



colorcloud

Output Arguments

hPanel — Color gamut point cloud
uipanel object

Color gamut point cloud, returned as a uipanel object.

See Also

Introduced in R2016b

1-359



1 Functions — Alphabetical List

1-360

conndef

Create connectivity array

Syntax

conn = conndef(num dims,type)

Description

conn = conndef(num_dims, type) returns the pixel connectivity array defined by
type for num_dims dimensions. Several Image Processing Toolbox functions use
conndef to create the default connectivity input argument.

Examples

Create 2-D Connectivity Array with Minimal Connectivity

Create a 2-D connectivity array.

conn = conndef (2, 'minimal")

conn = 3x3
0 1 0
1 1 1
0 1 0

Create 2-D Connectivity Array with Maximal Connectivity

Create a 2-D connectivity array.

conn = conndef (2, 'maximal")



conndef

conn = 3x3
1 1 1
1 1 1
1 1 1

Create 3-D Connectivity Array with Minimal Connectivity

Create a 3-D connectivity array.

conndef (3, 'minimal")

ans =
ans(:,:,1) =
0 0 0
0 1 0
0 0 0
ans(:,:,2) =
0 1 0
1 1 1
0 1 0
ans(:,:,3) =
0 0 0
0 1 0
0 0 0

Input Arguments

num_dims — Number of dimensions
positive integer

1-361



1 Functions — Alphabetical List

Number of dimensions, specified as a positive integer.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Type of neighborhood connectivity
‘minimal’ | 'maximal’

Type of neighborhood connectivity, specified as 'minimal’' or 'maximal’

Value Description

'minimal’ Defines a neighborhood whose neighbors are touching the central
element on an (N-1)-dimensional surface, for the N-dimensional case.

"maximal’ Defines a neighborhood including neighbors that touch the central
element in any way; it is ones (repmat(3,1,NUM DIMS)).

Data Types: char | string

Output Arguments

conn — Pixel connectivity
3-by-3-by...-3 logical array

Pixel connectivity, returned as a 3-by-3-....-by-3 logical array. conn is symmetric about its
center element. See “Specifying Custom Connectivities” for more information.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* conndef supports the generation of C code (requires MATLAB Coder). For more

information, see “Code Generation for Image Processing”.

1-362



conndef

* When generating code, the num_dims and type arguments must be compile-time
constants.

See Also

Introduced before R2006a

1-363



1 Functions — Alphabetical List

1-364

contains

Determine if image contains points in world coordinate system

Syntax

TF
TF

contains (R, xWorld, yWorld)
contains(R,xWorld, yWorld, zWorld)

Description

TF = contains(R,xWorld,yWorld) returns a logical array TF. Each element TF(k) is
true if and only if the corresponding point (xWorld(k),yWorld(k)) falls within the bounds
of an image associated with 2-D spatial referencing object R.

TF = contains(R,xWorld,yWorld, zWorld) indicates whether each point falls within
the bounds of an image associated with 3-D spatial referencing object R.

Examples

Check If Coordinates Fall Within 2-D Image Bounds

Read a 2-D image into the workspace.

I = imread('cameraman.tif');

Create an imref2d spatial referencing object associated with the image.
R = imref2d(size(I))

R:
imref2d with properties:

XWorldLimits: [0.5000 256.5000]
YWorldLimits: [0.5000 256.5000]
ImageSize: [256 256]



contains

PixelExtentInWorldX:
PixelExtentInWorldY:
ImageExtentInWorldX:
ImageExtentInWorldY:

XIntrinsicLimits:

1

1

256

256

[0.5000 256.5000]

YIntrinsicLimits: [0.5000 256.5000]

Check if certain world coordinates are in the image.
res = contains(R,[5 8 81,[5 10 257])

1x3 logical array

res

1 1 0

This result indicates that the points (5,5) and (8,10) are within the image bounds, and that
the point (8, 257) is outside the image bounds. This conclusion is consistent with the
XWorldLimits and YWorldLimits properties of the spatial referencing object R.

Check If Coordinates Fall Within 3-D Image Bounds

Read a 3-D image into the workspace. This image consists of 27 frames of 128-by-128
pixel images.

load mri;
D = squeeze(D);

Create an imref3d spatial referencing object associated with the image.

R

imref3d(size(D))

R:
imref3d with properties:

XWorldLimits: [0.5000 128.5000]
YWorldLimits: [0.5000 128.5000]
ZWorldLimits: [0.5000 27.5000]
ImageSize: [128 128 27]
PixelExtentInWorldX: 1
PixelExtentInWorldY: 1

1-365



1 Functions — Alphabetical List

1-366

PixelExtentInWorldzZ: 1
ImageExtentInWorldX: 128
ImageExtentInWorldY: 128
ImageExtentInWorldz: 27
XIntrinsicLimits: [0.5000 128.5000]
YIntrinsicLimits: [0.5000 128.5000]
ZIntrinsicLimits: [0.5000 27.5000]

Check if certain 3-D world coordinates are in the image.
res = contains(R,[5 6 6 8]1,[5 10 10 2571,[1 27.5 28 1])

res = 1x4 logical array

1 1 0 0

This result indicates that the points (5,5,1) and (6,10,27.5) are within the image bounds.
The points (6,10,28) and (8,257,1) are outside the image bounds. This conclusion is
consistent with the XWorldLimits, YWorldLimits, and ZWorldLimits properties of
the spatial referencing object R.

Input Arguments

R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object. R is associated
with an image.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, specified as a numeric
scalar or vector.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector



contains

Coordinates along the y-dimension in the world coordinate system, specified as a numeric
scalar or vector. yWorld is the same length as xWorld.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, specified as a numeric
scalar or vector. zWorld is the same length as xWorld and yWor1ld.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments

TF — Flag indicating whether coordinates exist within the bounds of the image
logical scalar or vector

Flag indicating whether coordinates exist within the bounds of the image, returned as a

logical scalar or vector. TF is the same length as the input coordinate vectors xWorld,
yWorld, and (when relevant) zZWor1ld.

Data Types: logical

See Also
imref2d | imref3d

Introduced in R2013a

1-367



1 Functions — Alphabetical List

1-368

convmtx2

2-D convolution matrix

Syntax

T = convmtx2(H,m,n)
T convmtx2(H, [m n])

Description

T = convmtx2(H,m,n) returns the convolution matrix T for the matrix H. If X is an m-by-
n matrix, then reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H).

T = convmtx2(H, [m n]) returns the convolution matrix, where the dimensions m and n
are a two-element vector.

Examples

Create a Convolution Matrix

Show that, for the convolution matrix T for the matrix H, if X is an m-by-n matrix, then
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H)

Description of first code block

H = ones(3,3)/9; % averaging filter 3-by-3
M=25;

X = magic(M)

T = convmtx2(H,M,M);

(H,M,
Y1 = reshape(T*X(:), size(H)+[5 5]-1)
Y1 = 7x7

1.8889 4.5556 4.6667 3.6667 2.6667 2.5556 1.6667
4.4444 7.6667 8.5556 6.5556 6.7778 5.8889 3.4444



convmtx2

4.8889
4.1111
2.7778
2.3333
1.2222

w U1 oo

Y2 = conv2(X,H)

Y2 = 7x7

. 8889
.4444
. 8889
L1111
.7778
.3333
.2222

FNNRPAMDPARE

WU o0 P~

.7778
.6667
.7778
.6667
.2222

.5556
.6667
.7778
.6667
.7778
.6667
.2222

11.
11.
13.
10.

11.
11.
13.
10.

isequal(Y1l,Y2) % They are

ans = logical

0

Input Arguments

H — Input matrix
numeric array

Input matrix, specified as a numeric array.

Data Types: double

m — Rows in convolution matrix

numeric scalar

1111 10.
0000 13.
1111 15.
5556 10.
.0000 5
.6667 3
.5556 6
1111 10.
0000 13.
1111 15.
5556 10.
.0000 5
the same.

8889
0000
1111
7778

.0000

.6667
.5556

8889
0000
1111
7778

.0000

12.
15.
14.
.7778
. 0000

8889
0000
8889

.6667
.7778
12.
15.
14.
.7778
. 0000

8889
0000
8889

Rows in convolution matrix, specified as a numeric scalar.

Data Types: double

1
1

==
HWoOO O U N

0.
0.
.5556
.8889
.2222

5556
6667

.5556
.8889
.5556
.6667
.5556
.8889
.2222

PR WwkoU

PR WkRkUUuWwWRE

.8889
.5556
.7778
.3333
.0000

.6667
.4444
.8889
.5556
.7778
.3333
.0000

1-369



1 Functions — Alphabetical List

n — Columns in convolution matrix
numeric scalar

Columns in convolution matrix, specified as a numeric scalar.

Data Types: double

[m n] — Dimensions of convolution matrix
numeric scalar

Dimensions of convolution matrix, specified as a two-element vector of the form [m n],
where m is the number of rows and n is the number of columns.

Data Types: double

Output Arguments

T — Convolution matrix
numeric array

Convolution matrix, returned as a numeric array. The output matrix T is of class sparse.
The number of nonzero elements in T is no larger than prod(size(H) ) *m*n.

See Also

conv2 | convmtx

Introduced before R2006a

1-370



corner

corner

Find corner points in image

Note corner is not recommended. Use detectHarrisFeatures or
detectMinEigenFeatures in Computer Vision Toolbox™ instead.

Syntax

corner(I)
corner(I,method)
corner(I,N)
corner(I,method,N)

( ,Name, Value)

OO0 0n00n
nmwnmnnu

corner

Description

corner(I) detects corners in image I and returns their coordinates in matrix C.

corner(I,method) detects corners in image I using the specified method.

corner(I,N) detects corners in image I and returns a maximum of N corners.

O O O 0O

corner(I,method,N) detects corners using the specified method and maximum
number of corners.

C = corner( ,Name, Value) specifies parameters and corresponding values that
control various aspects of the corner detection algorithm.

Examples

Find Corner Points in Checkerboard Image

I
C

checkerboard(50,2,2);
corner(I);

1-371



1 Functions — Alphabetical List

imshow(I)
hold on
plot(C(:,1),C(:,2),"'r*");

Input Arguments

I — Grayscale or binary image
m-by-n numeric matrix

Grayscale or binary image, specified as an m-by-n numeric matrix.

method — Corner detection algorithm
'"Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as 'Harris' for the Harris corner detector, or
'"MinimumEigenvalue' for Shi & Tomasi's minimum eigenvalue method.

N — Maximum number of corners
200 (default) | positive integer

Maximum number of corners that the corner function can return, specified as a positive
integer.

1-372



corner

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: corner(I, 'QualitylLevel',0.2) specifies the minimum quality level of
corners in image I as 0. 2.

FilterCoefficients — Filter coefficients
numeric vector

Filter coefficients for the separable smoothing filter, specified as the comma-separated
pair consisting of 'FilterCoefficients' and a numeric vector. The vector, V, must
have odd length and a minimum length of 3. The outer product, V*V', gives the full filter
kernel. The default filter coefficients are given by fspecial ( 'gaussian',[5 1],1.5).

QualityLevel — Minimum accepted quality
0.01 (default) | numeric scalar

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'QualitylLevel' and a numeric scalar in the range (0, 1). For a quality level Q, the
toolbox rejects candidate corners with corner metric values less than Q * max(corner
metric). Use larger values of Q to remove erroneous corners.

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar

Sensitivity factor used in the Harris detection algorithm, specified as the comma-
separated pair consisting of 'SensitivityFactor' and a numeric scalar in the range

(0, 0.25). The smaller the sensitivity factor, the more likely the algorithm is to detect
sharp corners. Use this parameter with the 'Harris' method only.

Output Arguments

C — Coordinates of corner points
p-by-2 matrix

x and y coordinates of the corner points detected in image I, returned as a p-by-2 matrix.

1-373



1 Functions — Alphabetical List

1-374

Data Types: double

Tips
The corner and cornermetric functions both detect corners in images. For most
applications, use the streamlined corner function to find corners in one step. If you want

greater control over corner selection, use the cornermetric function to compute a
corner metric matrix and then write your own algorithm to find peak values.

Algorithms

The corner function performs nonmaxima suppression on candidate corners, and
corners are at least two pixels apart.

Introduced in R2010b



cornermetric

cornermetric

(Not recommended) Create corner metric matrix from image

Note cornermetric is not recommended. Use detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox™
instead. For more information, see “Compatibility Considerations”.

Syntax

C = cornermetric(I)

C = cornermetric(I,method)

C = cornermetric(___ ,Name,Value)
Description

C = cornermetric(I) creates a corner metric matrix by detecting corner features in
the input image I.

C = cornermetric(I,method) creates a corner metric matrix by detecting corner
features in the input image I. The corner detection method specified by method is used
for finding the corner features.

C = cornermetric( ,Name, Value)specifies options using one or more name-value
arguments in addition to the input arguments from any of the previous syntaxes.

Examples

Find Corner Features in a Binary Image

Read an input image into the workspace.

I = imread('circles.png');

1-375



1 Functions — Alphabetical List

Generate a corner metric matrix. Specify the filter coefficients. The corner detection
method takes the default value 'Harris'.

filter = [0.25 0.5 0.25];
C = cornermetric(I, 'FilterCoefficients', filter);

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.
corner_peaks = imregionalmax(C);
Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner peaks == true);
[r,g,b] = deal(I);

r(corner _idx) = 255;
g(corner_idx) = 0;
b(corner _idx) = 0;

RGB = cat(3,r,g,b);
Adjust the corner metric matrix for viewing.
C adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a
montage. The detected corner features are displayed as red color pixels with RGB value

as [255 0 0].
montage({I,C adjusted,RGB}, 'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix Detected Corner

Original Image | Adjusted Corner Metric Matrix | Detected Corner Features

1-376



cornermetric

Find Corner Features in a Grayscale Image

Read an input image into the workspace.

I = imread('bag.png');

Generate a corner metric matrix. Specify the method as 'MinimumEigenvalue'.

C = cornermetric(I, 'MinimumEigenvalue');

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.
corner_peaks = imregionalmax(C);

Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner peaks == true);
[r g bl = deal(I);

r(corner_idx) = 255;
g(corner_idx) = 0;
b(corner_idx) = 0;

RGB = cat(3,r,qg,b);
Adjust the corner metric matrix for viewing.
C adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a
montage. The detected corner features are displayed as red color pixels with RGB value
as [255 255 0].

montage({I,C adjusted,RGB}, 'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix Detected Corner |

1-377



1 Functions — Alphabetical List

1-378

Original Image | Adjusted Comer Metric Matrix | Detected Corner Features

'
s

#

"y

] 1 1

Pl t
L]

u

PPN Ve By
W

»
»
i
.

: ”-_.V-_‘-.‘_-.‘:.‘ ’
teon i,

L
e R f:&':' Ll

L]
'“.ﬂ\-r ‘r_,':”‘._\".
. t" . i’.. .
PR N

»
-

Input Arguments

I — Input image
2-D binary image | 2-D grayscale image

Input image, specified as a 2-D binary image or 2-D grayscale image of size m-by-n. The
input must be real, finite, and nonsparse.

Data Types: single | double | uint8 | uintl6 | uint32 | int8 | int16 | int32 |
logical

method — Corner detection method
'Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as either 'Harris' or 'MinimumEigenvalue'. If
the method is:

* 'Harris', the function creates corner metric matrix by using the Harris corner
detector.

* 'MinimumEigenvalue', the function creates corner metric matrix by using the Shi
and Tomasi's minimum eigenvalue approach.



cornermetric

If method is not specified, the default value set as 'Harris' and the function uses Harris
corner detector for detecting corner features.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: cornermetric(I, 'SensitivityFactor',0.1)

FilterCoefficients — Coefficients of 1-D spatial filter mask
[0.1201 0.2339 0.2921 0.2339 0.1201] (default) | n-element vector

Coefficients of 1-D spatial filter mask, specified as a comma-separated pair consisting of
'FilterCoefficients' and an n-element vector. The value of n must be odd and
greater than or equal to 3. By default, the 1-D spatial filter mask is a 5-element vector and
the default filter coefficients are computed using fspecial('gaussian',[5 1],1.5).

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar in the range (0, 0.25)

Sensitivity factor, specified as a comma-separated pair consisting of
'SensitivityFactor' and a numeric scalar in the interval (0, 0.25). For smaller values
of sensitivity factor, the algorithm is more likely to detect sharper corners.

Note The name-value pair 'SensitivityFactor' is valid only if the input method is
'Harris'.

Output Arguments

C — Corner metric matrix
m-by-n matrix

Corner metric matrix, returned as a m-by-n matrix of the same size as the input image I.

Data Types: double

1-379



1 Functions — Alphabetical List

1-380

Tips

The corner and cornermetric functions both detect corners in images. For most
applications, use the streamlined corner function to find corners in one step. If you want
greater control over corner selection, use the cornermetric function to compute a
corner metric matrix. Then, write your own algorithm to find peak values in corner metric
matrix.

Compatibility Considerations

cornermetric is not recommended
Not recommended starting in R2016a

cornermetric is not recommended. Instead, use the detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox.

Use detectHarrisFeatures to find corners in an image by using the Harris corner
detector method. Use detectMinEigenFeatures to find corners in an image by using
Shi and Tomasi's minimum eigenvalue method. The detectHarrisFeatures and
detectMinEigenFeatures functions return the cornerPoints object to which the
detected corner points are stored.

See Also

corner | edge

Introduced in R2008b



corr2

corr2

2-D correlation coefficient

Syntax

R = corr2(A,B)

Description

R = corr2(A,B) returns the 2-D correlation coefficient R between arrays A and B.

You optionally can compute the correlation coefficient using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Compute the correlation coefficient

Compute the correlation coefficient between an image and the same image processed
with a median filter.

I = imread('pout.tif');
J = medfilt2(I);

R = corr2(I,J)

R = 0.9959

Compute the Correlation Coefficient on a GPU

Compute the correlation coefficient on a GPU between an image and the same image
processed using standard deviation filtering.

1-381



1 Functions — Alphabetical List

1-382

I = gpuArray(imread('pout.tif'));
J = stdfilt(I);
R = corr2(I,J)
R:
0.2762

Input Arguments

A — First input array
numeric array | logical array | gpuArray

First input array, specified as a numeric or logical array.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric or logical array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

B — Second input array
numeric array | logical array | gpuArray

Second input array, specified as a numeric or logical array. B has the same size as the first
input array, A.

To perform the computation using a GPU, specify B as a gpuArray that contains a
numeric or logical array.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments

R — Correlation coefficient
numeric scalar | gpuArray

Correlation coefficient, returned as a numeric scalar.



corr2

If the correlation coefficient is computed using a GPU, then R is returned as a gpuArray
containing a numeric scalar.

Data Types: double

Algorithms
corr2 computes the correlation coefficient using

> (Amn = A)(Bin — B)

(33t -37[3 3 - )

n

r =

where A = mean2(A), and B = mean2(B).

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also

corrcoef | std2

Introduced before R2006a

1-383



1 Functions — Alphabetical List

1-384

cp2tform

Infer spatial transformation from control point pairs

Note cp2tform is not recommended. Use fitgeotrans instead.

Syntax

tform = cp2tform(movingPoints, fixedPoints,transformationType)
tform = cp2tform(movingPoints, fixedPoints, 'polynomial’',degree)
tform = cp2tform(movingPoints, fixedPoints, 'lwm',n)

tform = cp2tform(movingPoints, fixedPoints, 'piecewise linear')

[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints, 'piecewise linear')

tform = cp2tform(cpstruct,transformationType, )
[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, )

Description

tform = cp2tform(movingPoints, fixedPoints,transformationType) infers a
spatial transformation from control point pairs and returns this transformation as a
tform structure. Some of the transformation types have optional additional parameters,
shown in the following syntaxes.

tform = cp2tform(movingPoints, fixedPoints, 'polynomial', degree) lets you
specify the order of the polynomials to use.

tform = cp2tform(movingPoints, fixedPoints, 'lwm',n) creates a mapping by
inferring a polynomial at each control point using neighboring control points. The
mapping at any location depends on a weighted average of these polynomials. You can
optionally specify the number of points, n, used to infer each polynomial. The n closest
points are used to infer a polynomial of order 2 for each control point pair.

tform = cp2tform(movingPoints, fixedPoints, 'piecewise linear') creates a
Delaunay triangulation of the fixed control points, and maps corresponding moving



cp2tform

control points to the fixed control points. The mapping is linear (affine) for each triangle
and continuous across the control points but not continuously differentiable as each
triangle has its own mapping.

[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints, 'piecewise linear') returnsin usedMP and usedFP the control
points that were used for the piecewise linear transformation. This syntax also returns in
badMP and badFP the control points that were eliminated because they were middle
vertices of degenerate fold-over triangles.

tform = cp2tform(cpstruct,transformationType, ) uses a cpstruct
structure to store the control point coordinates of the moving and fixed images.

[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, )
also returns in usedMP and usedFP the control points that were used for the
transformation. Unmatched and predicted points are not used. See cpstruct2pairs.

Examples

Use Control Points to Create Nonreflective Similarity
Transformation Structure

Transform an image, use the cp2tform function to return the transformation, and
compare the angle and scale of the tform to the angle and scale of the original
transformation:

I checkerboard;

J imrotate(I,30);

fixedPoints = [11 11; 41 71];
movingPoints = [14 44; 70 81];
cpselect(J,I,movingPoints, fixedPoints);

t = cp2tform(movingPoints, fixedPoints, 'nonreflective similarity');

Recover angle and scale by checking how a unit vector parallel to the x-axis is rotated and
stretched.

1;
1;
tformfwd(t,u,v);

I © ¥

u [0
Y [0
[x, yl

1-385



1 Functions — Alphabetical List

1-386

= x(2) - x(1);

=y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)
scale = 1 / sqrt(dx™2 + dy”™2)

Input Arguments

movingPoints — Control points in the moving image
m-by-2 matrix

Control points in the moving image, specified as an m-by-2 matrix. Each row specifies the
[x y] coordinates of a control point.

