
Image Processing Toolbox™
Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Processing Toolbox™ Reference
© COPYRIGHT 1993–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 1993 First printing Version 1
May 1997 Second printing Version 2
April 2001 Third printing Revised for Version 3.0
June 2001 Online only Revised for Version 3.1 (Release 12.1)
July 2002 Online only Revised for Version 3.2 (Release 13)
May 2003 Fourth printing Revised for Version 4.0 (Release 13.0.1)
September 2003 Online only Revised for Version 4.1 (Release 13.SP1)
June 2004 Online only Revised for Version 4.2 (Release 14)
August 2004 Online only Revised for Version 5.0 (Release 14+)
October 2004 Fifth printing Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 5.1 (Release 14SP3)
March 2006 Online only Revised for Version 5.2 (Release 2006a)
September 2006 Online only Revised for Version 5.3 (Release 2006b)
March 2007 Online only Revised for Version 5.4 (Release 2007a)
September 2007 Online only Revised for Version 6.0 (Release 2007b)
March 2008 Online only Revised for Version 6.1 (Release 2008a)
October 2008 Online only Revised for Version 6.2 (Release 2008b)
March 2009 Online only Revised for Version 6.3 (Release 2009a)
September 2009 Online only Revised for Version 6.4 (Release 2009b)
March 2010 Online only Revised for Version 7.0 (Release 2010a)
September 2010 Online only Revised for Version 7.1 (Release 2010b)
April 2011 Online only Revised for Version 7.2 (Release 2011a)
September 2011 Online only Revised for Version 7.3 (Release 2011b)
March 2012 Online only Revised for Version 8.0 (Release 2012a)
September 2012 Online only Revised for Version 8.1 (Release 2012b)
March 2013 Online only Revised for Version 8.2 (Release 2013a)
September 2013 Online only Revised for Version 8.3 (Release 2013b)
March 2014 Online only Revised for Version 9.0 (Release 2014a)
October 2014 Online only Revised for Version 9.1 (Release 2014b)
March 2015 Online only Revised for Version 9.2 (Release 2015a)
September 2015 Online only Revised for Version 9.3 (Release 2015b)
March 2016 Online only Revised for Version 9.4 (Release 2016a)
September 2016 Online only Revised for Version 9.5 (Release 2016b)
March 2017 Online only Revised for Version 10.0 (Release 2017a)
September 2017 Online only Revised for Version 10.1 (Release 2017b)
March 2018 Online only Revised for Version 10.2 (Release 2018a)
September 2018 Online only Revised for Version 10.3 (Release 2018b)
March 2019 Online only Revised for Version 10.4 (Release 2019a)

Functions — Alphabetical List
1

v

Contents

Functions — Alphabetical List

1

Color Thresholder
Threshold a color image

Description
The Color Thresholder app lets you threshold color images by manipulating the color
components of these images, based on different color spaces. Using this app, you can
create a segmentation mask for a color image.

Open the Color Thresholder App
• MATLAB® Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Color Thresholder app icon.
• MATLAB command prompt: Enter colorThresholder.

Examples
• “Image Segmentation Using the Color Thresholder App”

Programmatic Use
colorThresholder opens the Color Thresholder app, which enables you to create a
segmentation mask of a color image based on the exploration of different color spaces.

colorThresholder(RGB) opens the Color Thresholder app, loading the image RGB into
the app.

colorThresholder close closes all open instances of the Color Thresholder app.

1 Functions — Alphabetical List

1-2

See Also
Apps
Image Segmenter

Functions
imcontrast

Topics
“Image Segmentation Using the Color Thresholder App”

Introduced in R2014a

 Color Thresholder

1-3

DICOM Browser
Explore collection of DICOM files

Description
The DICOM Browser app lets you explore the contents of collections of DICOM files. The
app sorts images by study and series. You can select a series and save it to the MATLAB
workspace. The DICOM Browser stores the data as a volume, with separate variables for
a colormap and for spatial details.

Open the DICOM Browser App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the DICOM Browser app icon.
• MATLAB command prompt: Enter dicomBrowser.

Examples

Explore by Folder Name

Open the DICOM Browser, displaying DICOM files from the sample image folder.

dicomBrowser(fullfile(matlabroot,'toolbox/images/imdata'))

Explore by DICOMDIR File

Open the DICOM Browser and explore a DICOM folder by using the DICOMDIR file.

dicomBrowser(fullfile(matlabroot,'toolbox/images/imdata/DICOMDIR'))

Programmatic Use
dicomBrowser opens the DICOM Browser app for exploring the contents of collections
of DICOM files.

1 Functions — Alphabetical List

1-4

dicomBrowser(DIR) opens the DICOM Browser app, displaying details about the files in
the folder DIR and its subfolders. DIR can contain a full path name, a relative path name
to the file, or the name of a file on the MATLAB search path.

dicomBrowser(DICOMDIR) opens the DICOM Browser app and gathers details from the
DICOM directory file, named DICOMDIR. A DICOM directory file is a special DICOM file
that serves as a directory to a collection of DICOM files stored on removable media, such
as CD/DVD ROMs. DICOMDIR can contain a full path name or a relative path name to the
file. The name of this file is DICOMDIR, with no file extension.

See Also
Apps

Functions
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomuid |
dicomwrite

Introduced in R2017b

 DICOM Browser

1-5

Image Batch Processor
Apply a function to multiple images

Description
The Image Batch Processor app lets you process a folder of images using a function you
specify. The function must have the following signature: out = fcn(in). The app
creates an output folder containing the processed images, using the same name and
subfolder structure as the input folder.

Open the Image Batch Processor App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Image Batch Processor app icon.
• MATLAB command prompt: Enter imageBatchProcessor.

Examples
• “Batch Processing Using the Image Batch Processor App”

Programmatic Use
imageBatchProcessor opens the Image Batch Processor app, which enables you to
process a folder of images.

imageBatchProcessor close closes all open instances of the Image Batch Processor
app.

See Also
Functions
imread | imwrite

1 Functions — Alphabetical List

1-6

Topics
“Batch Processing Using the Image Batch Processor App”

Introduced in R2015a

 Image Batch Processor

1-7

Image Browser
Browse images using thumbnails

Description
The Image Browser app lets you view thumbnails of all the images in a particular folder
or image datastore. Once displayed in the app, you can select an image and open it in one
of several Image Processing Toolbox apps. You can save images displayed in the app to
the MATLAB workspace as an ImageDatastore object.

Open the Image Browser App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Image Browser app icon.
• MATLAB command prompt: Enter imageBrowser.

Programmatic Use
imageBrowser opens the Image Browser app.

imageBrowser(folder) opens the Image Browser app with all images in the folder,
folder, loaded.

imageBrowser(imds) opens the Image Browser app with all images in the image
datastore, imds, loaded.

See Also
Apps
Image Batch Processor

Functions
imageDatastore

1 Functions — Alphabetical List

1-8

Topics
“View Thumbnails of Images in Folder or Datastore”
“Getting Started with Datastore” (MATLAB)

Introduced in R2016b

 Image Browser

1-9

Image Segmenter
Segment an image by refining regions

Description
The Image Segmenter app lets you segment an image using the active contours (also
called snakes) algorithm. Using this app, you first create an initial segmentation that
defines seed locations and then segment the image iteratively.

Open the Image Segmenter App
• MATLAB Toolstrip: Open the Apps tab, under Image Processing and Computer

Vision, click the Image Segmenter app icon.
• MATLAB command prompt: Enter imageSegmenter.

Examples
• “Image Segmentation Using the Image Segmenter App”

Programmatic Use
imageSegmenter opens the Image Segmenter app, which enables you to create a
segmentation mask of an image by using active contours.

imageSegmenter(I) opens the Image Segmenter app, loading the image I into the app.

imageSegmenter close closes all open instances of the Image Segmenter app.

1 Functions — Alphabetical List

1-10

See Also
Functions
activecontour | grabcut | grayconnected | imbinarize | imfindcircles |
lazysnapping

Topics
“Image Segmentation Using the Image Segmenter App”

Introduced in R2014b

 Image Segmenter

1-11

Image Region Analyzer
Browse and filter connected components in an image

Description
The Image Region Analyzer app measures a set of properties for each connected
component (also called an object or region) in a binary image and displays this
information in a table. You can also use this app to create other binary images by filtering
the image on region properties.