Example: [11 11; 41 71]

Data Types: double

fixedPoints — Control points in the fixed image
m-by-2 matrix

Control points in the fixed image, specified as an m-by-2 matrix. Each row specifies the [x
y] coordinates of a control point.

Example: [14 44; 70 81]

Data Types: double

transformationType — Type of transformation

'nonreflectivesimilarity' | 'similarity' | 'affine' | 'projective’ |
'polynomial’ | 'piecewise linear' | 'lwm'

Type of transformation, specified as one of the following, listed in order of increasing
complexity. The cp2tform function requires a minimum number of control point pairs to
infer a structure of each transform type.



cp2tform

Transformation Type |Description Minimum Example
Number of
Control Point
Pairs
'nonreflective Use this transformation when shapes in 2
similarity' the moving image are unchanged, but the ::E 030
image is distorted by some combination of
translation, rotation, and scaling. Straight
lines remain straight, and parallel lines are
still parallel.
'similarity' Same as 'nonreflective similarity' |3
with the addition of optional reflection. ::E 030
'affine’ Use this transformation when shapes in 3 \$
the moving image exhibit shearing. ::E %\
Straight lines remain straight, and parallel
lines remain parallel, but rectangles
become parallelograms.
‘projective’ Use this transformation when the scene 4 ::E ‘33‘
appears tilted. Straight lines remain
straight, but parallel lines converge toward
vanishing points that might or might not
fall within the image.
'polynomial' Use this transformation when objects in 6 (order 2)

the image are curved. The higher the order
of the polynomial, the better the fit, but
the result can contain more curves than
the fixed image.

You can specify the degree of the
polynomial.

10 (order 3)
15 (order 4)

=

'piecewise linear'

Use this transformation when parts of the
image appear distorted differently.

4

A

1-387



1 Functions — Alphabetical List

Transformation Type

Description

Minimum
Number of
Control Point
Pairs

Example

"Twm'

Use this transformation (local weighted
mean), when the distortion varies locally
and piecewise linear is not sufficient.

You can specify the number n of points to
use in the local weighed mean calculation.

6 (12
recommended)

L

Data Types: char

cpstruct — Preselected control points

structure

Preselected control points, specified as a structure. cpstruct contains information about
the x- and y-coordinates of all control points in the moving and fixed images, including
unpaired and predicted control points. cpstruct2pairs eliminates unmatched and
predicted control points, and returns the set of valid control point pairs.

cpstruct is a structure produced by the Control Point Selection tool (cpselect) when
you choose the Export Points to Workspace option. For more information, see “Export
Control Points to the Workspace”.

Data Types: struct

degree — Degree of the polynomial
3 (default) | 2 | 4

Degree of the polynomial transformation, specified as the integer 2, 3, or 4.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Number of points to use in local weighted mean calculation
12 (default) | positive integer

Number of points to use in local weighted mean calculation, specified as a positive
integer. n can be as small as 6, but making n small risks generating ill-conditioned

polynomials

1-388




cp2tform

Output Arguments

tform — Transformation
struct

Transformation, returned as a struct.

usedMP — Used moving points
n-by-2 matrix

Moving control points that were used to infer the spatial transformation, returned as an
n-by-2 matrix. Unmatched and predicted points are not used.

usedFP — Used fixed points
n-by-2 matrix

Fixed control points that were used to infer the spatial transformation, returned as an n-
by-2 matrix. Unmatched and predicted points are not used.

badMP — Eliminated moving points
p-by-2 matrix

Moving control points that were eliminated because they were determined to be outliers,
returned as a p-by-2 matrix.

badFP — Eliminated fixed points
p-by-2 matrix

Fixed control points that were eliminated because they were determined to be outliers,
returned as a p-by-2 matrix.

Tips

* When transformtypeis 'nonreflective similarity', 'similarity’,
'affine', 'projective’, or 'polynomial’, and movingPoints and
fixedPoints (or cpstruct) have the minimum number of control points needed for
a particular transformation, cp2tform finds the coefficients exactly.

* IfmovingPoints and fixedPoints have more than the minimum number of control
points, a least-squares solution is found. See mldivide.

1-389



1 Functions — Alphabetical List

*  When either movingPoints or fixedPoints has a large offset with respect to their
origin (relative to range of values that it spans), cp2tform shifts the points to center
their bounding box on the origin before fitting a tform structure. This enhances
numerical stability and is handled transparently by wrapping the origin-centered
tform within a custom tform that automatically applies and undoes the coordinate
shift as needed. As a result, fields(T) can give different results for different
coordinate inputs, even for the same transformation type.

Algorithms

cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation or an inverse
mapping from output space (x,y) to input space (x,y) according to transformtype.

2  Return the tform structure containing spatial transformation.

The procedure varies depending on the transformtype.

Nonreflective Similarity

Nonreflective similarity transformations can include a rotation, a scaling, and a
translation. Shapes and angles are preserved. Parallel lines remain parallel. Straight lines
remain straight.

Let

sc = scale*cos(angle)

ss = scale*sin(angle)

[uv] =[xy 1] * [ sc -ss
SS scC
tx  tyl

Solve for sc, ss, tx, and ty.

Similarity
Similarity transformations can include rotation, scaling, translation, and reflection.

Shapes and angles are preserved. Parallel lines remain parallel. Straight lines remain
straight.

1-390



cp2tform

Let
sc = s*cos(theta)
ss = s*sin(theta)
[ sc -a*-ss
[uv] =[xy 1] * ss a*sc
tx  tyl
Solve for sc, ss, tx, ty, and a. If a = -1, reflection is included in the transformation. If

a = 1, reflection is not included in the transformation.

Affine

In an affine transformation, the x and y dimensions can be scaled or sheared
independently and there can be a translation. Parallel lines remain parallel. Straight lines
remain straight. Nonreflective similarity transformations are a subset of affine
transformations.

For an affine transformation,

[uv] =[xy 1] * Tinv

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv:

t affine = cp2tform(movingPoints, fixedPoints, 'affine');

The coefficients of the inverse mapping are stored in t affine.tdata.Tinv.

At least three control-point pairs are needed to solve for the six unknown coefficients.

Projective

In a projective transformation, quadrilaterals map to quadrilaterals. Straight lines remain
straight. Affine transformations are a subset of projective transformations.

For a projective transformation,
[up vp wp] = [x y w] * Tinv

where

1-391



1 Functions — Alphabetical List

1-392

u
\'

up/wp
vp/wp

Tinv is a 3-by-3 matrix.

Assuming
Tinv = [ A D G;
B E H;
CFI];
u= (AXx + By + C)/(Gx + Hy + I)
v =(Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv:
t proj = cp2tform(movingPoints, fixedPoints, 'projective');
The coefficients of the inverse mapping are stored in t proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine unknown coefficients.

Note An affine or projective transformation can also be expressed like this, for a 3-by-2
Tinv:

[uv]l' = Tinv' * [x vy 1]'
Or, like this, for a 3-by-3 Tinv:

[uv 1]' = Tinv' * [x y 1]'

Polynomial

In a polynomial transformation, polynomial functions of x and y determine the mapping.



cp2tform

Second-Order Polynomials

For a second-order polynomial transformation,
[uv] =[1 x y x*y x72 y~2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order polynomial has six terms.
To specify all coefficients, Tinv has size 6-by-2.

t poly ord2 = cp2tform(movingPoints, fixedPoints, 'polynomial');
The coefficients of the inverse mapping are stored in t poly ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown coefficients.

Third-Order Polynomials

For a third-order polynomial transformation:
[uv] =[1 x y x*y x72 y"2 y*x"2 x*y*2 x"3 y"3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order polynomial has 10 terms. To
specify all coefficients, Tinv has size 10-by-2.

t poly ord3 = cp2tform(movingPoints, fixedPoints, 'polynomial',3);

The coefficients of the inverse mapping are stored in t poly ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown coefficients.

1-393



1 Functions — Alphabetical List

Fourth-Order Polynomials

For a fourth-order polynomial transformation:

[u v] = [1 x y x*¥y x"2 y*2 y*X™2 x*y"2 x"3 y*3 x"3*y x"2*y"2 x*y*3 x4 y™4]
* Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order polynomial has 15 terms.
To specify all coefficients, Tinv has size 15-by-2.

t poly ord4 = cp2tform(movingPoints, fixedPoints, 'polynomial’,4);
The coefficients of the inverse mapping are stored in t poly ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown coefficients.

Piecewise Linear

In a piecewise linear transformation, linear (affine) transformations are applied
separately to each triangular region of the image[1].
1 Find a Delaunay triangulation of the fixed control points.

2  Using the three vertices of each triangle, infer an affine mapping from fixed to
moving coordinates.

Note At least four control-point pairs are needed. Four pairs result in two triangles with
distinct mappings.

Local Weighted Mean

For each control point in fixedPoints:

1 Find the N closest control points.

2 Use these N points and their corresponding points in movingPoints to infer a
second-order polynomial.

3 Calculate the radius of influence of this polynomial as the distance from the center
control point to the farthest point used to infer the polynomial (using fixedPoints)

[2].

1-394



cp2tform

Note At least six control-point pairs are needed to solve for the second-order polynomial.
Ill-conditioned polynomials might result if too few pairs are used.

References

[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration,"
Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and
Vision Computing, Vol. 6, 1988, pp. 255-261.

See Also

cpcorr | cpselect | cpstruct2pairs | imtransform | tformfwd | tforminv

Introduced before R2006a

1-395



1 Functions — Alphabetical List

1-396

cpcorr

Tune control point locations using cross-correlation

Syntax

movingPointsAdjusted = cpcorr(movingPoints, fixedPoints,moving, fixed)

Description

movingPointsAdjusted = cpcorr(movingPoints, fixedPoints,moving, fixed)
uses normalized cross-correlation to adjust each pair of control points specified in
movingPoints and fixedPoints. moving and fixed are images. cpcorr returns the
adjusted control points in movingPointsAdjusted.

Note The moving and fixed images must have the same scale for cpcorr to be
effective. If cpcorr cannot correlate a pair of control points, movingPointsAdjusted
contains the same coordinates as movingPoints for that pair.

Examples

Fine-Tune Control-Point Locations using Cross Correlation

Read two images into the workspace.

moving = imread('onion.png');
fixed = imread('peppers.png');

Define sets of control points for both images.

movingPoints = [118 42;99 87];
fixedPoints = [190 114;171 165];

Display the images, and display the control points in white.



cpcorr

figure; imshow(fixed)

hold on
plot(fixedPoints(:,1),fixedPoints(:,2), 'xw')
title('fixed")

fixed

figure; imshow(moving)

hold on
plot(movingPoints(:,1),movingPoints(:,2), 'xw")
title('moving')

1-397



1 Functions — Alphabetical List

1-398

Observe the slight errors in the position of the moving points.

Adjust the moving control points using cross correlation.

movingPointsAdjusted = cpcorr(movingPoints, fixedPoints, ...
moving(:,:,1),fixed(:,:,1))

2%x2

movingPointsAdjusted

115.9000  39.1000
97.0000  89.9000

Display the adjusted moving points in yellow. Compared to the original moving points (in
white), the adjusted points more closely match the positions of the fixed points.

plot(movingPointsAdjusted(:,1),movingPointsAdjusted(:,2), 'xy")



cpcorr

Input Arguments

movingPoints — Coordinates of control points in the image to be transformed

M-by-2 double matrix

Coordinates of control points in the image to be transformed, specified as an M-by-2
double matrix.

Example: movingPoints = [127 93; 74 59];
Data Types: double

fixedPoints — Coordinates of control points in the reference image
M-by-2 double matrix

Coordinates of control points in the reference image, specified as an M-by-2 double
matrix.

Example: fixedPoints = [323 195; 269 161];
Data Types: double

moving — Image to be registered
numeric array of finite values

1-399



1 Functions — Alphabetical List

Image to be registered, specified as a numeric array of finite values.

fixed — Reference image in the target orientation
numeric array of finite values

Reference image in the target orientation, specified as a numeric array of finite values.

Output Arguments

movingPointsAdjusted — Adjusted coordinates of control points in the image to
be transformed
double matrix the same size as movingPoints

Adjusted coordinates of control points in the image to be transformed, returned as a
double matrix the same size as movingPoints.

Tips
cpcorr cannot adjust a point if any of the following occur:

* points are too near the edge of either image
* regions of images around points contain Inf or NaN
* region around a point in moving image has zero standard deviation

* regions of images around points are poorly correlated

Algorithms

cpcorr only moves the position of a control point by up to four pixels. Adjusted
coordinates are accurate up to one-tenth of a pixel. cpcorr is designed to get subpixel
accuracy from the image content and coarse control point selection.

See Also

cpselect | fitgeotrans | imwarp | normxcorr2

1-400



cpcorr

Introduced before R2006a

1-401



1 Functions — Alphabetical List

1-402

cpselect

Control Point Selection tool

Syntax

cpselect(moving, fixed)

cpselect(moving, fixed, cpstruct in)

cpselect(moving, fixed,initialMovingPoints,initialFixedPoints)
h = cpselect( )

h = cpselect(  ,'Wait', false)

[selectedMovingPoints, selectedFixedPoints] = cpselect(

, 'Wait', true)

Description

cpselect(moving, fixed) starts the Control Point Selection Tool, a user interface that
enables you to select control points in two related images. moving is the image to be
warped, which brings it into the coordinate system of the fixed image. moving and
fixed can be either variables that contain grayscale, truecolor, or binary images, or the
names of files containing these images. The Control Point Selection Tool returns the
control points in a cpstruct structure.

cpselect(moving, fixed, cpstruct in) starts cpselect with an initial set of control
points that are stored in cpstruct in. This syntax allows you to restart cpselect with
the state of control points, including unpaired and predicted control points, previously
saved in cpstruct in.

cpselect(moving, fixed,initialMovingPoints,initialFixedPoints) starts
cpselect with an initial set of valid control point pairs. initialMovingPoints and
initialFixedPoints are m-by-2 matrices that store moving and fixed control point
coordinates, respectively. The two columns represent the x- and y-coordinates of the
control points.

h = cpselect( ) returns a handle h to the Control Point Selection tool. You can use
the close(h) syntax to close the tool from the command line.



cpselect

h = cpselect(  ,'Wait', false) returns a handle h to the Control Point Selection
tool. You can use the close(h) syntax to close the tool from the command line. In
contrast to setting 'Wait' as true, this syntax lets you run cpselect at the same time
as you run other programs in MATLAB.

[selectedMovingPoints, selectedFixedPoints] = cpselect(

, 'Wait', true) takes control of the MATLAB command line until you finish selecting
control points. cpselect returns valid selected pairs of points. selectedMovingPoints
and selectedFixedPoints are p-by-2 matrices that store the coordinates in the moving
and fixed images, respectively. The two columns represent the x- and y-coordinates of the
selected control points.

Examples

Start Control Point Selection Tool with Saved Images

Call cpselect, specifying the names of the image you want to register and the reference
image. This example uses the optional syntax that returns a handle to the tool that is
created so that you can close the tool programmatically.

h = cpselect('westconcordaerial.png', 'westconcordorthophoto.png');

1-403



1 Functions — Alphabetical List

E Cantrol Paint Selection Taal |
File Edit View Tools Window Help o
Fuaan
Fixed Detail. westconcordorthophoto.png

‘EUC% w | !D Lock ratin ||40[]% w

Moving Detail: westconcordaetisl png

Close the tool.

close(h)

1-404



cpselect

Open Control Point Selection Tool with Predefined Control Points

Create a sample reference image.
I = checkerboard;

Create a copy of the sample image, rotating it to create a sample image that needs
registering.

J = imrotate(I,30);
Specify two sets of control points for the fixed and moving images.

fixedPoints = [11 11; 41 71];
movingPoints = [14 44; 70 81];

Open the Control Point Selection Tool, specifying the sample fixed and moving images and
the two sets of saved control points.

cpselect(J,I,movingPoints, fixedPoints);

When the tool opens, you are prompted to save the control points.

Register an Aerial Photo to an Orthophoto

Read an aerial photo and an orthophoto into the workspace, and display them.

aerial = imread('westconcordaerial.png');
figure, imshow(aerial)

ortho = imread('westconcordorthophoto.png');
figure, imshow(ortho)

Load some points that have already been picked.
load westconcordpoints

Open the Control Point Selection tool, specifying the two images and the preselected
points. Use the 'Wait' parameter to make cpselect wait for you to pick some more
points.

[aerial points,ortho points] = ...
cpselect(aerial, 'westconcordorthophoto.png', ...
movingPoints, fixedPoints, ...
'Wait', true);

1-405



1 Functions — Alphabetical List

1-406

When control returns to the command line, perform the registration.

First use fitgeotrans to estimate the geometric transformation that brings the moving
image into alignment with the fixed image. Specify the control points you selected and the
type of transformation you want.

t concord = fitgeotrans(aerial points,ortho points, 'projective’);

Next use imwarp to perform the transformation. By defining a spatial referencing object
from ortho and specifying the object as the 'QutputView', the registered image has a
size and location matching ortho.

ortho _ref = imref2d(size(ortho)); %relate intrinsic and world coordinates
aerial registered = imwarp(aerial,t concord, 'OutputView',ortho_ref);
figure, imshowpair(aerial registered,ortho, 'blend')

Finally, display the transformed image over the original orthophoto to see how well the
registration succeeded.

figure, imshowpair(aerial registered,ortho, ‘blend")

Input Arguments

moving — Input image to be aligned
grayscale image | truecolor image | binary image | character vector | string

Input image to be aligned, specified as a grayscale, truecolor, or binary image, or a
character vector. A grayscale image can be uint8, uint16, int16, single, or double.
A truecolor image can be uint8, uintl16, single, or double. A binary image is of class
logical. If moving is a character vector, it must identify files containing these same
types of images.

Data Types: single | double | int16 | uint8 | uint16 | logical | char | string

fixed — Reference image
grayscale image | truecolor image | binary image | character vector

string

Reference image, specified as a grayscale, truecolor, or binary image. A grayscale image
can be uint8, uintl16, intl6, single, or double. A truecolor image can be uints,



cpselect

uintl6, single, or double. A binary image is of class logical. If fixed is a character
vector, it must identify files containing these same types of images.

Data Types: single | double | int16 | uint8 | uintl6 | logical | char | string

cpstruct_in — Preselected control points
structure

Preselected control points, specified as a structure (cpstruct). cpstruct in contains
information about x- and y-coordinates of all control points in the moving and fixed
images, including unpaired and predicted control points. cpstruct in also contains
indexing information that allows the Control Point Selection tool to restore the state of
the control points.

Create a cpstruct by exporting points from the Control Point Selection tool, described
in “Export Control Points to the Workspace”.

Data Types: struct

initialMovingPoints — Preselected control points on the moving image
m-by-2 numeric array

Preselected control points on the moving image, specified as an m-by-2 numeric array.
The two columns represent the x- and y-coordinates of the control points.

Data Types: double

initialFixedPoints — Preselected control points on the fixed image
m-by-2 numeric array

Preselected control points on the fixed image, specified as an m-by-2 numeric array. The
two columns represent the x- and y-coordinates of the control points.

Data Types: double

Output Arguments

h — Control Point Selection tool
handle

Control Point Selection tool, returned as a handle.

1-407



1 Functions — Alphabetical List

1-408

selectedMovingPoints — Selected control points on the moving image
p-by-2 numeric array

Selected control points on the moving image, specified as a p-by-2 numeric array. The two
columns represent the x- and y-coordinates of the control points.
Data Types: double

selectedFixedPoints — Selected control points on the fixed image
p-by-2 numeric array

Selected control points on the fixed image, specified as a p-by-2 numeric array. The two
columns represent the x- and y-coordinates of the control points.

Data Types: double

Tips

* When calling cpselect in a script, specify the 'Wait' option as true. The 'Wait'
option causes cpselect to block the MATLAB command line until control points have
been selected and returned. If you do not use the 'Wait' option, cpselect returns
control immediately and your script continues without allowing time for control point
selection. Additionally, without the 'Wait' option, cpselect does not return the
control points as return values.

Algorithms

cpselect uses the following general procedure for control-point prediction.

Find all valid pairs of control points.

2 Infer a spatial transformation between moving and fixed control points using a
method that depends on the number of valid pairs, as follows:

2 pairs Nonreflective similarity
3 pairs Affine
4 or more pairs Projective

3 Apply the spatial transformation to the new point. This transformation generates the
predicted point.



cpselect

4 Display the predicted point.

See Also

cpcorr | cpstruct2pairs | fitgeotrans | imtool | imwarp
Topics
“Control Point Selection Procedure”

“Export Control Points to the Workspace”

Introduced before R2006a

1-409



1 Functions — Alphabetical List

1-410

cpstruct2pairs

Extract valid control point pairs from cpstruct structure

Syntax

[movingPoints, fixedPoints] = cpstruct2pairs(cpstruct in)

Description

[movingPoints, fixedPoints] = cpstruct2pairs(cpstruct in) extracts the
valid control point pairs from cpstruct in, returning two arrays movingPoints and
fixedPoints.

Examples

Convert cpstruct to Sets of Control Point Pairs

Read an aerial photograph and an orthoregistered image into the workspace.

aerial = imread('westconcordaerial.png');
ortho = imread('westconcordorthophoto.png');

Load some preselected control points for these images.

load westconcordpoints

whos
Name Size Bytes C(lass Attributes
aerial 394x369x3 436158 wuint8
fixedPoints 4x2 64 double
movingPoints 4x2 64 double
ortho 366x364 133224 uint8



cpstruct2pairs

Open the Control Point Selection tool, specifying the two images along with the
predefined control points.

cpselect(aerial,ortho,movingPoints, fixedPoints);

Create the cpstruct structure. Using the Control Point Selection tool, select Export
Points to Workspace from the File menu to save the points to the workspace. On the
Export Points to Workspace dialog box, check the Structure with all points check
box, and clear Moving points of valid pairs and Fixed points of valid pairs. Click OK.
Close the Control Point Selection tool.

Use cpstruct2pairs to extract the moving and fixed points from the cpstruct.

[mPoints, fPoints] = cpstruct2pairs(cpstruct);

Compare the stored set of points with the set of points you exported.
fixedPoints, fpoints
fixedPoints =

164.5639 113.2890

353.5325 130.0798

143.4046 284.8935
353.5325 311.9810

fpoints =
164.5639 113.2890
353.5325 130.0798

143.4046 284.8935
353.5325 311.9810

The two sets of points are identical, which indicates that all points in the stored set of
points belong to valid control point pairs.

Input Arguments

cpstruct_in — Preselected control points
structure

1-411



1 Functions — Alphabetical List

1-412

Preselected control points, specified as a structure (cpstruct). cpstruct in contains
information about the x- and y-coordinates of all control points in the moving and fixed
images, including unpaired and predicted control points. cpstruct2pairs eliminates
unmatched and predicted control points, and returns the set of valid control point pairs.

cpstruct inis a structure produced by the Control Point Selection tool (cpselect)
when you choose the Export Points to Workspace option. For more information, see
“Export Control Points to the Workspace”.

Data Types: struct

Output Arguments

movingPoints — Control point pairs from moving image being aligned
m-by-2 numeric array

Control point pairs from image being aligned, returned as an m-by-2 numeric array.

Data Types: double

fixedPoints — Control point pairs from reference image
m-by-2 numeric array

Control point pairs from reference image, returned as an m-by-2 numeric array.

Data Types: double

See Also

cpselect | fitgeotrans

Topics
“Export Control Points to the Workspace”

Introduced before R2006a



dct2

dct2

2-D discrete cosine transform

Syntax

B = dct2(A)

B = dct2(A,m,n)

B = dct2(A,[m n])

Description

B = dct2(A) returns the two-dimensional discrete cosine transform of A. The matrix B
contains the discrete cosine transform coefficients B(ky,k,).

B

dct2(A,m,n) and

B = dct2(A,[m n]) pad the matrix A with Os to size m-by-n before applying the
transformation. If m or n is smaller than the corresponding dimension of A, then dct?2
crops A before the transformation.

Examples

Remove High Frequencies in Image using DCT

This example shows how to remove high frequencies from an image using the two-
dimensional discrete cosine transfer (DCT).

Read an image into the workspace, then convert the image to grayscale.

RGB = imread('autumn.tif');
I = rgb2gray(RGB);

Perform a 2-D DCT of the grayscale image using the dct2 function.
J = dct2(I);

1-413



1 Functions — Alphabetical List

Display the transformed image using a logarithmic scale. Notice that most of the energy
is in the upper left corner.

figure
imshow(log(abs(J)),[]
colormap(gca, jet(64))
colorbar

)

s USRI So T . 10

Set values less than magnitude 10 in the DCT matrix to zero.
J(abs(J) < 10) = 0;

Reconstruct the image using the inverse DCT function idct?2.

K = idct2(J);

Display the original grayscale image alongside the processed image.
figure

imshowpair(I,K, 'montage')
title('Original Grayscale Image (Left) and Processed Image (Right)');

1-414



dct2

Original Grayscale Image (Left) and Processed Image (Right)

Input Arguments

A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix.

m — Number of image rows
size(A, 1) (default) | positive integer

Number of image rows, specified as a positive integer. dct2 pads image A with Os or
truncates image A so that it has m rows. By default, m is equal to size(A,1).

n — Number of image columns
size(A,2) (default) | positive integer

Number of image columns, specified as a positive integer. dct2 pads image A with 0s or
truncates image A so that it has n columns. By default, n is equal to size(A,?2)

Output Arguments

B — Transformed matrix
m-by-n numeric matrix

1-415



1 Functions — Alphabetical List

1-416

Transformed matrix using a two-dimensional discrete cosine transform, returned as an m-
by-n numeric matrix.

Data Types: double

Definitions

Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. It
is a separable linear transformation; that is, the two-dimensional transform is equivalent
to a one-dimensional DCT performed along a single dimension followed by a one-
dimensional DCT in the other dimension. The definition of the two-dimensional DCT for an
input image A and output image B is

M-1N-1

- n2m+1)p _ n2n+1)q 0=sp=M-1
qu—apaqmzzonZOAmncos M COS—oN 0=q=N-1
where
1 —
- W/ p_o
p =
%JspsM—l
and
1
—,q=0
Nk
ag = -
\/:,15qu-1

M and N are the row and column size of A, respectively.

Tips

» Ifyou apply the DCT to real data, the result is also real. The DCT tends to concentrate
information, making it useful for image compression applications.



dct2

* To invert the DCT transformation, use idct2.

References

[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, N]J, Prentice
Hall, 1989, pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data Compression
Standard, Van Nostrand Reinhold, 1993.

See Also
fft2 | idct2 | ifft2

Introduced before R2006a

1-417



1 Functions — Alphabetical List

dctmtx

Discrete cosine transform matrix

Syntax

D = dctmtx(n)

Description

D = dctmtx(n) returns the n-by-n discrete cosine transform (DCT) matrix, which you
can use to perform a 2-D DCT on an image.

Examples

Calculate Discrete Cosine Transform Matrix

Read an image into the workspace and cast it to class double.

A = im2double(imread('rice.png'));
imshow(A)

1-418



dctmtx

Calculate the discrete cosine transform matrix.

D = dctmtx(size(A,1));

Multiply the input image A by D to get the DCT of the columns of A, and by D' to get the
inverse DCT of the columns of A.

dct = D*A*D';
imshow(dct)

1-419



1 Functions — Alphabetical List

Input Arguments

n — Size of DCT matrix
positive integer

Size of DCT matrix, specified as a positive integer.

Data Types: double

Output Arguments

D — DCT matrix
numeric matrix

DCT matrix, returned as a numeric matrix of size n-by-n.

1-420



dctmtx

Data Types: double

Tips
* Ifyou have an n-by-n image, A, then D*A is the DCT of the columns of A and D' *A is

the inverse DCT of the columns of A.

* The two-dimensional DCT of A can be computed as D*A*D'. This computation is
sometimes faster than using dct2, especially if you are computing a large number of
small DCTs, because D needs to be determined only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed. To
perform this computation, use dctmtx to determine D, and then calculate each DCT
using D*A*D"' (where A is each 8-by-8 block). This is faster than calling dct2 for each
individual block.

See Also
dct2

Introduced before R2006a

1-421



1 Functions — Alphabetical List

1-422

decompose

Return sequence of decomposed structuring elements

Syntax

SEQ = decompose(SE)

Description

SEQ = decompose(SE) returns an array of structuring elements, SEQ, that are the
decomposition of the structuring element SE. SEQ is equivalent to SE, but the elements of
SEQ cannot be decomposed further.

Examples

View Decomposition of Structuring Element

Create a disk-shaped structuring element.

se

strel('square',5)

se =
strel is a square shaped structuring element with properties:

Neighborhood: [5x5 logicall
Dimensionality: 2

Extract the decomposition of the structuring element.

seq decompose(se)

seq =
2x1 strel array with properties:



decompose

Neighborhood
Dimensionality

To see that dilating sequentially with the decomposed structuring elements really does
form a 5-by-5 square, use imdilate with the full option.

imdilate(1,seq, 'full"')

ans = 5x5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Extract Decomposition of Structuring Element
Create a ball-shaped structuring element.
se = offsetstrel('ball',5, 6.5)

se =
offsetstrel is a ball shaped offset structuring element with properties:

Offset: [11x11 double]
Dimensionality: 2

Obtain the decomposition of the structuring element.

seq decompose(se)

seq =
1x8 offsetstrel array with properties:

Offset
Dimensionality

1-423



1 Functions — Alphabetical List

Input Arguments

SE — Structuring element
strel oroffsetstrel object

Structuring element, specified as a strel or offsetstrel object.

Output Arguments

SEQ — Sequence of structuring elements that approximate the desired shape
array of strel or offsetstrel objects

Sequence of structuring elements that approximate the desired shape, returned as an
array of strel or offsetstrel objects.

See Also

Introduced before R2006a

1-424



deconvblind

deconvblind

Deblur image using blind deconvolution

Syntax

[J,psfr] = deconvblind(I,psfi)

[J,psfr] = deconvblind(I,psfi,iter)

[J,psfr] = deconvblind(I,psfi,iter,dampar)

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight)
[J,psfr] = deconvblind(I,psfi,iter,dampar,weight, readout)
[J,psfr] = deconvblind( __ ,fun)

Description

[J,psfr] = deconvblind(I,psfi) deconvolves image I using the maximum
likelihood algorithm and an initial estimate of the point-spread function (PSF), psfi. The
deconvblind function returns both the deblurred image J and a restored PSE psfr.

To improve the restoration, deconvblind supports several optional parameters,
described below. Use [] as a placeholder if you do not specify an intermediate parameter.

[J,psfr]

deconvblind (I, psfi,iter) specifies the number of iterations, iter.

[J,psfr] deconvblind(I,psfi,iter,dampar) controls noise amplification by
suppressing iterations for pixels that deviate a small amount compared to the noise,
specified by the damping threshold dampar. By default, no damping occurs.

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight) specifies which pixels in
the input image I are considered in the restoration. The value of an element in the
weight array determines how much the pixel at the corresponding position in the input
image is considered. For example, to exclude a pixel from consideration, assign it a value
of 0 in the weight array. You can adjust the weight value assigned to each pixel
according to the amount of flat-field correction.

1-425



1 Functions — Alphabetical List

1-426

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight, readout) specifies the
additive noise (e.g., background, foreground noise) and variance of the read-out camera
noise, readout.

[J,psfr] = deconvblind( _ ,fun), where fun is a handle to a function that
describes additional constraints on the PSF. fun is called at the end of each iteration. For
more information about function handles, see “Create Function Handle” (MATLAB).

Examples

Deblur an Image Using Blind Deconvolution
Create a sample image with noise.
% Set the random number generator back to its default settings for

% consistency in results.
rng default;

I = checkerboard(8);

PSF = fspecial('gaussian',7,10);

V = .0001;

BlurredNoisy = imnoise(imfilter(I,PSF), 'gaussian',0,V);

Create a weight array to specify which pixels are included in processing.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));

Perform blind deconvolution.
[J P] = deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT);
Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[1);
title('True PSF');
subplot(223);imshow(J);
title('Deblurred Image');



deconvblind

subplot(224);imshow(P,[]1);
title('Recovered PSF');

True PSF

A = Blurred and Noisy

Deblurred Image Recovered P5SF

Input Arguments

I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the
image as a cell array to enable interrupted iterations. For more information, see “Tips” on

page 1-429.

1-427



1 Functions — Alphabetical List

1-428

Data Types: single | double | int16 | uint8 | uintl6

psfi — Initial estimate of PSF
numeric array

Initial estimate of PSE specified as a numeric array. The PSF restoration is affected
strongly by the size of the initial guess psfi and less by the values it contains. For this
reason, specify an array of 1s as your psfi.

You can also specify psfi as a cell array to enable interrupted iterations. For more
information, see “Tips” on page 1-429.

Data Types: single | double | int16 | uint8 | uintl6

iter — Number of iterations

10 (default) | positive integer

Number of iterations, specified as a positive integer.

Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose
deviation between iterations is less than the threshold. dampar has the same data type as
I

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1].
weight has the same size as the input image, I. By default, all elements in weight have
the value 1, so all pixels are considered equally in the restoration.

Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds
to the additive noise (such as noise from the foreground and background) and the
variance of the read-out camera noise. readout has the same data type as I.



deconvblind

fun — Function handle
handle

Function handle, specified as a handle. fun must accept the PSF as its first argument.
The function must return one argument: a PSF that is the same size as the original PSF
and that satisfies the positivity and normalization constraints.

Output Arguments

J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is
a cell array) has the same data type as I. For more information about returning J as a cell
array for interrupted iterations, see “Tips” on page 1-429.

psfr — Restored PSF
array of positive numbers | 1-by-4 cell array

Restored PSF, returned as an array of positive numbers or a 1-by-4 cell array. psfr has
the same size as the initial estimate of the PSE psfi, and it is normalized so the sum of
elements is 1. For more information about returning psfr as a cell array for interrupted
iterations, see “Tips” on page 1-429.

Data Types: double

Tips

* You can use deconvblind to perform a deconvolution that starts where a previous
deconvolution stopped. To use this feature, pass the input image I and the initial
guess at the PSF, psfi, as cell arrays: {I} and {psfi}. When you do, the
deconvblind function returns the output image J and the restored point-spread
function, psfr, as cell arrays, which can then be passed as the input arrays into the
next deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.
J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

1-429



1 Functions — Alphabetical List

1-430

J{4} is an array generated by the iterative algorithm.

* The output image J could exhibit ringing introduced by the discrete Fourier transform
used in the algorithm. To reduce the ringing, use I = edgetaper(I,psfi) before
calling deconvblind.

References

[1]1D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms,
Applied Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope
Images and Spectra, Deconvolution of Images and Spectra, Ed. PA. Jansson, 2nd
ed., Academic Press, CA, 1997.

[3] Timothy J. Holmes, et al, Light Microscopic Images Reconstructed by Maximum
Likelihood Deconvolution, Handbook of Biological Confocal Microscopy, Ed. James
B. Pawley, Plenum Press, New York, 1995.

See Also

deconvlucy | deconvreg | deconvwnr | edgetaper | imnoise | otf2psf | padarray |
psf2otf

Topics

“Deblurring Images Using the Blind Deconvolution Algorithm”
“Image Deblurring”

“Deblur with the Blind Deconvolution Algorithm”

Introduced before R2006a



deconvlucy

deconvlucy

Deblur image using Lucy-Richardson method

Syntax

deconvlucy(I,psf)

deconvlucy(I,psf,iter)

deconvlucy(I,psf,iter,dampar)
deconvlucy(I,psf,iter,dampar,weight)
deconvlucy(I,psf,iter,dampar,weight, readout)
deconvlucy(I,psf,iter,dampar,weight, readout, subsample)

[ G G o Gy Gy Y o G
| | | [

Description

J = deconvlucy(I,psf) restores image I that was degraded by convolution with a
point-spread function (PSF), psf, and possibly by additive noise. The algorithm is based
on maximizing the likelihood that the resulting image J is an instance of the original
image I under Poisson statistics.

To improve the restoration, deconvlucy supports several optional parameters, described
below. Use [] as a placeholder if you do not specify an intermediate parameter.

J

deconvlucy(I,psf,iter) specifies the number of iterations, iter.

J = deconvlucy(I,psf,iter,dampar) controls noise amplification by suppressing
iterations for pixels that deviate a small amount compared to the noise, specified by the
damping threshold dampar. By default, no damping occurs.

J = deconvlucy(I,psf,iter,dampar,weight) specifies which pixels in the input
image I are considered in the restoration. The value of an element in the weight array
determines how much the pixel at the corresponding position in the input image is
considered. For example, to exclude a pixel from consideration, assign it a value of 0 in
the weight array. You can adjust the weight value assigned to each pixel according to the
amount of flat-field correction.

1-431



1 Functions — Alphabetical List

1-432

J = deconvlucy(I,psf,iter,dampar,weight, readout) specifies the additive
noise (e.g., background, foreground noise) and variance of the read-out camera noise,
readout.

J = deconvlucy(I,psf,iter,dampar,weight, readout, subsample) uses
subsampling when the PSF is given on a grid that is subsample times finer than the
image.

Examples

Remove Blur Using Several deconvlucy Optional Syntaxes

Create a sample image and blur it.

= checkerboard(8);

SF = fspecial('gaussian',7,10);

= .0001;

lurredNoisy = imnoise(imfilter(I,PSF), 'gaussian',0,V);

Create a weight array and call deconvlucy using several optional parameters.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;

J1 = deconvlucy(BlurredNoisy, PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V) ,WT);

Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(J1);
title('deconvlucy(A,PSF)");
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)");
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)"');



deconvlucy

deconviucy(A,PS5F)

A =Blurred and Noisy

deconviucy(A,PSF.NI.DP) deconviucy(&,PSF.NI.DPWT)

Input Arguments

I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the
image as a cell array to enable interrupted iterations. For more information, see “Tips” on

page 1-435.
Data Types: single | double | int16 | uint8 | uintl6

1-433



1 Functions — Alphabetical List

1-434

psf — PSF
numeric array

PSE specified as a numeric array. You can also specify psf as a cell array to enable
interrupted iterations. For more information, see “Tips” on page 1-435.

Data Types: single | double | int16 | uint8 | uintl6

iter — Number of iterations

10 (default) | positive integer

Number of iterations, specified as a positive integer.
Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose
deviation between iterations is less than the threshold. dampar has the same data type as
I.

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1].
weight has the same size as the input image, I. By default, all elements in weight have
the value 1, so all pixels are considered equally in the restoration.

Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds
to the additive noise (such as noise from the foreground and background) and the
variance of the read-out camera noise. readout has the same data type as I.

subsample — Subsampling
1 (default) | positive scalar

Subsampling, specified as a positive scalar.

Data Types: double



deconvlucy

Output Arguments

J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is
a cell array) has the same data type as I. For more information about returning J as a cell
array for interrupted iterations, see “Tips” on page 1-435.

Tips

* You can use deconvlucy to perform a deconvolution that starts where a previous
deconvolution stopped. To use this feature, pass the input image I and the PSE psf,
as cell arrays: {I} and {psf}. When you do, the deconvlucy function returns the
output image J as a cell array, which can then be passed as the input array into the
next deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.
J{2} contains the result of the last iteration.
J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.

* The output image J could exhibit ringing introduced by the discrete Fourier transform
used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvlucy.

» deconvlucy converts the PSF to double without normalization.

References

[1]1 D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms,
Applied Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope

Images and Spectra, Deconvolution of Images and Spectra, Ed. PA. Jansson, 2nd
ed., Academic Press, CA, 1997.

1-435



1 Functions — Alphabetical List

See Also

deconvlucy | deconvreg | deconvwnr | edgetaper | otf2psf | padarray | psf2otf

Topics

“Deblurring Images Using the Lucy-Richardson Algorithm”
“Image Deblurring”

“Deblur with the Lucy-Richardson Algorithm”

Introduced before R2006a

1-436



deconvreg

deconvreg

Deblur image using regularized filter

Syntax

deconvreg(I,psf)
deconvreg(I,psf,np)
deconvreg(I,psf,np,lrange)
deconvreg(I,psf,np,lrange, regop)
J,lagra] = deconvreg( )

J
J
J
J
[

Description

J = deconvreg(I,psf) deconvolves image I using the regularized filter algorithm,
returning deblurred image J. The assumption is that the image I was created by
convolving a true image with a point-spread function (PSF), psf, and possibly by adding
noise. The algorithm is a constrained optimum in the sense of least square error between
the estimated and the true images under requirement of preserving image smoothness.

J

deconvreg(I,psf,np) specifies the additive noise power, np.

J deconvreg(I,psf,np,lrange) specifies the range, Lrange, where the search for
the optimal solution is performed. The algorithm finds an optimal Lagrange multiplier
lagra within the 1range range.

J = deconvreg(I,psf,np,lrange, regop) constrains the deconvolution using
regularization operator regop. The default regularization operator is the Laplacian
operator, to retain the image smoothness.

[J,lagral = deconvreg( ) outputs the value of the Lagrange multiplier, lagra in
addition to the restored image, J.

Examples

1-437



1 Functions — Alphabetical List

1-438

Deblur Image Using Regularized Filter
Create sample image.
I = checkerboard(8);

Create PSF and use it to create a blurred and noisy version of the input image.

PSF = fspecial('gaussian',7,10);

V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF), 'gaussian',0,V);
NOISEPOWER = V*prod(size(I));

Deblur the image.

[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);
Display the various versions of the image.

subplot(221); imshow(BlurredNoisy);

title('A = Blurred and Noisy');

subplot(222); imshow(J);

title('[J LAGRA] = deconvreg(A,PSF,NP)"');

subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)");

subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)");



deconvreg

A =Blurred and MNoisy [J LAGRA] = deconvreg(A,PSF.NP)

deconvreg(A,PSF,[],0.1*LAGRA) deconvreg(A,PSF,[],10*"LAGRA)

Input Arguments

I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.

Data Types: single | double | int16 | uint8 | uintl6

psf — PSF
numeric array

1-439



1 Functions — Alphabetical List

1-440

PSF, specified as a numeric array.

Data Types: double

np — Noise power

0 (default) | numeric scalar

Noise power, specified as a numeric scalar.
Data Types: double

lrange — Search range
[1le-9 1e9] (default) | numeric scalar | 2-element numeric vector

Search range, specified as a numeric scalar or a 2-element numeric vector. If Lrange is a
scalar, the algorithm assumes that lagra is equal to Lrange; the np value is then
ignored.

Data Types: double

regop — Regularization operator
numeric array

Regularization operator, specified as a numeric array. The regop array dimensions must

not exceed the dimensions of the image, I. Any nonsingleton dimensions must correspond
to the nonsingleton dimensions of psf.

Data Types: double

Output Arguments

J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

lagra — Lagrange multiplier
numeric scalar

Lagrange multiplier, returned as a numeric scalar.



deconvreg

Tips

* The output image J could exhibit ringing introduced by the discrete Fourier transform
used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvreg.

See Also

deconvblind | deconvlucy | deconvwnr | edgetaper | otf2psf | padarray |
psf2otf

Topics

“Deblurring Images Using a Regularized Filter”
“Image Deblurring”

“Deblur with a Regularized Filter”

Introduced before R2006a

1-441



1 Functions — Alphabetical List

1-442

deconvwnr

Deblur image using Wiener filter

Syntax

J
J

deconvwnr(I,psf,nsr)
deconvwnr(I,psf,ncorr,icorr)

Description

J = deconvwnr(I,psf,nsr) deconvolves image I using the Wiener filter algorithm,
returning deblurred image J. psT is the point-spread function (PSF) with which I was
convolved. nsr is the noise-to-signal power ratio of the additive noise. The algorithm is
optimal in a sense of least mean square error between the estimated and the true images.

J = deconvwnr(I,psf,ncorr,icorr) deconvolvesimage I, where ncorr is the
autocorrelation function of the noise and icorr is the autocorrelation function of the
original image.

Examples

Deblur Image Using Wiener Filter

Read image into the workspace and display it.

I = im2double(imread('cameraman.tif'));
imshow(I);
title('Original Image (courtesy of MIT)');



deconvwnr

Original Image (courtesy of MIT)

Simulate a motion blur.

LEN = 21;

THETA = 11;

PSF = fspecial('motion', LEN, THETA);

blurred = imfilter(I, PSF, 'conv', ‘'circular');
figure, imshow(blurred)

1-443



1 Functions — Alphabetical List

Simulate additive noise.

noise mean = 0;

noise var = 0.0001;

blurred noisy = imnoise(blurred, 'gaussian',
noise mean, noise var);

figure, imshow(blurred noisy)

title('Simulate Blur and Noise')

1-444



deconvwnr

Simulate Blur and Noise

Try restoration assuming no noise.

estimated nsr = 0;

wnr2 = deconvwnr(blurred noisy, PSF, estimated nsr);
figure, imshow(wnr2)

title('Restoration of Blurred, Noisy Image Using NSR = 0')

1-445



1 Functions — Alphabetical List

Restoration of Blurred, Noisy Im

age Using NSR=10
Tt f*j; h T a L

Try restoration using a better estimate of the noise-to-signal-power ratio.

estimated nsr = noise var / var(I(:));

wnr3 = deconvwnr(blurred noisy, PSF, estimated nsr);

figure, imshow(wnr3)

title('Restoration of Blurred, Noisy Image Using Estimated NSR');

1-446



deconvwnr

Restoratio

Input Arguments

I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.

Data Types: single | double | int16 | uint8 | uintl6

psf — PSF
numeric array

PSF, specified as a numeric array.

Data Types: double

1-447



1 Functions — Alphabetical List

1-448

nsr — Noise-to-signal ratio
positive scalar

Noise-to-signal ratio, specified as a positive scalar or numeric array of the same size as
the image, I. If nsr is an array, then it represents the spectral domain. Specifying 0 for
the nsr is equivalent to creating an ideal inverse filter.

Data Types: double

ncorr — Autocorrelation function of the noise
numeric array

Autocorrelation function of the noise, specified as a numeric array of any size or
dimension, not exceeding the original image.

» If the dimensionality of ncorr matches the dimensionality of the image I, then the
values correspond to the autocorrelation within each dimension.

* Ifncorrisavector and psf is also a vector, then the values in ncorr represent the
autocorrelation function in the first dimension.

* Ifncorrisavector and psf is an array, then the 1-D autocorrelation function is
extrapolated by symmetry to all non-singleton dimensions of psf.

* Ifncorris a scalar, then the value represents the power of the image noise.

Data Types: double

icorr — Autocorrelation function of the image
numeric array

Autocorrelation function of the image, specified as a numeric array of any size or
dimension, not exceeding the original image.

» If the dimensionality of icorr matches the dimensionality of the image I, then the
values correspond to the autocorrelation within each dimension.

» Ificorrisavector and psf is also a vector, then the values in icorr represent the
autocorrelation function in the first dimension.

» Ificorrisavector and psf is an array, then the 1-D autocorrelation function is
extrapolated by symmetry to all non-singleton dimensions of psf.

» Ificorrisa scalar, then the value represents the power of the image noise.

Data Types: double



deconvwnr

Output Arguments

J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

Tips

* The output image J could exhibit ringing introduced by the discrete Fourier transform
used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvwnr.

References

[1] "Digital Image Processing", R. C. Gonzalez & R. E. Woods, Addison-Wesley Publishing
Company, Inc., 1992.

See Also

deconvblind | deconvlucy | deconvreg | edgetaper | otf2psf | padarray |
psf2otf

Topics

“Deblurring Images Using a Wiener Filter”
“Image Deblurring”

“Deblur with the Wiener Filter”

Introduced before R2006a

1-449



1 Functions — Alphabetical List

1-450

decorrstretch

Apply decorrelation stretch to multichannel image

Syntax
S = decorrstretch(A)
S = decorrstretch(A,Name,Value)

Description

S = decorrstretch(A) applies a decorrelation stretch to RGB or multispectral image
A and returns the result in S. The mean and variance in each band of S are the same as in
A.

The primary purpose of decorrelation stretch is visual enhancement. Decorrelation
stretching is a way to enhance the color differences in an image.

S = decorrstretch(A,Name,Value) uses name-value pairs to control aspects of the
decorrelation stretch, such as the target mean and standard deviation of each band.

Examples

Highlight Color Differences in Forest Scene

This example shows how to use decorrelation stretching to highlight elements in a forest
image by exaggerating the color differences.

Read an image into the workspace.
[X, map] = imread('forest.tif');
Apply decorrelation stretching using decorrstretch.

S = decorrstretch(ind2rgb(X,map), 'tol',0.01);



decorrstretch

Display the original image and the enhanced image.

figure
imshow(X,map)
title('Original Image')

figure
imshow(S)
title('Enhanced Image')

1-451



1 Functions — Alphabetical List

Enhanced Image

Input Arguments

A — Image to be enhanced
RGB image | multispectral image

Image to be enhanced, specified as an RGB image or multispectral image of size m-by-n-
by-nBands. For an RGB image, nBands = 3.

Data Types: single | double | int16 | uint8 | uint16

1-452



decorrstretch

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN, ValueN.

Example: 'Mode', 'covariance’

Mode — Decorrelation method
‘correlation' (default) | 'covariance'

Decorrelation method, specified as the comma-separated pair consisting of 'Mode' and of
the following values.

* ‘'correlation' — Uses the eigen decomposition of the band-to-band correlation
matrix.

* ‘'covariance' — Uses the eigen decomposition of the band-to-band covariance
matrix.

Data Types: char | string

TargetMean — Target mean values
real scalar | vector of length nBands

Target mean values of the output bands, specified as the comma-separated pair consisting
of 'TargetMean' and a real scalar or vector of length nBands. By default, TargetMean
is an 1-by-nBands vector containing the sample mean of each band, which preserves the
band-wise means before and after the decorrelation stretch.

TargetMean must be of class double, but uses the same values as the pixels in the input
image. For example, if A is class uint8, then 127.5 would be a reasonable value. If
values need to be clamped to the standard range of the input/output image class, it can
impact the results.

Data Types: double

TargetSigma — Target standard deviation values
positive scalar | vector of length nBands

Target standard deviation values of the output bands, specified as the comma-separated
pair consisting of ' TargetSigma' and a positive scalar or vector of length nBands. By

1-453



1 Functions — Alphabetical List

1-454

default, TargetSigma is an 1-by-nBands vector containing the sample standard
deviation of each band, which preserves the band-wise variance before and after the
decorrelation stretch. The target standard deviation is ignored for uniform (zero-variance)
bands.

TargetSigma must be class double, but uses the same values as the pixels in the input
image. For example, if A is of class uint8, then 50.0 would be a reasonable value.

Data Types: double

Tol — Linear contrast stretch
numeric scalar | 2-element numeric vector

Linear contrast stretch following the decorrelation stretch, specified as the comma-
separated pair consisting of 'Tol' and a numeric scalar or 2-element numeric vector of
class double. Specifying a value of Tol overrides the value of TargetMean or
TargetSigma. If you do not specify Tol, then by default decorrstretch does not
perform linear contrast stretch.

Tol has the same meaning as in stretchlim, where Tol = [LOW FRACT

HIGH FRACT] specifies the fraction of the image to saturate at low and high intensities. If
you specify Tol as a scalar value, then LOW FRACT = Tol and HIGH FRACT = 1 -

Tol, saturating equal fractions at low and high intensities.

Small adjustments to Tol can strongly affect the visual appearance of the output.

Data Types: double

SampleSubs — Subset of A used to compute the band-means, covariance, and
correlation
cell array containing two arrays of pixel subscripts {rowsubs, colsubs}

Subset of A used to compute the band-means, covariance, and correlation, specified as a
cell array containing two arrays of pixel subscripts { rowsubs, colsubs}. rowsubs and
colsubs are vectors or matrices of matching size that contain row and column
subscripts, respectively.

Use this option to reduce the amount of computation, to keep invalid or non-
representative pixels from affecting the transformation, or both. For example, you can use
rowsubs and colsubs to exclude areas of cloud cover. If not specified, decorrstretch
uses all the pixels in A.

Data Types: double



decorrstretch

Output Arguments

S — Decorrelation stretched image
numeric array

Decorrelation stretched image, returned as a numeric array of the same size and class as
the input image, A.

Tips

* The results of a straight decorrelation (without the contrast stretch option) may
include values that fall outside the numerical range supported by the class uint8 or
uintl6 (negative values, or values exceeding 255 or 65535, respectively). In these
cases, decorrstretch clamps its output to the supported range.

» For class double, decorrstretch clamps the output only when you provide a value
for Tol, specifying a linear contrast stretch followed by clamping to the interval [0
1].

* The optional parameters do not interact, except that a linear stretch usually alters
both the band-wise means and band-wise standard deviations. Thus, while you can
specify TargetMean and TargetSigma along with Tol, their effects will be modified.

Algorithms

A decorrelation stretch is a linear, pixel-wise operation in which the specific parameters
depend on the values of actual and desired (target) image statistics. The vector a
containing the value of a given pixel in each band of the input image A is transformed into
the corresponding pixel b in output image B as follows:

b=T%* (a - m + m target.

a and b are nBands-by-1 vectors, T is an nBands-by-nBands matrix, and mand m_target
are nBands-by-1 vectors such that

* m contains the mean of each band in the image, or in a subset of image pixels that you
specify

* m_target contains the desired output mean in each band. The default choice is
m target = m.

1-455



1 Functions — Alphabetical List

1-456

The linear transformation matrix T depends on the following:

* The band-to-band sample covariance of the image, or of a subset of the image that you
specify (the same subset as used for m), represented by matrix Cov

* A desired output standard deviation in each band. This is conveniently represented by
a diagonal matrix, SIGMA target. The default choice is SIGMA target = SIGMA,
where SIGMA is the diagonal matrix containing the sample standard deviation of each
band. SIGMA should be computed from the same pixels that were used for m and Cov,
which means simply that:

SIGMA(k,k) = sgrt(Cov(k,k), k = 1,..., nBands).

Cov, SIGMA, and SIGMA target are nBands-by-nBands, as are the matrices Corr,
LAMBDA, and V, defined below.

The first step in computing T is to perform an eigen-decomposition of either the
covariance matrix Cov or the correlation matrix

Corr = inv(SIGMA) * Cov * inv(SIGMA).

* In the correlation-based method, Corr is decomposed: Corr = V LAMBDA V'.
* In the covariance-based method, Cov is decomposed: Cov = V LAMBDA V'.

LAMBDA is a diagonal matrix of eigenvalues and V is the orthogonal matrix that transforms
either Corr or Cov to LAMBDA.

The next step is to compute a stretch factor for each band, which is the inverse square
root of the corresponding eigenvalue. It is convenient to define a diagonal matrix S
containing the stretch factors, such that:

S(k,k) =1 / sqrt(LAMBDA(k,Kk)).

Finally, matrix T is computed from either

T = SIGMA target V S V' inv(SIGMA) (correlation-based method)
or

T = SIGMA target V S V' (covariance-based method).

The two methods yield identical results if the band variances are uniform.

Substituting T into the expression for b:



decorrstretch

b = m target + SIGMA target V S V' inv(SIGMA) * (a - m)
or

b = m target + SIGMA target VS V' * (a - m)

and reading from right to left, you can see that the decorrelation stretch:

Removes a mean from each band
Normalizes each band by its standard deviation (correlation-based method only)
Rotates the bands into the eigenspace of Corr or Cov

A W N -

Applies a stretch S in the eigenspace, leaving the image decorrelated and normalized
in the eigenspace

5 Rotates back to the original band-space, where the bands remain decorrelated and
normalized

Rescales each band according to SIGMA target
Restores a mean in each band.

See Also

imadjust | stretchlim

Introduced before R2006a

1-457



1 Functions — Alphabetical List

1-458

demosaic

Convert Bayer pattern encoded image to truecolor image

Syntax

RGB = demosaic(I,sensorAlignment)

Description

RGB = demosaic(I,sensorAlignment) converts the Bayer pattern encoded image, I,
to the truecolor image, RGB, using gradient-corrected linear interpolation.
sensorAlignment specifies the Bayer pattern.

A Bayer filter mosaic, or color filter array, refers to the arrangement of color filters that
let each sensor in a single-sensor digital camera record only red, green, or blue data. The
patterns emphasize the number of green sensors to mimic the human eye's greater
sensitivity to green light. The demosaic function uses interpolation to convert the two-
dimensional Bayer-encoded image into the truecolor image.

Examples

Convert a Bayer Pattern Encoded Image To an RGB Image

Convert a Bayer pattern encoded image that was photographed by a camera with a
sensor alignment of 'bggr' .

I = imread('mandi.tif');
J = demosaic(I, 'bggr');
imshow(I);



demosaic

figure, imshow(J);

1-459



1 Functions — Alphabetical List

Input Arguments

I — Bayer-pattern encoded image
M-by-N array of intensity values

Bayer-pattern encoded image, specified as an M-by-N array of intensity values. I must
have at least 5 rows and 5 columns.

Data Types: uint8 | uintl16 | uint32

sensorAlignment — Bayer pattern
'gbrg” | "grbg" | "bggr® | "rggb’

1-460



demosaic

Bayer pattern, specified as one of the values in the following table. Each value represents
the order of the red, green, and blue sensors by describing the four pixels in the upper-
left corner of the image (left-to-right, top-to-bottom).

Pattern 2-by-2 Sensor Alignment
Igb rgl

Green Blue

Red Green
Igrbgl

Green Red

Blue Green
Ibggrl

Blue Green

Green Red

1-461



1 Functions — Alphabetical List

1-462

Pattern 2-by-2 Sensor Alignment
1 rggb 1
Red Green
Green Blue

Data Types: char | string

Output Arguments

RGB — RGB image
M-by-N-by-3 numeric array

RGB image, returned as an M-by-N-by-3 numeric array the same class as I.

References

[1] Malvar, H.S., L. He, and R. Cutler, High quality linear interpolation for demosaicing of
Bayer-patterned color images. ICASPP, Volume 34, Issue 11, pp. 2274-2282, May
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* demosaic supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.




demosaic

* sensorAlignment must be a compile-time constant.

See Also

Introduced in R2007b

1-463



1 Functions — Alphabetical List

denoiselmage

Denoise image using deep neural network

Syntax

B = denoiseImage(A,net)

Description

B = denoiseImage(A,net) estimates denoised image B from noisy image A using a
denoising deep neural network specified by net.

This function requires that you have Deep Learning Toolbox™.

Examples

Remove Image Noise Using Pretrained Neural Network

Retrieve the pretrained denoising convolutional neural network, 'DnCNN".

net = denoisingNetwork('DnCNN");

Load a grayscale image into the workspace, then create a noisy version of the image.
Display the two images.

I = imread('cameraman.tif"');

noisyI = imnoise(I, 'gaussian',0,0.01);

figure

imshowpair(I,noisyI, 'montage');

title('Original Image (left) and Noisy Image (right)')

1-464



denoiselmage

ght)
- e R

Original Image (left) and Noisy Image (ri

Remove noise from the noisy image, and display the result.

denoisedI = denoiseImage(noisyI, net);
figure

imshow(denoisedI)

title('Denoised Image')

1-465



1 Functions — Alphabetical List

Denocised Image
— et

] q

Input Arguments

A — Noisy image
2-D image | stack of 2-D images

Noisy image, specified as a single 2-D image or a stack of 2-D images. A can be:

* A 2-D grayscale image with size m-by-n.

* A 2-D multichannel image with size m-by-n-by-c, where c is the number of image
channels. For example, ¢ is 3 for RGB images, and 4 for four-channel images such as
RGB images with an infrared channel.

* A stack of equally-sized 2-D images. In this case, A has size m-by-n-by-c-by-p, where p
is the number of images in the stack.

Data Types: single | double | uint8 | uint16

1-466



denoiselmage

net — Denoising deep neural network
SeriesNetwork object

Denoising deep neural network, specified as a SeriesNetwork object. The network
should be trained to handle images with the same channel format as A.

Output Arguments

B — Denoised image
2-D image | stack of 2-D images

Denoised image, returned as a single 2-D image or a stack of 2-D images. B has the same
size and data type as A.

See Also

denoisingImageDatastore | denoisingNetwork | dnCNNLayers

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

1-467



1 Functions — Alphabetical List

1-468

denoisinglmageDatastore

Denoising image datastore

Description

Use a denoisingImageDatastore object to generate batches of noisy image patches
and corresponding noise patches from images in an ImageDatastore. The patches are
used to train a denoising deep neural network.

This object requires that you have Deep Learning Toolbox.

Note When you use a denoising image datastore as a source of training data, the
datastore adds random noise to the image patches for each epoch, so that each epoch
uses a slightly different data set. The actual number of training images at each epoch is
increased by a factor of PatchesPerImage. The noisy image patches and corresponding
noise patches are not stored in memory.

Creation

Syntax

dnimds
dnimds

denoisingImageDatastore(imds)
denoisingImageDatastore(imds,Name,Value)

Description

dnimds = denoisingImageDatastore(imds) creates a denoising image datastore,
dnimds using images from image datastore imds. To generate noisy image patches, the
denoising image datastore randomly crops pristine images from imds then adds zero-
mean Gaussian white noise with a standard deviation of 0.1 to the image patches.

dnimds = denoisingImageDatastore(imds,Name,Value) uses name-value pairs to
specify the two-dimensional image patch size or to set the PatchesPerImage,



denoisinglmageDatastore

GaussianNoiselevel, ChannelFormat, and DispatchInBackground properties. You
can specify multiple name-value pairs. Enclose each argument or property name in
quotes.

For example, denoisingImageDatastore(imds, 'PatchesPerImage',40) creates a
denoising image datastore and randomly generates 40 noisy patches from each image in
the image datastore, imds.

Input Arguments

imds — Images with labels for classification problems
ImageDatastore object

Images, specified as an ImageDatastore object with categorical labels. You can store
data in ImageDatastore for only classification problems.

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If
you use a custom function for reading the images, prefetching does not happen.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: denoisingImageDatastore(imds, 'patchSize',48) creates a denoising
image datastore that has a square patch size of 48 pixels.

patchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a
scalar or 2-element vector with positive integer values. This argument sets the first two
elements of the PatchSize property.

» If 'patchSize' is a scalar, then the patches are square.

« If 'patchSize' is a 2-element vector of the form [r c], then the first element specifies
the number of rows in the patch, and the second element specifies the number of
columns.

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32

1-469



1 Functions — Alphabetical List

1-470

Properties

ChannelFormat — Channel format
‘grayscale’ (default) | 'rgb’

Channel format, specified as 'grayscale' or 'rgb'.

Data Types: char

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, and classification,
specified as false or true. To use background dispatching, you must have Parallel
Computing Toolbox. If DispatchInBackground is true and you have Parallel
Computing Toolbox, then denoisingImageDatastore asynchronously reads patches,
adds noise, and queues patch pairs.

GaussianNoiselLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as
a scalar or 2-element vector with values in the range [0, 1].

+ IfGaussianNoiselevel is a scalar, then the standard deviation of the added zero-
mean Gaussian white noise is identical for all image patches.

+ If GaussianNoiselevel is a 2-element vector, then it specifies a range of standard
deviations [stdmin stdmax]. The standard deviation of the added zero-mean Gaussian
white noise is unique for each image patch, and is randomly sampled from a uniform
distribution with the range [stdmin stdmax].

Data Types: single | double

MiniBatchSize — Number of observations in each batch
positive integer

This property is read-only.
Number of observations that are returned in each batch. For training, prediction, or

classification, the MiniBatchSize property is set to the mini-batch size defined in
trainingOptions.



denoisinglmageDatastore

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the denoising image datastore. The number of
observations is the length of one training epoch.

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32

PatchSize — Patch size
[50 50 1] (default) | 3-element vector of positive integers

This property is read-only.

Patch size, specified as a 3-element vector of positive integers. If you create a denoising
image datastore by specifying a 'patchSize' name-value pair argument, then the first
two elements of the PatchSize property are set according to the value of the
patchSize argument.

The ChannelFormat property determines the third element of the PatchSize property.

+ IfChannelFormatis 'Grayscale’, then all color images are converted to grayscale
and the third element of PatchSize is 1.

» If ChannelFormat is 'RGB', then grayscale images are replicated to simulate an RGB
image and the third element of PatchSize is 3.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Object Functions

hasdata Determine if data is available to read

partitionByIndex Partition denoisinglmageDatastore according to indices
preview Subset of data in datastore

read Read data from denoisinglmageDatastore

readall Read all data in datastore

1-471



1 Functions — Alphabetical List

1-472

readBylndex Read data specified by index from denoisinglmageDatastore
reset Reset datastore to initial state

shuffle Shuffle data in denoisinglmageDatastore

Examples

Create Denoising Image Datastore

Get an image datastore. The datastore in this example contains color images.

setDir = fullfile(toolboxdir('images'), 'imdata');
imds = imageDatastore(setDir, 'FileExtensions',{'.jpg'});

Create a denoisingImageDatastore object that creates many patches from each
image in the image datastore, and adds Gaussian noise to the patches. Set the optional
PatchesPerImage, PatchSize, GaussianNoiselevel, and ChannelFormat
properties of the denoisingImageDatastore using name-value pairs. When you set the
ChannelFormat property to 'grayscale’, the denoisingImageDatastore converts all
color images to grayscale.

dnds = denoisingImageDatastore(imds, ...
'PatchesPerImage',512, ...
'PatchSize',50, ...
'GaussianNoiselLevel',[0.01 0.1],...
"ChannelFormat', 'grayscale')

dnds =
denoisingImageDatastore with properties:

PatchesPerImage: 512
PatchSize: [50 50 1]
GaussianNoiselLevel: [0.0100 0.1000]
ChannelFormat: 'grayscale'
MiniBatchSize: 128
NumObservations: 18944
DispatchInBackground: 0



denoisinglmageDatastore

Tips

Training a deep neural network for a range of Gaussian noise standard deviations is a
much more difficult problem than training a network for a single Gaussian noise
standard deviation. You should create more patches compared to a single noise level
case, and training might take more time.

To visualize the data in a denoising image datastore, you can use the preview
function, which returns a subset of data in a table. The input variable contains the
noisy image patches and the response variable contains the corresponding noise
patches. Visualize all of the noisy image patches or noise patches in the same figure by
using the montage function. For example, this code displays data in a denoising image
datastore called dnimds.

minibatch = preview(dnimds);
montage(minibatch.input)
figure
montage(minibatch.response)

Each time images are read from the denoising image datastore, a different random
amount of Gaussian noise is added to each image.

See Also

denoiseImage | denoisingNetwork | dnCNNLayers | trainNetwork

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2018a

1-473



1 Functions — Alphabetical List

1-474

partitionBylndex

Partition denoisingImageDatastore according to indices

Syntax

dnimds2 = partitionByIndex(dnimds,ind)

Description

dnimds2 = partitionByIndex(dnimds,ind) partitions a subset of observations in a
denoising image datastore, dnimds, into a new datastore, dnimds2. The desired
observations are specified by indices, ind.

Input Arguments

dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments

dnimds2 — Output datastore
denoisingImageDatastore object

Output datastore, returned as a denoisingImageDatastore object containing a subset
of files from dnimds.



partitionBylndex

See Also

denoisingImageDatastore | read | readByIndex | readall

Introduced in R2018a

1-475



1 Functions — Alphabetical List

1-476

read

Read data from denoisingImageDatastore

Syntax

data = read(dnimds)
[data,info] = read(dnimds)

Description

data = read(dnimds) returns a batch of data from a denoising image datastore,
dnimds. Subsequent calls to the read function continue reading from the endpoint of the
previous call.

[data,info] = read(dnimds) also returns information about the extracted data,
including metadata, in info.

Input Arguments

dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object. The

datastore specifies a MiniBatchSize number of observations in each batch, and a
numObservations total number of observations.

Output Arguments

data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.



read

For the last batch of data in the datastore dnimds, if numObservations is not cleanly
divisible by MiniBatchSize, then read returns a partial batch containing all the
remaining observations in the datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description

CurrentFileIndices Current read index of the denoising image
datastore.

See Also

denoisingImageDatastore | matlab.io.datastore.read | readByIndex |
readall

Introduced in R2018a

1-477



1 Functions — Alphabetical List

1-478

readBylndex

Read data specified by index from denoisingImageDatastore

Syntax

data = readByIndex(dnimds,ind)
[data,info] = readByIndex(dnimds,ind)

Description

data = readByIndex(dnimds,ind) returns a subset of observations from a denoising
image datastore, dnimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(dnimds,ind) also returns information about the
observations, including metadata, in info.

Input Arguments

dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments

data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.



readByIndex

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description

CurrentFileIndices Numeric vector containing the indices of all
read files of the denoising image datastore.

See Also

denoisingImageDatastore | partitionByIndex | read | readall

Introduced in R2018a

1-479



1 Functions — Alphabetical List

1-480

shuffle

Shuffle data in denoisingImageDatastore

Syntax

dnimds2 = shuffle(dnimds)

Description

dnimds2 = shuffle(dnimds) returns a denoisingImageDatastore object
containing a random ordering of the data from denoising image datastore dnimds.

Input Arguments

dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

Output Arguments

dnimds2 — Output datastore
denoisingImageDatastore object

Output datastore, returned as a denoisingImageDatastore object containing
randomly ordered files from dnimds.

See Also

denoisingImageDatastore | read | readByIndex | readall



shuffle

Introduced in R2018a

1-481



1 Functions — Alphabetical List

1-482

denoisinglmageSource

(To be removed) Create denoising image datastore

Note denoisingImageSource will be removed in a future release. Use
denoisingImageDatastore instead. For more information, see Compatibility
Considerations.

Syntax

dnimds
dnimds

denoisingImageSource(imds)
denoisingImageSource(imds,Name,Value)

Description

dnimds = denoisingImageSource(imds) creates a denoising image datastore,
dnimds, that generates pairs of randomly cropped pristine and noisy image patches from
images in image datastore imds.

dnimds = denoisingImageSource(imds,Name,Value) sets properties on page 1-
470 of the denoising image datastore using name-value pairs. You can specify multiple
name-value pairs. Enclose each argument name in quotes.

Examples

Create Denoising Image Datastore Using
denoisingImageSource
Get an image datastore. This datastore contains RGB images.

setDir = fullfile(toolboxdir('images'), 'imdata');
imds = imageDatastore(setDir, 'FileExtensions',{'.jpg'});

Create a denoisingImageSource object. The image source creates many patches from
each image in the datastore, and adds Gaussian noise to the patches. Set the optional



denoisinglmageSource

PatchesPerImage, PatchSize, GaussianNoiselevel, and ChannelFormat
properties of the denoisingImageSource using name-value pairs.

dnimds = denoisingImageSource(imds, ...
'PatchesPerImage',512, ...
'PatchSize',50, ...
'GaussianNoiselevel',[0.01 0.11,...
'"ChannelFormat', 'RGB')

dnimds =
denoisingImageDatastore with properties:

PatchesPerImage: 512
PatchSize: [50 50 3]
GaussianNoiselevel: [0.0100 0.1000]
ChannelFormat: 'rgb'
MiniBatchSize: 128
NumObservations: 18944
DispatchInBackground: 0

Input Arguments

imds — Images with labels for classification problems
ImageDatastore object

Images, specified as an ImageDatastore object with categorical labels. You can store
data in ImageDatastore for only classification problems.

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If
you use a custom function for reading the images, prefetching does not happen.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: denoisingImageSource(imds, 'patchSize',48) creates a denoising
image datastore that has a square patch size of 48 pixels.

1-483



1 Functions — Alphabetical List

1-484

patchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a
scalar or 2-element vector with positive integer values. This argument sets the first two
elements of the PatchSize on page 1-0 property of the returned denoising image
datastore, dnimds.

* When 'patchSize' is a scalar, the patches are square

* When 'patchSize' is a 2-element vector of the form [r c], the first element specifies
the number of rows in the patch, and the second element specifies the number of
columns

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as the comma-separated pair consisting
of 'PatchesPerImage’' and a positive integer. This argument sets the
PatchesPerImage on page 1-0 property of the returned denoising image
datastore, dnimds.

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32

GaussianNoiselLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as
the comma-separated pair consisting of 'GaussianNoiselevel' and a scalar or 2-
element vector with values in the range [0, 1]. This argument sets the
GaussianNoiselLevel on page 1-0 property of the returned denoising image
datastore, dnimds.

* If GaussianNoiselevel is a scalar, then the standard deviation of the added zero-
mean Gaussian white noise is identical for all image patches.

+ If GaussianNoiselevel is a 2-element vector, then it specifies a range of standard
deviations [stdmin stdmax]. The standard deviation of the added zero-mean Gaussian
white noise is unique for each image patch, and is randomly sampled from a uniform
distribution with the range [stdmin stdmax].

Data Types: single | double



denoisinglmageSource

ChannelFormat — Channel format
‘Grayscale' (default) | 'RGB'

Channel format, specified as the comma-separated pair consisting of ' ChannelFormat'
and 'Grayscale' or 'RGB'. This argument sets the ChannelFormat on page 1-0
property of the returned denoising image datastore, dnimds.

Data Types: char

BackgroundExecution — Preprocess training patches in parallel
false (default) | true

Preprocess training patches in parallel, specified as the comma-separated pair consisting
of 'BackgroundExecution' and true or false. This argument sets the
DispatchInBackground on page 1-0 property of the returned denoising image
datastore, dnimds. If BackgroundExecution is true and you have Parallel Computing
Toolbox, then the denoising image datastore asynchronously reads patches, adds noise,
and queues patch pairs.

Data Types: char

Output Arguments

dnimds — Denoising image datastore
denoisingImageDatastore object

Denoising image datastore, returned as an denoisingImageDatastore object.

Compatibility Considerations

denoisingImageSource object is removed

In R2017b, you could create a denoisingImageSource object for training deep learning
networks. Starting in R2018a, the denoisingImageSource object has been removed.
Use a denoisingImageDatastore object instead.

1-485



1 Functions — Alphabetical List

1-486

A denoisingImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike denoisingImageSource, which could be used for training only,
you can use a denoisingImageDatastore for both training and prediction.

To create a denoisingImageDatastore object, you can use either the
denoisingImageDatastore function (recommended) or the denoisingImageSource
function.

denoisingImageSource function will be removed
Not recommended starting in R2018a

The denoisingImageSource function will be removed in a future release. Create a
denoisingImageDatastore using the denoisingImageDatastore function instead.

To update your code, change instances of the function name denoisingImageSource to
denoisingImageDatastore. You do not need to change the input arguments.

See Also

denoisingImageDatastore

Introduced in R2017b



denoisingNetwork

denoisingNetwork

Get image denoising network

Syntax

net = denoisingNetwork(modelName)

Description

net = denoisingNetwork(modelName) returns a pretrained image denoising deep
neural network specified by modelName.

This function requires that you have Deep Learning Toolbox.

Examples

Get Pretrained Image Denoising Network

Get the pretrained image denoising convolutional neural network, 'DnCNN'.
net = denoisingNetwork('DnCNN")

net =
SeriesNetwork with properties:

Layers: [59x1 nnet.cnn.layer.lLayer]

See denoiseImage for an example of how to denoise an image using the pretrained
network.

1-487



1 Functions — Alphabetical List

Input Arguments

modelName — Name of neural network
'DnCnn’'

Name of pretrained denoising deep neural network, specified as the character vector

'DnCnn"'. This is the only pretrained denoising network currently available, and it is
trained for grayscale images only.

Data Types: char | string

Output Arguments

net — Denoising deep neural network
SeriesNetwork object

Pretrained denoising deep neural network, returned as a SeriesNetwork object.

References

[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising." IEEE Transactions on
Image Processing. Vol. 26, Number 7, Feb. 2017, pp. 3142-3155.

See Also

denoiseImage | denoisingImageDatastore | dnCNNLayers

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

1-488



dice

dice

Sgrensen-Dice similarity coefficient for image segmentation

Syntax

similarity = dice(BW1,BW2)
similarity = dice(L1,L2)
similarity = dice(C1,C2)
Description

similarity = dice(BW1,BW2) computes the Sgrensen-Dice similarity coefficient
between binary images BW1 and BW2.

similarity = dice(L1l,L2) computes the Dice index for each label in label images L1
and L2.

similarity = dice(C1l,C2) computes the Dice index for each category in categorical
images C1 and C2.

Examples

Compute Dice Similarity Coefficient for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the
result.

A = imread('handsl.jpg');
I = rgb2gray(A);

figure

imshow(I)

title('Original Image')

1-489



1 Functions — Alphabetical List

1-490

Original Image

Use active contours (snakes) to segment the hand.

mask = false(size(I));

mask(25:end-25,25:end-25) = true;

BW = activecontour(I, mask, 300);

Read in the ground truth segmentation.

BW groundTruth = imread('handsl-mask.png');

Compute the Dice index of the active contours segmentation against the ground truth.

similarity = dice(BW, BW groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW _groundTruth)
title(['Dice Index = ' num2str(similarity)])



dice

Dice Index = 0.83828

Compute Dice Similarity Coefficient for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then
computes the Dice similarity coefficient for each region.

Read an image with several regions to segment.
RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The
first region classifies the yellow flower. The second region classifies the green stem and
leaves. The last region classifies the brown dirt in two separate patches of the image.
Regions are specified by a 4-element vector, whose elements indicate the x- and y-
coordinate of the upper left corner of the ROI, the width of the ROI, and the height of the
ROL.

regionl = [350 700 425 120]; %

[x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));

)

1-491



1 Functions — Alphabetical List

BWl(regionl(2):regionl(2)+regionl(4),regionl(l):regionl(1)+regionl(3)) = true;
region2 = [800 1124 120 230];

BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1l):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];

BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3))
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3))

Display the seed regions on top of the image.

figure

imshow (RGB)

hold on

visboundaries(BW1, 'Color',
visboundaries(BW2, 'Color',
visboundaries(BW3, 'Color',
title('Seed Regions')

1-492



dice

Seed Regions

1-493



1 Functions — Alphabetical List

Segment the image into three regions using geodesic distance-based color segmentation.
L = imseggeodesic(RGB,BW1,BW2,BW3, 'AdaptiveChannelWeighting', true);

Load a ground truth segmentation of the image.

L groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth), 'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Comparison of Segmentation Results (Left) and Ground Truth (Right)

Compute the Dice similarity index for each segmented region.

similarity = dice(L, L _groundTruth)

1-494



dice

similarity = 3x1
0.9396

0.7247
0.9139

The Dice similarity index is noticeably smaller for the second region. This result is
consistent with the visual comparison of the segmentation results, which erroneously
classifies the dirt in the lower right corner of the image as leaves.

Input Arguments

BW1 — First binary image
logical array

First binary image, specified as a logical array of any dimension.

Data Types: logical

BW2 — Second binary image
logical array

Second binary image, specified as a logical array of the same size as BW1.

Data Types: Llogical

L1 — First label image
array of nonnegative integers

First label image, specified as an array of nonnegative integers, of any dimension.

Data Types: double

L2 — Second label image
array of nonnegative integers

Second label image, specified as an array of nonnegative integers, of the same size as L1.

Data Types: double

C1 — First categorical image
categorical array

1-495



1 Functions — Alphabetical List

1-496

First categorical image, specified as a categorical array of any dimension.

Data Types: category

C2 — Second categorical image
categorical array

Second categorical image, specified as a categorical array of the same size as C1.

Data Types: category

Output Arguments

similarity — Dice similarity coefficient
numeric scalar | numeric vector

Dice similarity coefficient, returned as a numeric scalar or numeric vector with values in
the range [0, 1]. A similarity of 1 means that the segmentations in the two images are
a perfect match. If the input arrays are:

* binary images, similarity is a scalar.

* label images, similarity is a vector, where the first coefficient is the Dice index for
label 1, the second coefficient is the Dice index for label 2, and so on.

* categorical images, similarity is a vector, where the first coefficient is the Dice
index for the first category, the second coefficient is the Dice index for the second
category, and so on.

Data Types: double

Definitions

Dice Similarity Coefficient
The Dice similarity coefficient of two sets A and B is expressed as:
dice(A,B) =2 *|intersection(4,B) |/ (|A|+|B]|)

where |A| represents the cardinal of set A. The Dice index can also be expressed in terms
of true positives (TP), false positives (FP) and false negatives (FN) as:



dice

dice(A,B)=2*TP/(2*TP + FP + FN)

The Dice index is related to the Jaccard index according to:

dice(A,B) =2 * jaccard(4,B) /(1 + jaccard(A,B))

See Also

bfscore | jaccard

Introduced in R2017b

1-497



1 Functions — Alphabetical List

1-498

dicomanon

Anonymize DICOM file

Syntax
dicomanon(file in, file out)
dicomanon( _ , 'keep', fields)
dicomanon( _ ,‘'update',attributes)
dicomanon( _ ,Name,Value)
Description

dicomanon(file in,file out) removes confidential medical information from the
DICOM file file in and creates a new file file out with the modified values. Image
data and other attributes are unmodified.

dicomanon(__ , 'keep',fields) modifies all of the confidential data except for those
listed in fields. This syntax is useful for keeping metadata that does not uniquely
identify the patient but is useful for diagnostic purposes (such as PatientAge and
PatientSex).

Note Keeping certain fields might compromise patient confidentiality.

dicomanon( _ ,'update',attributes) modifies the confidential data and updates
particular confidential data listed in attributes. Use this syntax to preserve the Study/
Series/Image hierarchy or to replace a specific value with a more generic property (such
as removing PatientBirthDate but keeping a computed PatientAge).

dicomanon ( ,Name, Value) uses name-value pairs to provide additional options to
the parser.

Examples



dicomanon

Remove All Confidential Metadata from DICOM File
Create a version of a DICOM file with all the personal information removed.
dicomanon('US-PAL-8-10x-echo.dcm', 'US-PAL-anonymized.dcm');

Create a version of a DICOM file with personal information removed, keeping certain
fields that could be useful for training.

dicomanon('US-PAL-8-10x-echo.dcm', 'US-PAL-anonymized.dcm', 'keep', ...
{'PatientAge', 'PatientSex"', 'StudyDescription'})

Anonymize a series of images, keeping the hierarchy.

values.StudyInstanceUID = dicomuid;
values.SeriesInstanceUID = dicomuid;

d =dir('*.dcm");
for p = 1l:numel(d)
dicomanon(d(p).name, sprintf('anon%sd.dcm', p),

"update', values)
end

Input Arguments

file_in — Name of DICOM file to read
character vector | string scalar

Name of DICOM file to read, specified as a character vector or string scalar.

Data Types: char | string

file_out — Name of anonymized DICOM file to write
character vector | string scalar

Name of anonymized DICOM file to write, specified as a character vector or string scalar.

Data Types: char | string

fields — Names of fields to preserve
cell array

Names of the fields to preserve, specified as a cell array of field names.

1-499



1 Functions — Alphabetical List

attributes — Names of the attributes to preserve
structure

Names of the attributes to preserve, specified as a structure whose fields are attribute
names. The structure values are the attribute values to preserve.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: dicomanon('CT-MONO2-16-ankle.dcm', 'CT-MONO2-16-
ankle anon.dcm', 'UseVRHeuristic', false)

WritePrivate — Write nonstandard attributes to the anonymized file
false (default) | true

Write nonstandard attributes to the anonymized file, specified as the comma-separated
pair consisting of 'WritePrivate' and false or true.

When set to true, then dicomanon includes private extensions in the file, which could
compromise patient confidentiality.

Data Types: logical

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When 'UseVRHeuristic' is true (the default), then dicomanon instructs the parser to
use a heuristic to help read certain noncompliant files which switch value representation
(VR) modes incorrectly. A small number of compliant files will not be read correctly.
dicomanon displays a warning if the heuristic is employed. Set 'UseVRHeuristic' to
false to read these compliant files. Compliant files are always written.

Data Types: logical

1-500



dicomanon

Tips

* For information about the fields that will be modified or removed, see DICOM
Supplement 55 from https://www.dicomstandard.org/.

See Also

dicomdict |dicomdisp | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Introduced before R2006a

1-501


https://www.dicomstandard.org/

1 Functions — Alphabetical List

1-502

dicomCollection

Gather details about related series of DICOM files

Syntax

collection = dicomCollection(directory)

collection = dicomCollection(directory, 'IncludeSubfolders',6TF)
collection = dicomCollection(DICOMDIR)

Description

collection = dicomCollection(directory) gathers details about the DICOM files
contained in directory and returns them in the table collection. The
dicomCollection function aggregates details by DICOM series, using the value of the
SeriesInstanceUID metadata field in each file to determine series membership. A
DICOM series is a logically related set of images from an imaging operation.

collection = dicomCollection(directory, 'IncludeSubfolders',TF)
recursively searches for DICOM files below directory when TF is true (the default).
When TF is false, dicomCollection only within directory.

collection = dicomCollection(DICOMDIR) gathers details about the DICOM files
referenced in the DICOM directory file DICOMDIR. A DICOM directory file (DICOMDIR) is
a special DICOM file that serves as a directory to a collection of DICOM files stored on
removable media, such as CD/DVD ROMs.

Examples

Gather Details from DICOM Files in Sample Image Folder

Gather information about the DICOM files in the Image Processing Toolbox sample image
folder.

details = dicomCollection(fullfile(matlabroot, 'toolbox/images/imdata'))



dicomCollection

details =
5x14 table

StudyDateTime SeriesDateTime PatientName PatientSex Modality Row

sl 30-Apr-1993 11:27:24 [30-Apr-1993 11:27:24] "Anonymized" " "CT" 512
s2 14-Dec-2013 15:47:31 [14-Dec-2013 15:54:33] "GORBERG MITZI" "F" "MR" 512
s3 03-0ct-2011 19:18:11 [03-0ct-2011 18:59:02] " "M" "MR" 512
s4 03-0ct-2011 19:18:11 [03-0ct-2011 19:05:04] " "M" "MR" 512
s5 30-Jan-1994 11:25:01 [] "Anonymized" " "us" 430

Gather Details about DICOM Files from DICOMDIR File
Gather information about DICOM files in a folder from a DICOMDIR file.

details = dicomCollection(fullfile(matlabroot, 'toolbox/images/imdata/DICOMDIR"))

details =
4x14 table

StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Column

sl 30-Apr-1993 11:27:24 v "Anonymized" " "CT" 512 512
s2 30-Jan-1994 11:25:01 v "Anonymized" " "us" 430 600
s3 03-0ct-2011 19:18:11 v " " "MR" 512 512
s4 03-0ct-2011 19:18:11 v " " "MR" 512 512

Input Arguments

directory — Folder containing DICOM files
string scalar | character vector

Name of a folder containing DICOM files, specified as a string scalar or character vector.

Example: details = dicomCollection(fullfile(matlabroot, 'toolbox/
images/imdata'))

Data Types: char | string

DICOMDIR — DICOM directory file
character vector | string scalar

DICOM directory file, specified as a string scalar or character vector.

1-503



1 Functions — Alphabetical List

1-504

A DICOM directory file (DICOMDIR) is a special DICOM file that serves as a directory to a
collection of DICOM files stored on removable media, such as CD/DVD ROMs. When
devices write DICOM files to removable media, they typically write a DICOMDIR file on
the disk to serve as a list of the disk contents.

Example: details = dicomCollection(fullfile(matlabroot, 'toolbox/
images/imdata/DICOMDIR'))

Data Types: char | string

Output Arguments

collection — Metadata from DICOM files
table

Metadata from DICOM files, returned as a table. The dicomCollection function
aggregates the information by DICOM series.

See Also

DICOM Browser | dicominfo | dicomread | dicomreadVolume

Introduced in R2017b



dicomdict

dicomdict

Get or set active DICOM data dictionary

Syntax

dictionaryOut = dicomdict('get"')
dicomdict('set',dictionaryln)
dicomdict('factory')

Description

dictionaryOut = dicomdict('get') returns the name of the active Digital Imaging
and Communications in Medicine (DICOM) data dictionary file.

dicomdict('set',dictionaryIn) sets the file specified by input dictionaryIn as
the active DICOM data dictionary. If the file is not found in the specified path, the function
returns an error.

dicomdict('factory') restores the active DICOM data dictionary to its default value.
The default value is a file in the MATLAB path:

fullfile(matlabroot, 'toolbox', 'images', 'iptformats', 'dicom-
dict.txt')

Examples

Get and Set Active DICOM Data Dictionary

Find the default active DICOM data dictionary.
dictionaryOut = dicomdict('get')

dictionaryOut =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt"'

1-505



1 Functions — Alphabetical List

Specify the path to a new file to set as the active DICOM data dictionary.

dictionaryIn = 'dicomdictnew.txt';
dicomdict('set',dictionarylIn)

Check if the active DICOM data dictionary is updated to 'dicomdictnew'.
dictionaryQutl = dicomdict('get"')

dictionaryQutl =
'C:\TEMP\Bdoc19a 1067994 6688\1b99EA80\25\tp3409blca\images-ex49312738\dicomdictnew. tx

Reset the active DICOM data dictionary to the default value and verify the same.

dicomdict('factory")
dictionaryOut2 = dicomdict('get')

dictionaryOut2 =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt"'

Input Arguments

dictionaryIn — DICOM data dictionary file
character vector | string scalar

DICOM data dictionary file of type . txt to be set as active, specified as a character
vector or string scalar.

Data Types: char | string

Output Arguments

dictionaryOut — Active DICOM data dictionary file
fullfile(matlabroot, 'toolbox', 'images', 'iptformats', 'dicom-
dict.txt') (default) | character vector | string scalar

Active DICOM data dictionary file of type . txt, returned as a character vector or string
scalar. The default value is:

fullfile(matlabroot, 'toolbox', 'images', 'iptformats', 'dicom-
dict.txt')

1-506



dicomdict

See Also
dicomanon |dicomdisp | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Introduced before R2006a

1-507



1 Functions — Alphabetical List

dicomdisp

Display DICOM file structure

Syntax

dicomdisp(filename)
dicomdisp( _ ,Name,Value)

Description

dicomdisp(filename) reads the metadata from the compliant DICOM file specified in
the string scalar or character vector filename and displays the metadata at the
command prompt. dicomdisp can be helpful when debugging issues with DICOM files.

dicomdisp( ,Name, Value) reads the metadata using name-value pairs to control
aspects of the operation.

Examples

Display Metadata from DICOM File

Display the metadata in a DICOM file.

dicomdisp('CT-MONO2-16-ankle.dcm")

File: C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm (525436 bytes)

Read on an IEEE little-endian machine.

File begins with group 0002 metadata at byte 132.

Transfer syntax: 1.2.840.10008.1.2 (Implicit VR Little Endian).

DICOM Information object: 1.2.840.10008.5.1.4.1.1.7 (Secondary Capture Image Storage).

Location Level Tag VR Size Name Data

0000132 0 (0002,0000) UL 4 bytes - FileMetaInformationGroupLength *Binary*

0000144 0 (0002,0001) OB 2 bytes - FileMetaInformationVersion *Binary*

0000158 0 (0002,0002) UI 26 bytes - MediaStorageSOPClassUID [1.2.840.10008.5.1.4.1.1.7
0000192 0 (0002,0003) UI 50 bytes - MediaStorageSOPInstanceUID [1.2.840.113619.2.1.2411.1

1-508



dicomdisp

0000250
0000276
0000302
0000316
0000336
0000348
0000376
0000410
0000468
0000486
0000504
0000522
0000538
0000554
0000570
0000580
0000592
0000618
0000644
0000662
0000678
0000694
0000712
0000730
0000750
0000762
0000780
0000792
0000802
0000814
0000870
0000926
0000938
0000948
0000960
0000970
0000990
0001000
0001010
0001020
0001030
0001040
0001050
0001060
0001070
0001082
0001094
0001108
0001118

[cNoNoNoNooNoNooNooNoooNoNoooNoNoNoNoNooNo oo oNoNooNoooNoNoNoNoNooNoNoloN oo oo N ool

(0002,0010)
(0002,0012)
(0002,0013)
(0002,0016)
(0008,0000)
(0008,0008)
(0008,0016)
(0008,0018)
(0008,0020)
(0008,0021)
(0008,0023)
(0008,0030)
(0008,0031)
(0008,0033)
(0008, 0060)
(0008,0064)
(0008,0070)
(0008,0080)
(0008,0090)
(0008,1010)
(0008,1030)
(0008,1060)
(0008,1070)
(0008,1090)
(0010,0000)
(0010,0010)
(0018,0000)
(0018,1020)
(0020, 0000)
(0020,000D)
(0020, 000E)
(0020,0011)
(0020,0013)
(0028,0000)
(0028,0002)
(0028,0004)
(0028,0010)
(0028,0011)
(0028,0100)
(0028,0101)
(0028,0102)
(0028,0103)
(0028,0106)
(0028,0120)
(0028,1050)
(0028,1051)
(0028,1052)
(0028,1053)
(0028,1054)

=

NNOBRREANNNNNNNNNNRANDA

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

TransferSyntaxUID
ImplementationClassUID
ImplementationVersionName
SourceApplicationEntityTitle
IdentifyingGroupLength
ImageType

SOPClassUID
SOPInstanceUID
StudyDate

SeriesDate

ContentDate

StudyTime

SeriesTime

ContentTime

Modality

ConversionType
Manufacturer
InstitutionName
ReferringPhysicianName
StationName
StudyDescription
PhysicianReadingStudy
OperatorName
ManufacturerModelName
PatientGroupLength
PatientName
AcquisitionGroupLength
SoftwareVersion
RelationshipGrouplLength
StudyInstanceUID
SeriesInstanceUID
SeriesNumber
InstanceNumber
ImagePresentationGrouplLength
SamplesPerPixel
PhotometricInterpretation
Rows

Columns

BitsAllocated
BitsStored

HighBit
PixelRepresentation
SmallestImagePixelValue
PixelPaddingValue
WindowCenter
WindowWidth
RescaleIntercept
RescaleSlope
RescaleType

1.2.840.10008.1.2 ]
1.2.840.113619.6.5]
125]

CTN_STORAGE ]
Binary*

GE MEDICAL SYSTEMS]
JFK IMAGING CENTER]
Anonymized]

CTO10CO ]

RT ANKLE]
Anonymized]
Anonymized]
[GENESIS ZEUS]
*Binary*
[Anonymized]
*Binary*

(03]
*Binary*
[1.2.840.113619.2.1.1.3229
[1.2.840.113619.2.1.2411.1
[365 1]

(11
*Binary*
*Binary*
[MONOCHROME2 ]
*Binary*
*Binary*
*Binary*
*Binary*
*Binary*
*Binary*
*Binary*
*Binary*

1024]

1-509



1 Functions — Alphabetical List

1-510

0001128 0 (7FE0,0000) UL 4 bytes - PixelDataGrouplLength *Binary*
0001140 0 (7FE0,0010) Ow 524288 bytes - PixelData []

Input Arguments

filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a string scalar or character vector .

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: dicomdisp('CT-MONO2-16-ankle.dcm', 'UseVRHeuristic', false)

dictionary — Name of DICOM data dictionary
dicom-dict.txt (default) | string scalar | character vector

Name of DICOM data dictionary, specified as a string scalar or character vector. When
specified, dicomdisp uses the data dictionary to read the DICOM file. The file must be on
the MATLAB search path.

Data Types: char | string

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the Boolean value true or false. When set to true, dicomdisp uses a
heuristic to help read certain noncompliant DICOM files which switch value
representation (VR) modes incorrectly. When dicomdisp uses this heuristic, it displays a
warning. When set to true (the default), dicomdisp might not read some compliant
DICOM files correctly. To read these compliant files, set UseVRHeuristic to false.

Data Types: logical



dicomdisp

See Also
dicomanon |dicomdict | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Topics
“Explicit Versus Implicit VR Attributes”

Introduced in R2015a

1-511



1 Functions — Alphabetical List

dicominfo

Read metadata from DICOM message

Syntax

info = dicominfo(filename)

info = dicominfo(filename, 'dictionary',D)
info = dicominfo(  ,Name,Value)
Description

info = dicominfo(filename) reads the metadata from the compliant Digital Imaging
and Communications in Medicine (DICOM) file, filename.

info = dicominfo(filename, 'dictionary',D) reads the DICOM message by using
the data dictionary file, D.

info = dicominfo( __ ,Name,Value) provides additional options to the parser using
Name, Value pairs. You can specify multiple name-value pairs.

Examples

Read Metadata from DICOM Message

Read metadata from a DICOM message.

info dicominfo('CT-MONO2-16-ankle.dcm")
info =
struct with fields:

Filename: 'C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-:
FileModDate: '18-Dec-2000 12:06:43'

1-512



dicominfo

FileSize:

Format:

FormatVersion:

Width:

Height:

BitDepth:

ColorType:
FileMetaInformationGroupLength:
FileMetaInformationVersion:
MediaStorageSOPClassUID:
MediaStorageSOPInstanceUID:
TransferSyntaxUID:
ImplementationClassUID:
ImplementationVersionName:
SourceApplicationEntityTitle:
IdentifyingGroupLength:
ImageType:

SOPClassUID:
SOPInstanceUID:

StudyDate:

SeriesDate:

ContentDate:

StudyTime:

SeriesTime:

ContentTime:

Modality:

ConversionType:
Manufacturer:
InstitutionName:
ReferringPhysicianName:
StationName:
StudyDescription:
PhysicianReadingStudy:
OperatorName:
ManufacturerModelName:
PatientGroupLength:
PatientName:
AcquisitionGroupLength:
SoftwareVersion:
RelationshipGroupLength:
StudyInstanceUID:
SeriesInstanceUID:
SeriesNumber:
InstanceNumber:

525436

'DICOM'

3

512

512

16

‘grayscale’

192

[2x1 uint8]
'1.2.840.10008.5.1.4.1.1.7"
'1.2.840.113619.2.1.2411.1031152382.365.1.73616924-
'1.2.840.10008.1.2"'
'1.2.840.113619.6.5"

'12 5

"CTN_STORAGE'

414

'DERIVED\SECONDARY\3D'
'1.2.840.10008.5.1.4.1.1.7"
'1.2.840.113619.2.1.2411.1031152382.365.1.73616924-
'1993.04.30'

'1993.04.30"'

'1993.04.30'

'11:27:24'

'11:27:24"

'11:27:24"

T

'"WSD'

'GE MEDICAL SYSTEMS'

'JFK IMAGING CENTER'

[1x1 struct]

'CTO10CO"

'RT ANKLE'

[1x1 struct]

[1x1 struct]

'GENESIS ZEUS'

18

[1x1 struct]

10

93"

134
'1.2.840.113619.2.1.1.322987881.621.736170080.681"'
'1.2.840.113619.2.1.2411.1031152382.365.736169244'
365

1

1-513



1 Functions — Alphabetical List

1-514

ImagePresentationGroupLength:
SamplesPerPixel:
PhotometricInterpretation:
Rows:

Columns:

BitsAllocated:

BitsStored:

HighBit:
PixelRepresentation:
SmallestImagePixelValue:
PixelPaddingValue:
WindowCenter:

WindowWidth:
Rescalelntercept:
RescaleSlope:

RescaleType:
PixelDataGroupLength:

Input Arguments

filename — Name of DICOM file
character vector | string scalar

168

1
‘MONOCHROME2'
512
512
16

16

15

1

0

0
1024
4095
-1024

IUSI
524296

Name of DICOM file, specified as a character vector or string scalar.

Data Types: char | string

D — Data dictionary file

'dicom-dict.mat' | character vector | string scalar

Data dictionary file, specified as a character vector or string scalar. The file in D must be
on the MATLAB search path. The default file is dicom-dict.mat.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.



dicominfo

Example: dicominfo('CT-MONO2-16-ankle.dcm', 'UseVRHeuristic', false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When set to true (the default), dicomread uses a heuristic to help read certain
noncompliant DICOM files that switch VR modes incorrectly. dicomread displays a
warning if the heuristic is used. A small number of compliant files will not be read
correctly. Set UseVRHeuristic to false to read these compliant files.

Data Types: logical

UseDictionaryVR — Conform data types to data dictionary
false (default) | true

Conform data types in info to the data dictionary, regardless of what information is
present in the file. The default value is false, which uses the file's VR codes even if they
differ from the data dictionary. Most of the time it is unnecessary to set this field, since
file contents and the data dictionary almost always agree. When UseDictionaryVRis
false (the default), dicominfo issues a warning when they do not agree. Specify
UseDictionaryVR as true when the warning is issued and providing info to
dicomwrite causes errors.

Data Types: logical

Output Arguments

info — DICOM metadata
struct

DICOM metadata, returned as a struct.

See Also

dicomanon |dicomdict | dicomdisp | dicomlookup | dicomread | dicomuid |
dicomwrite

1-515



1 Functions — Alphabetical List

Introduced before R2006a

1-516



dicomlookup

dicomlookup

Find attribute in DICOM data dictionary

Syntax

nameOut = dicomlookup(group,element)
[groupOut,elementOut] = dicomlookup(name)

Description

nameOut = dicomlookup(group,element) looks into the current DICOM data
dictionary for the attribute with the specified group and element tags. dicomlookup
returns the name of the attribute.

[groupOut,elementOut] = dicomlookup(name) looks into the current DICOM data

dictionary for the attribute specified by name and returns the group and element tags
associated with the attribute.

Examples

Find Names of DICOM attributes Using Their Tags

Find the names of DICOM attributes using their tags.

namel = dicomlookup('7FEO', '0010")
namel =
'PixelData’

name2 = dicomlookup (40, 4)

name2 =
'"PhotometricInterpretation’

Look up a DICOM attribute's tag (GROUP and ELEMENT) using its name.

1-517



1 Functions — Alphabetical List

1-518

[group, element] = dicomlookup('TransferSyntaxUID")
group = 2
element = 16

Examine the metadata of a DICOM file. This returns the same value even if the data
dictionary changes.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
metadata. (dicomlookup('0028', '0004'))

ans =
‘MONOCHROME2'

Input Arguments

group — DICOM group tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or
string scalar that contains a hexadecimal value.

Example: 40

Example: '7FEQ"' or "7FEO"

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

element — DICOM element tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or
string scalar that contains a hexadecimal value. element and group must represent the
same type of value:

« If group is a positive integer, then element is also a positive integer.

If group is a character vector or string scalar that contains a hexadecimal value, then
element is either a character vector or a string scalar that contains a hexadecimal
value.



dicomlookup

Example: 4

Example: '0010' or "0010"

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

name — DICOM attribute name
character vector | string scalar

DICOM attribute name, specified as a character vector or string scalar.
Example: 'PhotometricInterpretation' or "PhotometricInterpretation”

Data Types: char | string

Output Arguments

groupOut — Returned DICOM group tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.

Data Types: double

elementOut — Returned DICOM element tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.

Data Types: double

nameQOut — Returned DICOM attribute name
character vector

Returned DICOM attribute name, returned as a character vector.

Data Types: char

See Also

dicomanon | dicomdict | dicomdisp | dicominfo | dicomread | dicomuid |
dicomwrite

1-519



1 Functions — Alphabetical List

Introduced in R2006b

1-520



dicomread

dicomread

Read DICOM image

Syntax

dicomread
dicomread
dicomread
dicomread

filename)

info)
,'frames', f)
,Name, Value)

X X X X
| T T |

[X,cmap] = dicomread( )
[X,cmap,alpha] = dicomread( )
[X,cmap,alpha,overlays] = dicomread( )

Description

X = dicomread(filename) reads the image data from the compliant Digital Imaging
and Communications in Medicine (DICOM) file filename. To read a group of DICOM files
that contain a series of images that comprise a volume, use dicomreadVolume.

X = dicomread(info) reads DICOM image data from the message referenced in the
DICOM metadata structure info.

X = dicomread(  ,'frames', f) reads only the frames specified by f from the
image.

X = dicomread(  ,Name,Value) reads DICOM image data using Name,Value
pairs to configure the parser.

[X,cmap] = dicomread( ) also returns the colormap, cmap.

[X,cmap,alpha] = dicomread( ) alsoreturns alpha, an alpha channel matrix for
X.

[X,cmap,alpha,overlays] = dicomread( ) also returns any overlays from the
DICOM file.

1-521



1 Functions — Alphabetical List

Examples

Read DICOM Files

Read indexed image from DICOM file and display it using montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map, 'Size', [2 5]);

Read image from DICOM file and display it using imshow.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);

figure

imshow(Y, [1);

1-522



dicomread

24 1993 3D JFE IMAGIMG CENTER

DFOV 1K
BONE

3 . O mmel .

Tilt:
W = 1492

1-523



1 Functions — Alphabetical List

1-524

Input Arguments

filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a character vector or string scalar.

Data Types: char | string

info — DICOM metadata
struct

DICOM metadata, specified as a structure. The info structure is produced by the
dicominfo function.

f — Frames to read
‘all’' (default) | integer | vector of integers

Frames to read, specified as an integer scalar, a vector of integers, or 'all'. When f is
numeric, dicomread reads only the specified frame numbers from the image. By default,
dicomread reads all frames of the DICOM image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: dicomread('CT-MONO2-16-ankle.dcm', 'UseVRHeuristic', false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When set to true (the default), dicomread uses a heuristic to help read certain
noncompliant DICOM files that switch VR modes incorrectly. dicomread displays a



dicomread

warning if the heuristic is used. A small number of compliant files will not be read
correctly. Set UseVRHeuristic to false to read these compliant files.

Data Types: logical

Output Arguments

X — DICOM image
m-byn matrix | m-byn-by-3 array | 4-D array

DICOM image, returned as one of the following.
* An m-by-n matrix representing a single-frame grayscale image or an indexed image

* An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
* A 4-D array representing a multiframe image.

Data Types: int8 | int16 | uint8 | uintl6

cmap — Color map
c-by-3 matrix | []

Color map associated with image X.
+ If Xis an indexed image, then cmap is returned as c-by-3 matrix. There are c colors in

the color map, each represented by a red, green, and blue pixel value.
+ If Xis a grayscale or true-color image, then cmap is empty ([ 1).

Data Types: double

alpha — Alpha channel matrix
m-byn matrix of nonnegative integers | 4-D array of nonnegative integers

Alpha channel matrix for image X, returned as an array of nonnegative integers. The
values of alpha are 0 if the pixel is opaque; otherwise they are row indices into cmap.
The RGB value in cmap should be substituted for the value in X to use alpha. alpha has
the same height and width as X and is 4-D for a multiframe image. alpha has the same
data type as X.

Data Types: int8 | int16 | uint8 | uintl6

1-525



1 Functions — Alphabetical List

overlays — Overlays
binary m-byn matrix | binary 4-D array | [ ]

Overlays from the DICOM file. Each overlay is a 1-bit black and white image with the
same height and width as X. If multiple overlays are present in the file, then overlays is
a 4-D multiframe image. If no overlays are in the file, then overlays is empty ([ ]).

Data Types: logical

Tips
» This function reads imagery from files with one of these pixel formats:

+ Little-endian, implicit VR, uncompressed

* Little-endian, explicit VR, uncompressed

* Big-endian, explicit VR, uncompressed

* JPEG (lossy or lossless)

* JPEG2000 (lossy or lossless)

* Run-length Encoding (RLE)

* GE implicit VR, LE with uncompressed BE pixels (1.2.840.113619.5.2)

See Also

dicomanon |dicomdict | dicomdisp | dicominfo | dicomlookup |
dicomreadVolume | dicomuid | dicomwrite

Introduced before R2006a

1-526



dicomreadVolume

dicomreadVolume

Construct volume from directory of DICOM images

Syntax

dicomreadVolume(source)
dicomreadVolume(sourcetable)
dicomreadVolume(sourcetable, rowname)

[V,spatial,dim]
[V,spatial,dim]
[V,spatial,dim]

Description

[V,spatial,dim] = dicomreadVolume(source) loads the 4-D DICOM volume V
from source, which can be one of the following:

* Name of a folder containing DICOM files

* String array of filenames comprising the volume

* Cell array of character vectors containing filenames

spatial is a structure describing the location, resolution, and orientation of slices in the
volume. dim specifies which real-world dimension (X =1, Y = 2, Z = 3) has the largest
amount of offset from the previous slice.

dicomreadVolume is useful when working with DICOM volumes because it reads the
volumetric image data from each DICOM files, identifies the correct ordering of the
images, and constructs 4-D volume from the data.

[V,spatial,dim] = dicomreadVolume(sourcetable) loads the volume from the
sourcetable, which is a table returned by dicomCollection. The sourcetable
argument must contain only one row.

[V,spatial,dim] = dicomreadVolume(sourcetable, rowname) loads the volume

with the specified rowname from the multirow table sourcetable returned by
dicomCollection. Use this syntax when sourcetable contains multiple rows.

1-527



1 Functions — Alphabetical List

1-528

Examples

Read Volume Data from DICOM Files

Read volume data from a sample folder of DICOM files.

[V,s,d] = dicomreadVolume(fullfile(matlabroot, 'toolbox/images/imdata/dog"'));

Input Arguments

source — Volume data folder or files
string | character vector | string array | cell array of character vectors

Volume data folder or files, specified as a string scalar, string array, character vector, or
cell array of character vectors.

Data Types: char | string | cell

sourcetable — Collection of DICOM file metadata
table

Collection of DICOM file metadata, specified as a table returned by dicomCollection.
Data Types: table

rowname — Name of table row to load
string | character vector

Name of table row to load, specified as a string scalar or character vector. The row is one
of the rows in the multirow table returned by dicomCollection.

Data Types: char | string

Output Arguments

V — 4-D DICOM volume
numeric array

4-D DICOM volume, returned as a numeric array.



dicomreadVolume

The dimensions of V are [ rows, columns,samples,slices] where samples is the
number of color channels per voxel. For example, grayscale volumes have one sample,
and RGB volumes have three samples. Use the squeeze function to remove any singleton
dimensions, such as when samples is 1.

DICOM 4-D Volume

Slices

Columns

spatial — Location, resolution, and orientation
structure

Location, resolution, and orientation of slices in the volume, specified as a structure with
the following fields. For more information, see part 3 of the DICOM standard, section

C.7.6.2.

Spatial Structure

Fields Description

PatientPositions (x,y,z) triplet of the first pixel in each slice,
measured in millimeters from the origin of
the scanner’s coordinate system

PixelSpacings Distance between neighboring rows and
columns within each slice, in millimeters

PatientOrientations Pair of direction cosine triplets of the rows
and columns for each slice of the image

1-529



1 Functions — Alphabetical List

dim — Dimension with largest offset from the previous slice
11213

Dimension with largest offset from the previous slice, returned as a numeric scalar 1, 2,
or 3, whereX=1,Y=2,and Z = 3.

See Also

DICOM Browser | dicomCollection | dicominfo | dicomread

Introduced in R2017b

1-530



dicomuid

dicomuid

Generate DICOM globally unique identifier

Syntax

uid = dicomuid

Description

uid = dicomuid returns a new DICOM globally unique identifieruid. The function
generates a new value each time it is called. Therefore, two calls to dicomuid always
return different values.

Examples

Generate DICOM Globally Unique Identifier
uid = dicomuid;
uid =

'1.3.6.1.4.1.9590.100.1.2.175741451111074450825785263691655840705"

Output Arguments

uid — DICOM globally unique identifier
character vector

DICOM globally unique identifier, returned as a character vector.

Data Types: char

1-531



1 Functions — Alphabetical List

See Also
dicomanon |dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread |
dicomwrite

Introduced before R2006a

1-532



dicomwrite

dicomwrite

Write images as DICOM files

Syntax

dicomwrite(X, filename)
dicomwrite (X, cmap,filename)

dicomwrite(  ,meta_ struct)
dicomwrite( _ ,info)

dicomwrite(  ,'ObjectType',IO0D)
dicomwrite(  , 'SOPClassUID',UID)
dicomwrite( _ ,Name,Value)

status = dicomwrite( )
Description

dicomwrite (X, filename) writes the binary, grayscale, or truecolor image X to the file
filename, where filename specifies the name of the Digital Imaging and
Communications in Medicine (DICOM) file to create.

dicomwrite(X, cmap, filename) writes the indexed image X with colormap cmap.

dicomwrite(  ,meta struct) specifies optional metadata or file options in
structure meta_struct. The names of fields in meta_struct must be the names of
DICOM file attributes or options. The value of a field is the value you want to assign to the
attribute or option.

dicomwrite( ,info) specifies metadata in the metadata structure info, which is
produced by the dicominfo function.

dicomwrite(  ,'ObjectType',IOD) writes a file containing the necessary
metadata for a particular type of DICOM Information Object (IOD). For the supported
I0ODs, dicomwrite verifies that all required metadata attributes are present, creates
missing attributes if necessary, and specifies default values where possible. Using these
supported IODs is the best way to ensure that the files you create conform to the DICOM
specification. For more information, see Tips on page 1-539.

1-533



1 Functions — Alphabetical List

1-534

dicomwrite(  , 'SOPClassUID',UID) writes a file containing the necessary
metadata for a particular type IOD, specified using a DICOM Unique Identifier (UID).

dicomwrite( ,Name, Value) writes to a DICOM file using Name, Value pairs to
affect how the file is written. You can specify multiple name-value pairs.

You can also use Name, Value pairs to specify optional metadata to write to the DICOM
file. To find a list of the DICOM attributes that you can specify, see the data dictionary file,
dicom-dict.txt, included with the Image Processing Toolbox software. Enclose each
attribute name in quotes.

status = dicomwrite( ) returns information about the metadata and the
descriptions used to generate the DICOM file. This syntax can be useful when you specify
an info structure to the dicomwrite function.

Examples

Write Data to DICOM File

Read a CT image from the sample DICOM file included with the toolbox.
X = dicomread('CT-MONO2-16-ankle.dcm');

Write the CT image to a file, creating a secondary capture image.
dicomwrite(X, 'sc file.dcm');

Write the CT image, X, to a DICOM file along with its metadata. Use the dicominfo
function to retrieve metadata from a DICOM file.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
dicomwrite(X, 'ct file.dcm', metadata);

Copy all metadata from one file to another. When you set the 'CreateMode' parameter to
'copy’, dicomwrite does not verify the metadata written to the file.

dicomwrite(X, 'ct copy.dcm', metadata, 'CreateMode', 'copy');



dicomwrite

Input Arguments

X — DICOM image
m-byn matrix | m-byn-by-3 array | 4-D array

DICOM image, specified as one of the following.

* An m-by-n matrix representing a single-frame grayscale image or an indexed image
* An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
* A 4-D array representing a multiframe image.

Data Types: int8 | int16 | uint8 | uintl6

cmap — Color map
c-by-3 matrix | [ ]

Color map associated with indexed image X, specified as c¢-by-3 matrix. There are ¢ colors
in the color map, each represented by a red, green, and blue pixel value.
Data Types: double

filename — Name of DICOM file
character vector | string scalar

Name of DICOM file to write to, specified as a specified as a character vector or string
scalar.

Data Types: char | string

meta_struct — Optional metadata or file options
struct

Optional metadata or file options, specified as a struct. The names of fields in
meta struct must be the names of DICOM file attributes or options. The value of a field
is the value you want to assign to the attribute or option.

info — Metadata produced by dicominfo function
struct

Metadata produced by dicominfo function, specified as a structure.

1-535



1 Functions — Alphabetical List

1-536

I0D — DICOM Information Object
'Secondary Capture Image Storage' (default) | 'CT Image Storage' | 'MR
Image Storage'

DICOM Information Object, specified as 'Secondary Capture Image Storage', 'CT
Image Storage', or '"MR Image Storage'.

Data Types: char | string

UID — DICOM Unique Identifier
character vector | string scalar

DICOM Unique Identifier corresponding to an I0D, specified as a character vector or
string scalar.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'CompressionMode’,'JPEG lossless'

CompressionMode — Compression mode
‘None' (default) | 'JPEG lossless' | 'JPEG lossy' | ...

Compression mode to use when storing the image, specified as the comma-separated pair
consisting of ' CompressionMode' and one of the following.

* 'None'

* 'JPEG lossless'

* 'JPEG lossy'

* 'JPEG2000 lossy'

* 'JPEG2000 lossless'

* 'RLE"

CreateMode — Method used for creating data
'Create' (default) | 'Copy'



dicomwrite

Method used for creating data to put in the new file, specified as the comma-separated
pair consisting of ' CreateMode' and one of the following.

* 'Create' — Verify input values and generate missing data values.
* 'Copy' — Copy all values from the input and do not generate missing values.

For help selecting a creation method, see Tips on page 1-539.

Dictionary — Name of DICOM data dictionary
character vector | string scalar

Name of DICOM data dictionary, specified as the comma-separated pair consisting of
'Dictionary' and a character vector or string scalar. The default file is dicom-
dict.mat.

Endian — Byte ordering
'Little' (default) | 'Big"

Byte ordering of the file, specified as the comma-separated pair consisting of 'Endian’
and 'Little' or 'Big".

Note If VRis setto 'Explicit’', then Endian must be 'Big'. dicomwrite ignores this
value if CompressionMode or TransferSyntax is set.

MultiframeSingleFile — Write multiframe image to one file
true (default) | false

Write multiframe image to one file, specified as the comma-separated pair consisting of
'MultiframeSingleFile' and true or false. When true, one file is created
regardless of how many frames X contains. When false, one file is written for each
frame in the image.

Data Types: logical

TransferSyntax — Transfer syntax
character vector | string scalar

Transfer syntax, specified as the comma-separated pair consisting of ' TransferSyntax'

and a character vector or string scalar. TransferSyntax is a UID that encodes values
for the Endian, VR, and CompressionMode options.

1-537



1 Functions — Alphabetical List

1-538

Note If you specify a transfer syntax, then dicomwrite ignores any values specified for
the Endian, VR, and CompressionMode options.

UseMetadataBitDepths — Preserve metadata values
false (default) | true

Preserve the metadata values 'BitStored', 'BitsAllocated', and'HighBit"',
specified as the comma-separated pair consisting of 'UseMetadataBitDepths' and
false or true. When true, dicomwrite preserves existing values. When false
(default), dicomwrite computes these values based on the datatype of the pixel data.
When CreateMode is 'Create’, dicomwrite ignores this field.

Data Types: Llogical

VR — Write two-letter value representation (VR) code to file
"implicit' (default) | 'explicit'’

Write two-letter value representation (VR) code to file, specified as the comma-separated
pair consisting of 'VR' and one of the following.

* 'implicit' — Infer from data dictionary.
* 'explicit' — Write VR to file.

Note If you specify the Endian value as 'Big’, then you must specify VR as
"explicit'.

WritePrivate — Write private data to file
false (default) | true

Write private data to file, specified as the comma-separated pair consisting of
'WritePrivate' and false or true.

Data Types: logical

Output Arguments

status — Status of attributes
struct | []



dicomwrite

Status of attributes, returned as a structure. status contains information about the
metadata and the descriptions used to generate the DICOM file. If no metadata was
specified, dicomwrite returns an empty matrix ([ ]).

The status structure contains these fields.

Field Description

'BadAttribute’ The attribute's internal description is bad. It might be
missing from the data dictionary or have incorrect data in
its description.

'MissingCondition' The attribute is conditional but no condition has been
provided for when to use it.

'MissingData' No data was provided for an attribute that must appear in
the file.

'SuspectAttribute' Data in the attribute does not match a list of enumerated

values in the DICOM specification.

Tips

* The DICOM format specification lists several Information Object Definitions (IODs)
that can be created. These I0Ds correspond to images and metadata produced by
different real-world modalities (for example, MR, X-ray, Ultrasound, etc.). For each
type of 10D, the DICOM specification defines the set of metadata that must be present
and possible values for other metadata.

* dicomwrite fully implements a limited number of I0Ds. For these 10Ds,
dicomwrite verifies that all required metadata attributes are present, creates
missing attributes if necessary, and specifies default values where possible. Using
these supported IODs is the best way to ensure that the files you create conform to
the DICOM specification. This is dicomwrite default behavior and corresponds to
the CreateMode option value of 'Create’.

* To write DICOM files for IODs that dicomwrite doesn't implement, use the
"Copy' value for the CreateMode option. In this mode, dicomwrite writes the
image data to a file including the metadata that you specify as a parameter, shown
above in the info syntax. The purpose of this option is to take metadata from an
existing file of the same modality or IOD and use it to create a new DICOM file with
different image pixel data.

1-539



1 Functions — Alphabetical List

1-540

Note Because dicomwrite copies metadata to the file without verification in
"Copy' mode, it is possible to create a DICOM file that does not conform to the
DICOM standard. For example, the file may be missing required metadata, contain
superfluous metadata, or the metadata may no longer correspond to the modality
settings used to generate the original image. When using ' Copy' mode, make sure
that the metadata you use is from the same modality and IOD. If the copy you make
is unrelated to the original image, use dicomuid to create new unique identifiers
for series and study metadata. See the IOD descriptions in Part 3 of the DICOM
specification for more information on appropriate IOD values.

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread |
dicomuid

Introduced before R2006a



displayChart

displayChart

Display Imatest® eSFR chart with overlaid regions of interest

Syntax

displayChart(chart)
displayChart(chart,Name,Value)

Description

displayChart(chart) displays an Imatest® eSFR chart with overlaid rectangles
indicating the slanted edge, gray patch, and color patch ROIs.

displayChart(chart,Name,Value) displays an eSFR chart with additional
parameters controlling aspects of the chart display.

Examples

Display Color Patch ROIs on an eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object that stores information about the test chart.
chart = esfrChart(I);

Display only the color patch ROIs. To accomplish this, turn off the display of slanted edge
ROIs, gray patch ROIs, and registration points.

displayChart(chart, 'displayEdgeR0Is"', false, 'displayGrayR0Is', false, 'displayRegistratioi

1-541


https://www.imatest.com/mathworks/esfr/

1 Functions — Alphabetical List

Input Arguments

chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

1-542



displayChart

Example: displayChart(myChart, 'displayEdgeR0Is"', false) turns off the overlay
of slanted edge ROls.

displayEdgeR0Is — Display slanted edge ROIs
true (default) | false

Display slanted edge ROIs, specified as the comma-separated pair consisting of
'displayEdgeR0OIs' and true or false. When displayEdgeR0Is is true, the 60
slanted-edge bounding boxes are overlaid on the image in pale yellow.

Data Types: logical

displayGrayR0Is — Display gray patch ROIs
true (default) | false

Display gray patch ROIs, specified as the comma-separated pair consisting of
'displayGrayR0OIs' and true or false. When displayGrayROIs is true, the 20
gray patch bounding boxes are overlaid on the image in blue.

Data Types: logical

displayColorROIs — Display color patch ROIs
true (default) | false

Display color patch ROIs, specified as the comma-separated pair consisting of
'displayColorROIs' and true or false. When displayColorROIs is true, the 16
color patch bounding boxes are overlaid on the image in dark yellow.

Data Types: logical

displayRegistrationPoints — Display registration points
true (default) | false

Display registration points, specified as the comma-separated pair consisting of
'displayRegistrationPoints' and true or false. When
displayRegistrationPoints is true, the four registration points are indicated with a
red diamond overlay.

Data Types: logical

Parent — Axes handle of displayed image object
axes handle

1-543



1 Functions — Alphabetical List

Axes handle of the displayed image object, specified as the comma-separated pair
consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by displayChart.

See Also

Functions
measureChromaticAberration | measureColor | measureIlluminant |
measureNoise | measureSharpness

Objects
esfrChart

Introduced in R2017b

1-544



displayColorPatch

displayColorPatch

Display visual color reproduction as color patches

Syntax

displayColorPatch(colorTable)
displayColorPatch(colorTable,Name,Value)

Description

displayColorPatch(colorTable) displays measured and reference colors,
colorTable, for color patch regions of interest (ROIs) in a test chart. The measured
color values are displayed as squares surrounded by a thick boundary of the
corresponding reference color.

displayColorPatch(colorTable,Name,Value) displays measured color values with
additional parameters to control aspects of the display.

Examples

Display Color Patch Diagram from Color Accuracy Measurements

This example shows how to display the color patch diagram from measurements of color
accuracy on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 16 color patches.
chart = esfrChart(I);

displayChart(chart, 'displayEdgeR0Is"', false,
'displayGrayR0Is', false, 'displayRegistrationPoints', false)

1-545


http://www.imatest.com/mathworks/esfr

1 Functions — Alphabetical List

1-546

Measure the color in all color patch ROIs.

colorTable = measureColor(chart);

Display the color accuracy measurements without the ROI index overlay. Each square
color patch is the measured color, and the thick surrounding border is the reference color
for that ROI. The color accuracy measurement is displayed as Delta_E, the Euclidean
distance between measured and reference colors in CIE 1976 L*a*b* color space. More
accurate colors have a smaller Delta_E.

displayColorPatch(colorTable, 'displayROIIndex', false)



displayColorPatch

1-547



1 Functions — Alphabetical List

Input Arguments

colorTable — Color values
color table

Color values in each color patch, specified as an m-by-8 color table, where m is the
number of patches. The eight columns represent these variables:

Variable Description

ROI Index of the sampled ROI. The value of ROI is an integer in the
range [1, 16]. The indices match the ROI numbers displayed by
displayChart.

Measured R Mean value of red channel pixels in an ROI. Measured Ris a

scalar of the same data type as chart.Image, which can be of
type single, double, uint8, or uintl6.

Measured G Mean value of green channel pixels in an ROIL. Measured Gis a
scalar of the same data type as chart.Image.

Measured B Mean value of blue channel pixels in an ROIL. Measured Bis a
scalar of the same data type as chart.Image.

Reference L Reference L* value corresponding to the ROI. Reference Lisa
scalar of type double.

Reference a Reference a* value corresponding to the ROIL. Reference aisa
scalar of type double.

Reference b Reference b* value corresponding to the ROI. Reference bis a
scalar of type double.

Delta E Euclidean color distance between the measured and reference
color values, as outlined in CIE 1976.

To obtain a color table, use the measureColor function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

1-548



displayColorPatch

Example: displayColorPatch(myColorTable, 'displayROIIndex', false) turns
off the display of the ROI indices.

displayROIIndex — Display ROI index labels
true (default) | false

Display ROI index labels, specified as the comma-separated pair consisting of
'displayROIIndex' and true or false. When displayR0OIIndex is true, then
displayColorPatch overlays color patch ROI index labels on the displayed color
patches. The indices match the ROI numbers displayed by displayChart.

Data Types: logical

displayDeltaE — Display Delta_E values
true (default) | false

Display Delta_ E values, specified as the comma-separated pair consisting of

'displayDeltaE' and true or false. When displayDeltakE is true,
displayColorPatch overlays the values of Delta E on the displayed color patches.

Data Types: logical

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair

consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by displayColorPatch.

See Also

Functions
displayChart | measureColor | plotChromaticity

Objects
esfrChart

Introduced in R2017b

1-549



1 Functions — Alphabetical List

1-550

dnCNNLayers

Get denoising convolutional neural network layers

Syntax
layers = dnCNNLayers
layers =

dnCNNLayers (Name, Value)

Description

layers = dnCNNLayers returns layers of the denoising convolutional neural network

(DnCNN) for grayscale images.

This function requires that you have Deep Learning Toolbox.

layers = dnCNNLayers (Name,Value) returns layers of the denoising convolutional
neural network with additional name-value parameters specifying network architecture.

Examples

Get Layers of Image Denoising Network

Get layers of the image denoising convolutional neural network, 'DnCNN'. Request the
default number of layers, which returns 20 convolution layers.

layers =

layers =

1x59 Layer array with layers:

1
2
3
4
5

dnCNNLayers

'"InputLayer!’
"Convl’
'ReLUL’
"Conv2'
'BNorm2'

Image Input
Convolution

RelLU

Convolution

Batch Normalization

50x50x1 images

64 3x3x1 convolutions with str
RelLU

64 3x3x64 convolutions with st
Batch normalization with 64 ch:



dnCNNLayers

O 00N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38

40
41
42
43
44
45
46
47
48
49

'RelLU2'
"Conv3'
'BNorm3'
'RelLU3’
'Conv4’
'BNorm4'
'ReLU4’
"Conv5'
'BNorm5'
'RelLU5"
"Conv6’
'BNorm6'
'RelLU6’
'Conv7'
'BNorm7'
'ReLU7"
"Conv8'
'BNorm8'"'
'RelLU8'
"Conv9’
'BNorm9'
'RelLU9’
'Convl10’
"BNorml10
'RelLU10'
'Conv1l’
'"BNormll
'RelLU11"’
'Conv12’
'"BNorml12
'RelLU12'
'Conv13’
'"BNorml13
'RelLU13"
'Conv14’
'BNorml4
'RelLU14'
"Convl5’
'"BNorml5
'ReLU15"
"Convle’
'"BNorml6
'ReLU16'
'Conv17'

RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

Batch Normalization
RelLU

Convolution

RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with
Batch normalization with 64
RelLU
64 3x3x64 convolutions with

1-551

st
chi

st
chi

st
chi

st
chi

st
chi

st
chi

st
chi

st
chi

st
chi

st
chi

st
chq

st
chq

st
chq

st
chq

st



1 Functions — Alphabetical List

50 'BNorml7' Batch Normalization Batch normalization with 64 ch:
51 'ReLU17' RelLU RelLU

52 'Conv18' Convolution 64 3x3x64 convolutions with st
53 'BNorml8' Batch Normalization Batch normalization with 64 ch:
54 'RelLU18' RelLU RelLU

55 'Conv19’ Convolution 64 3x3x64 convolutions with st
56 'BNorml19' Batch Normalization Batch normalization with 64 ch:
57 'ReLU19' RelLU RelLU

58 "Conv20' Convolution 1 3x3x64 convolutions with str
59 'FinalRegressionLayer’ Regression OQutput mean-squared-error

You can train a custom image denoising network by providing these layers and a
denoisingImageDatastore to trainNetwork.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'NetworkDepth', 15

NetworkDepth — Number of convolution layers
20 (default) | positive integer

Number of convolution layers, specified as a positive integer with value greater than or
equal to 3.

Example: 15
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments

layers — Network layers
vector of Layer objects

1-552



dnCNNLayers

Denoising convolutional neural network layers, returned as a vector of Layer objects.

Tips

* The DnCNN network can detect noise and other high-frequency image artifacts. For
example, you can train the DnCNN network to increase image resolution or remove
JPEG compression artifacts. The example “JPEG Image Deblocking Using Deep
Learning” shows how to train a DnCNN to reduce JPEG compression artifacts in an
image.

References
[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser:

Residual Learning of Deep CNN for Image Denoising." IEEE Transactions on
Image Processing. Vol. 26, Issue 7, 2017, pp. 3142-3155.

See Also

denoiseImage | denoisingImageDatastore | denoisingNetwork | trainNetwork

Topics
“JPEG Image Deblocking Using Deep Learning”
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

1-553



1 Functions — Alphabetical List

1-554

dpxinfo

Read metadata from DPX file

Syntax

metadata = dpxinfo(filename)

Description

metadata = dpxinfo(filename) reads information about the image contained in the
DPX file specified by filename. metadata is a structure containing the file details.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-
frame storage in digital intermediate post-production facilities and film labs.

Examples

Read Metadata from DPX File

Read metadata from DPX file into the workspace.

m

m

dpxinfo( 'peppers.dpx')

struct with fields:

Filename:
FileModDate:
FileSize:
Format:
FormatVersion:
Width:

Height:
BitDepth:
ColorType:
FormatSignature:
ByteOrder:

'B:\matlab\toolbox\images\imdata\peppers.dpx'
'16-Mar-2015 09:57:26'
892828

'DPX'

'2.0'

512

384

36

'R,G,B'

[88 80 68 83]
'Little-endian’



dpxinfo

Orientation: 'Left-to-right, Top-to-bottom'
NumberOfImageElements: 1
DataSign: {'Unsigned'}
AmplitudeTransferFunction: {'ITU-R 709-4'}
Colorimetry: {'ITU-R 709-4'}
ChannelBitDepths: 12
PackingMethod: 0
Encoding: {'None'}

Input Arguments

filename — Name of the DPX file
character vector | string scalar

Name of a DPX file, specified as a string scalar or character vector. filename can contain
the absolute path to the file, the name of a file on the MATLAB path, or a relative path.

Data Types: char | string

Output Arguments

metadata — Information about the DPX image data
structure

Information about the DPX image data, returned as a structure.

See Also
dpxread

Introduced in R2015b

1-555



1 Functions — Alphabetical List

1-556

dpxread

Read DPX image

Syntax

X = dpxread(filename)

Description

X = dpxread(filename) reads image data from the DPX file specified by filename,
returning the image X.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-
frame storage in digital intermediate post-production facilities and film labs.

Examples

Read and Visualize 12-bit RGB Image

Read image from DPX file into the workspace.
RGB = dpxread('peppers.dpx');

Create a scale factor based on the data range of the image data. The image needs to be
scaled to span the 16-bit data range expected by imshow.

max0OfDataRange = 2712 - 1;
scaleFactor = intmax('uintl6') / maxOfDataRange;

Display the image.

figure
imshow(RGB * scaleFactor)



dpxread

Input Arguments

filename — Name of the DPX file
character vector | string scalar

Name of a DPX file, specified as a string scalar or character vector. filename can contain
the absolute path to the file, the name of a file on the MATLAB path, or a relative path.

Example: RGB = dpxread('peppers.dpx');
Data Types: char | string

1-557



1 Functions — Alphabetical List

Output Arguments

X — Image data from DPX file
real, nonsparse numeric array

Image data from DPX file, returned as a real, nonsparse numeric array of class uint8 or
uint16, depending on the bit depth of the pixels in filename.

See Also

dpxinfo

Introduced in R2015b

1-558



drawassisted

drawassisted

Create freehand ROI on image with assistance from image edges

Syntax

h = drawassisted

h = drawassisted(hImage)

h = drawassisted( _ ,Name,Value)
Description

h = drawassisted begins interactive placement of a freehand region-of-interest (ROI)
on the current axes. The drawassisted function uses the edges in the underlying image
to "assist" the drawing process. The function returns h, a handle to an
images.roi.AssistedFreehand object. You can modify the ROI interactively using
your mouse. The ROI also supports a right-click context menu that controls aspects of its
appearance and behavior.

h = drawassisted(hImage) begins interactive placement of a freehand ROI on the
image specified by hImage.

h = drawassisted( ,Name, Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to default
values.

To create an ROI interactively, position the pointer on the image, click and release to
place the first vertex (waypoint), and then move the pointer to draw a line. The line snaps
to nearby edges in the image automatically as you draw. Click to place vertices along the
line as you draw. To finish the ROI and close the shape, double-click. To delete an ROI,
position the pointer on the ROI (not on a vertex), right-click, and select Delete Freehand
from the context menu. For more information about keyboard shortcuts, see “Tips” on
page 1-568.

Examples

1-559



1 Functions — Alphabetical List

Alpha Blend Source ROl into Target Image

Read an image into the workspace and display it.

im = imread('peppers.png');
imshow(im)

Draw an assisted freehand ROI.

h = drawassisted;

Create a mask of the ROI.

bw = createMask(h);

1-560



drawassisted

Create an alpha matrix that specifies the transparency of the source image at each pixel.
alphamat = imguidedfilter(single(bw),im, 'Degree0fSmoothing',2);

Display a target image.

target = imread('fabric.png');
imshow(target)

Resize the source image and the alpha matrix to the same size as the target image.

alphamat = imresize(alphamat,[size(target,1),size(target,2)]);
im = imresize(im, [size(target,1),size(target,2)]);

1-561



1 Functions — Alphabetical List

Alpha blend the source ROI into the target image.

fused = single(im).*alphamat + (l-alphamat).*single(target);
fused = uint8(fused);
imshow(fused)

Input Arguments

hImage — Image object on which to draw ROI
image object

1-562



drawassisted

Image object on which to draw ROI, specified as an image object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: h = drawassisted('LineWidth',5);

Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified the comma-separated pair consisting of 'Closed' and
the logical value true or false. If true (default), drawassisted closes the ROI by
connecting the last waypoint drawn to the first waypoint drawn.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green’

g
Example: [0 1 0]

Example:

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

1-563



1 Functions — Alphabetical List

1-564

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0, 1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROl handle in Children property of parent
‘on' (default) | ‘off"' | 'callback"

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description

‘on' The object handle is always visible
(default).

'off' The object handle is hidden at all times.

‘callback' The object handle is visible from within
callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

Image — Image on which to draw ROI
handle to Image object

Image on which to draw ROI, specified as the comma-separated pair consisting of
"Image' and a handle to an Image object.

InteractionsAllowed — Interactivity of ROI
'all’' (default) | 'none' | 'translate' | 'reshape’

Interactivity of the ROI, specified as the comma-separated pair consisting of
"InteractionsAllowed' and one of the values in this table.




drawassisted

Value Description
all' The ROI is fully interactable (default).
‘none’ The ROl is not interactable, and no drag

points are visible.

"translate’ ROI can be translated (moved) within the
drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape’ ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
"' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array (' ') and the ROI has no
label.

LineWidth — Width of ROl edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
n-by-2 array

Position of the ROI, specified as the comma-separated pair consisting of 'Position' and

an n-by-2 array of the form [x1 y1; ..; xn yn] where nis the number of vertices in
the ROI. Each row specifies the position of a vertex in the ROI.

1-565



1 Functions — Alphabetical List

1-566

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROl when selected
'none"' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification).If
'SelectedColor' issetto 'none’, then the value of Color defines the color of the ROI
for all states, selected or not.

Example: 'green’

g
Example: [0 1 0]

Example:

Smoothing — Smooth edge of freehand ROI
1 (default) | nonnegative scalar

Smooth the edge of the freehand ROI using the standard deviation of the Gaussian
smoothing kernel, specified as the comma-separated pair consisting of 'Smoothing' and
a nonnegative scalar. The function uses this 'Smoothing' value to filter the x and y
coordinates of the freehand ROI. The function defines the filter size as
2*ceil(2*Smoothing) + 1.

StripeColor — Color of ROl stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.

Example: 'green’
Example: 'g"
Example: [0 1 0]



drawassisted

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'"UserData’' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
‘on' (default) | 'off"

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description

‘on' Specify this value to display the ROI
(default).

'off' Specify this value to hide the ROI without
deleting it. You still can access the
properties of an invisible ROL.

Waypoints — Control points to reshape the ROI
1 (default) | n-by-1 logical vector

Control points to reshape the ROI, specified as the comma-separated pair consisting of
'Waypoints' and an n-by-1 logical vector, the same length as Position. Each element
of the Waypoints vector indicates if the corresponding point in the Position array is a

1-567



1 Functions — Alphabetical List

1-568

waypoint. Positions that are waypoints are set to true in Waypoints. Dragging a
waypoint modifies the ROI between the specified waypoint and its immediate neighboring
waypoints. If empty, drawf reehand automatically generates Waypoints at locations of

increased curvature.

Output Arguments

h — Assisted Freehand ROI

images.roi.AssistedFreehand object

Assisted Freehand ROI, returned as an images. roi.AssistedFreehand object.

Tips

* The ROI supports the following interactivity, including keyboard shortcuts.

Behavior

Keyboard shortcut

Stop drawing the ROL.

Press Esc. The function returns a valid
ROI object with an empty Position
field.

Finish drawing (close) the ROI.

Double-click, which adds a vertex at the
pointer position and draws a line to the
first vertex to close the ROI.

Right-click, which draws a line from the
last vertex to the first vertex.

Position pointer over the first vertex and
click.

Press Enter, which draws a line from
the last vertex to the first vertex.

Resize (reshape) the ROL.

Position pointer over a vertex and then
click and drag. No assistance (snapping
to edges) is available in this mode.




drawassisted

Behavior

Keyboard shortcut

Add a vertex (waypoint).

Position the pointer on an edge of the
ROI and double-click.

Position the pointer on an edge of the
RO, right-click, and select Add
Waypoint.

Remove a vertex (waypoint).

Position the pointer on a vertex, right-
click, and select Remove Waypoint.

Move the ROI.

Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag to move the ROI.

See Also

drawcircle |drawcuboid | drawellipse | drawline | drawpoint | drawpolygon |
drawpolyline |drawrectangle | images.roi.AssistedFreehand

Topics

“Using ROIs in Apps Created with App Designer”

“Use Wait Function After Drawing ROI”

Introduced in R2018b

1-569



1 Functions — Alphabetical List

1-570

drawcircle

Create customizable circular ROI

Syntax

h
h
h

drawcircle
drawcircle(ax)
drawcircle( ,Name, Value)

Description

h = drawcircle begins interactive placement of a circular region-of-interest (ROI) on
the current axes. The function returns a handle to an images.roi.Circle object. You
can modify the ROI interactively using your mouse. The ROI also supports a right-click
context menu that controls aspects of its appearance and behavior.

h = drawcircle(ax) begins interactive placement of a circular ROI on the axes
specified by ax.

h = drawcircle( _ ,Name,Value) modifies the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default
values.

To draw the ROI interactively, move the pointer over the axes, click and drag the pointer
to draw the circle. To finish drawing, release the pointer. To delete the ROI, position the
pointer over the circle, right-click, and select Delete Circle from the context menu. For
more information about interactive behaviors including keyboard shortcuts, see “Tips” on
page 1-582.

Examples

Create Black Circular ROI

Read an image into the workspace and display it.



drawcircle

imshow(imread('peacock.jpg'))

Interactively draw a partially-opaque black circular ROI.

h = drawcircle('Color', 'k', 'FaceAlpha',0.4);

1-571



1 Functions — Alphabetical List

Change the stripe color of the ROI to magenta, then increase the opacity of the ROI.

h.StripeColor = 'magenta’;
h.FaceAlpha = 0.8;

1-572



drawcircle

Create Circular ROl Programmatically

Read an image into the workspace and display it.
I = imread('baby.jpg');

figure
imshow(I)

1-573



1 Functions — Alphabetical List

1-574



drawcircle

Draw a circular ROI on the image, Use the 'Center' name-value pair to specify the
location of the circle and the 'Radius' name-value pair to specify its size. Set the edge
of the circle to be striped by specifying the 'StripeColor' name-value pair.

h = drawcircle('Center',[1000,1000], 'Radius',500, 'StripeColor','red");

1-575



1 Functions — Alphabetical List

1-576

Innii¥ Araiimantc



drawcircle

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: h = drawcircle('Color', 'k', 'Label’, 'My Circle');

Center — Center of ROI
[x y]

Center of the ROI, specified as the comma-separated pair consisting of 'Center' and a
1-by-2 array of the form [x y]. The values x and y are the coordinates of the center point of
the ROI. The value of this property changes automatically when you draw or move the
ROL

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green’

g
Example: [0 1 0]

Example:

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable’' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
‘auto’ (default) | 'unlimited’ | [X,y,w,h]

1-577



1 Functions — Alphabetical List

1-578

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description

'auto' The drawing area is the current axes limits
(default).

‘unlimited’ The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'"FaceAlpha’' and a scalar value in the range [0, 1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROl handle in Children property of parent
‘on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description

‘on' The object handle is always visible
(default).

‘off' The object handle is hidden at all times.




drawcircle

Value Description

"callback' The object handle is visible from within
callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
‘all’ (default) | 'none' | "translate' | 'reshape’

Interactivity of the ROI, specified as the comma-separated pair consisting of
'"InteractionsAllowed' and one of the values in this table.

Value Description
"all' The ROl is fully interactable (default).
'none’ The ROI is not interactable, and no drag

points are visible.

'"translate’ ROI can be translated (moved) within the
drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape’ ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
"' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array (' ') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'

and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

1-579



1 Functions — Alphabetical List

1-580

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Radius — Radius of circle
nonnegative numeric scalar

Radius of the circle, specified as the comma-separated pair consisting of 'Radius' and a
nonnegative numeric scalar. The value of this property changes automatically when you
draw or move the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROl when selected
"none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification).If
'SelectedColor' is set to 'none’, then the value of Color defines the color of the ROI
for all states, selected or not.

Example: 'green’
Example: 'g"
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none’' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.

Example: 'green’



drawcircle

Example: 'g

Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'"UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of points on the edge of ROI
n-by-2 array

Locations of points on the edge of the ROI, returned as the comma-separated pair
consisting of 'Vertices' and an n-by-2 array.

This parameter is read-only.

Visible — ROI visibility
‘on' (default) | ‘off"

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

1-581



1 Functions — Alphabetical List

1-582

Value Description

‘on' Specify this value to display the ROI
(default).

‘off' Specify this value to hide the ROI without
deleting it. You still can access the
properties of an invisible ROI.

Output Arguments

h — Circular ROI
images.roi.Circle object

Circular ROI, returned as an images.roi.Circle object.

Tips

* The ROI supports the following interactivity, including keyboard shortcuts.

Behavior

Keyboard shortcut

Stop drawing the ROL.

Press Esc. The function returns a valid
ROI object with an empty Position
field.

Resize the ROI.

Position the pointer over one of the
vertices on the circle and then click and
drag. The aspect ratio of the ROI
remains constant (1:1).

Move the ROI.

Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

See

Also

drawassisted | drawcuboid | drawellipse | drawfreehand | drawline |
drawpoint | drawpolygon | drawpolyline | drawrectangle | images.roi.Circle




drawcircle

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1-583



1 Functions — Alphabetical List

1-584

drawcuboid

Create customizable cuboidal ROI

Syntax

H = drawcuboid

H = drawcuboid(ax)

H = drawcuboid(S)

H = drawcuboid( _ ,Name,Value)
Description

H = drawcuboid begins interactive placement of a cuboidal region of interest (ROI) on
the current axes. The function returns an images. roi.Cuboid object, H. You can modify
an ROI interactively using the mouse. The ROI also supports a context menu that controls
aspects of its appearance and behavior.

H = drawcuboid(ax) creates the ROI on the axes specified by ax instead of the current
axes (gca).

H = drawcuboid(S) creates the ROI on the Scatter object specified by S. During
interactive placement, the cuboid snaps to the nearest point defined by the Scatter
object.

H = drawcuboid( _ ,Name,Value) modifies the appearance of the ROI using one or
more name-value pairs.

To create an ROI interactively, position the pointer over the ROI, move it to any location in
the figure, and click. To delete the cuboid, position the pointer over the ROI, right-click,
and select Delete Cuboid from the context menu. For more information about interactive
behaviors including keyboard shortcuts, see “Tips” on page 1-594.

Examples



drawcuboid

Create Cuboid ROI on Scatter Plot
Create a 3-D scatter plot and interactively define a cuboid ROI over the data.

Define vectors for 3-D scatter data.

[x,y,z] = sphere(16);

X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z=[z(:)*.5 z(:)*.75 z(:)1;

Specify the size and color of each marker.

S
C

repmat([1 .75 .5]1*10,numel(x),1);
repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot. Use view to the change the angle of the axes in the figure.
figure

hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:)," 'filled");

view(-60,60);

Begin placing a cuboid ROI on the axes. The ROI snaps to the nearest point defined by the
scatter plot. Adjust the size of the cuboid during interactive placement by using the scroll
wheel.

drawcuboid(hScatter);

1-585



1 Functions — Alphabetical List

4 Figure 1 —

File Edit View Inset Tools Desktop Window  Help

Ddde @ 0B KE

# lﬁlill“"l“ ™
11' e g W, »a -

0.5 - S I I E *

Input Arguments

ax — Parent axes of ROI
Axes object (default)

1-586




drawcuboid

Parent axes of ROI, specified as an Axes object. If you do not specify the axes, the
function uses the current axes.

S — Scatter plot
Scatter object

Scatter plot, specified as a Scatter object. The parent of the Scatter object becomes
the parent of the ROL.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: h = drawcuboid('Color"', 'k', 'Label', 'My Cuboid');

Color — ROI color
[0 0.4470 0.7410] (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.

Example: 'green'

Example: 'g
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | 1-by-6 numeric array

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

1-587



1 Functions — Alphabetical List

1-588

Value Description

'auto' The drawing area is a superset of the
current axes limits and a bounding box that
surrounds the ROI (default).

‘unlimited’ The drawing area has no boundary and
ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,z,w,h,d] The drawing area is restricted to a region
beginning at (x,y,z), with width w, height h,
and depth d.

EdgeAlpha — Transparency of ROl edge
1 (default) | numeric scalar

Transparency of ROI edge, specified as the comma-separated pair consisting of
'"EdgeAlpha’ and a scalar in the range [0 1]. When set to 1, the ROI edge is fully
opaque. When set to 0, the ROI edge is completely transparent.

Example: drawcuboid( 'EdgeAlpha’',0.2)

FaceAlpha — Transparency of ROI faces
0.2 (default) | numeric scalar

Transparency of the ROI faces, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI faces are fully opaque. When the value is 0, the ROI faces
are completely transparent.

FaceAlphaOnHover — Transparency of ROI face directly underneath mouse
pointer
0.4 (default) | nonnegative numeric scalar | ' none'

Transparency of ROI face directly underneath the mouse pointer, specified as the comma-
separated pair consisting of ' FaceAlphaOnHover' and a scalar value in the range [0

1] or 'none’ to indicate no change to face transparency. When set to 1, the face under
the mouse pointer is fully opaque. When set to 0, the face is completely transparent.

Example: drawcuboid('FaceAlphaOnHover',61)

FaceColorOnHover — Color of ROl face directly underneath mouse pointer
‘none’ (default) | MATLABColorSpec




drawcuboid

Color of the ROI face directly underneath the mouse pointer, specified as the comma-
separated pair consisting of ' FaceColorOnHover' and a MATLABColorSpec (Color
Specification) or 'none’. By default, the face color does not change on hover. (Hover
means positioning the pointer over the surface of the cuboidal ROI.) When you are not
hovering over a face of the ROI, the value of the ROI Color property determines the face
color. The intensities must be in the range [0, 1].

Example: drawcuboid('FaceColorOnHover','g")

HandleVisibility — Visibility of ROl handle in Children property of parent
‘on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description

‘on' The object handle is always visible
(default).

‘off' The object handle is hidden at all times.

‘callback' The object handle is visible from within
callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all’' (default) | 'none' | 'translate’

Interactivity of the ROI, specified as the comma-separated pair consisting of
'"InteractionsAllowed' and one of the values in this table.

Value Description
all' ROI is fully interactable (default).
‘none’ ROI is not interactable, and no drag points

are visible.

"translate’ ROI can be translated (moved) within the
drawing area but not reshaped.

1-589



1 Functions — Alphabetical List

1-590

Label — ROI label
"' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of ' Label' and a character
vector or string. By default, this property is set to an empty array (' ') and the ROI has no
label.

LabelVisible — Visibility of ROI label
‘on' (default) | ‘off' | "hover

Visibility of the ROI label, specified as the comma-separated pair consisting of
'LabelVisible' and one of these values:

Value Description

'on' Label is visible when the ROI is visible and
'Label' is nonempty (default).

"hover!' Label is visible only when the mouse is
hovering over the ROL.

'off' Label is not visible.

Example: drawcuboid( 'LabelVisible', 'hover')

LineWidth — Width of ROl edge
1 (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UTIAxes cannot be the parent of the ROIL.

Position — Position of cuboid
1-by-6 numeric array

Position of the cuboid, specified as the comma-separated pair consisting of 'Position'
and a 1-by-6 array of the form [xmin, ymin, zmin, width, height, depth]. This property
updates automatically when you draw or move the cuboid.



drawcuboid

Rotatable — Ability of cuboid to be rotated
‘none’ (default) | 'x" | 'y"'|"'z"| 'all’

Ability of the cuboid to be rotated, specified as the comma-separated pair consisting of
'Rotatable’ and one of the values in this table.

Value Description

‘all' ROI is fully rotatable.

'x' ROI can only be rotated about the x axis
'y! ROI can only be rotated about the y axis.
'z! ROI can only be rotated about the z axis.
‘none’ ROI is not rotatable.

RotationAngle — Angle of ROI rotation
[0 0 O] (default) | 1-by-3 numeric array of rotation angles

Angle of ROI rotation, specified as the comma-separated pair consisting of
'RotationAngle' and a 1-by-3 numeric array of rotation angles, measured in degrees.
The rotation angles array is of the form [x angle y angle z angle], measured about
the x-, y-, and z-axis, respectively. Rotation is applied about the ROI centroid in this order:
Z,y X

The value of RotationAngle does not impact the values in Position. Position
represents the cuboid before any rotation. When you rotate the cuboid, use Vertices to
determine the location of the rotated ROI.

ScrollWheelDuringDraw — Ability of scroll wheel to adjust size
'allresize' (default) | 'xresize' | 'yresize' | 'zresize' | 'none'

Ability of the scroll wheel to adjust the size of the ROI, specified as the comma-separated
pair consisting of 'ScrollWheelDuringDraw' and one of the values in this table.

Value Description
'allresize’ Scroll wheel impacts all ROI dimensions.
'Xresize' Scroll wheel impacts only the x dimension.
'yresize' Scroll wheel impacts only the y dimension.
'zresize' Scroll wheel impacts only the z dimension.

1-591



1 Functions — Alphabetical List

1-592

Value Description

'none’ Scroll wheel has no effect.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROl when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification).If
'SelectedColor' is setto 'none', then the value of Color defines the color of the ROI
for all states, selected or not.

Example: 'green’
Example: 'g"
Example: [0 1 0]

StripeColor — Color of ROI stripe
‘none’ (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.

Example: 'green’
Example: 'g
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar




drawcuboid

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'"UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of corners of cuboidal ROI
8-by-3 numeric array

This property is read-only.

Locations of the corners of cuboidal RO], specified as an 8-by-3 array. Each row is the x-,
y-, and z-coordinate of a corner of the cuboidal ROI.

Visible — ROI visibility
‘on' (default) | ‘off"

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this tabl