Open the Image Region Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Image Region Analyzer app icon.
• MATLAB command prompt: Enter imageRegionAnalyzer.

Examples
• “Calculate Region Properties Using Image Region Analyzer”
• “Filter Images on Region Properties Using Image Region Analyzer App”

Programmatic Use
imageRegionAnalyzer opens the Image Region Analyzer app, which enables you to
create other binary images and get information about the regions within binary images.

imageRegionAnalyzer(I) opens the Image Region Analyzer app, loading the image I
into the app.

imageRegionAnalyzer close closes all open instances of the Image Region Analyzer
app.

1 Functions — Alphabetical List

1-12

See Also
Functions
bwareafilt | bwpropfilt | regionprops

Topics
“Calculate Region Properties Using Image Region Analyzer”
“Filter Images on Region Properties Using Image Region Analyzer App”

Introduced in R2014b

 Image Region Analyzer

1-13

Image Viewer
View and explore images

Description
The Image Viewer app provides image display capabilities as well as access to several
tools for navigating and exploring images, and performing some common image
processing tasks.

Open the Image Viewer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Image Viewer app icon.
• MATLAB command prompt: Enter imtool.

Examples
• “Explore Images with Image Viewer App”

Programmatic Use
imtool

See Also
Apps
Video Viewer

Functions
imshow

1 Functions — Alphabetical List

1-14

Topics
“Explore Images with Image Viewer App”

Introduced in R2014b

 Image Viewer

1-15

Registration Estimator
Register 2-D grayscale images

Description
The Registration Estimator app aligns 2-D grayscale images using automatic image
registration. Using this app, you can:

• Compare feature-based, intensity-based, and nonrigid registration techniques
interactively

• Obtain the registered image and the geometric transformation

Feature-Based Techniques
Registration Estimator app offers six registration techniques that use feature detection
and matching:

• FAST
• MinEigen
• Harris
• BRISK
• SURF
• MSER

Intensity-Based Techniques
Registration Estimator app offers three registration techniques that use intensity metric
optimization:

• Monomodal intensity
• Multimodal intensity
• Phase correlation

For more details of the available techniques, see “Techniques Supported by Registration
Estimator App”.

1 Functions — Alphabetical List

1-16

Open the Registration Estimator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Registration Estimator app icon.
• MATLAB command prompt: Enter registrationEstimator.

Examples
• “Register Images Using the Registration Estimator App”

Programmatic Use
registrationEstimator opens the Registration Estimator app, which enables you to
perform intensity-based, feature-based, and nonrigid image registration.

registrationEstimator(MOVING, FIXED) opens the Registration Estimator app,
loading the grayscale images MOVING and FIXED into the app.

registrationEstimator close closes all open instances of the Registration
Estimator app.

See Also
Functions
imregconfig | imregdemons | imregister | imregtform | imwarp

Topics
“Register Images Using the Registration Estimator App”
“Techniques Supported by Registration Estimator App”

Introduced in R2017a

 Registration Estimator

1-17

Video Viewer
View videos and image sequences

Description
The Video Viewer app plays movies, videos, or image sequences. Using Video Viewer you
can select the movie or image sequence that you want to play, jump to a specific frame in
the sequence, change the frame rate of the display, or perform other viewing activities.

Open the Video Viewer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the Video Viewer app icon.
• MATLAB command prompt: Enter implay.

Examples
• “View Image Sequences in Video Viewer App”

Programmatic Use
implay

See Also
Apps
Image Viewer

Functions
implay

1 Functions — Alphabetical List

1-18

Topics
“View Image Sequences in Video Viewer App”

Introduced in R2014b

 Video Viewer

1-19

Volume Viewer
View volumetric data and labeled volumetric data

Description
The Volume Viewer app lets you view 3-D volumetric data and 3-D labeled volumetric
data. Using this app, you can view the data as a volume or as plane slices. You can also
view the data as a maximum intensity projection or an isosurface. Using the Rendering
Editor component you can manipulate opacity to see the structures in the volume that you
want to see and make transparent those structures in the volume that you do not want to
see.

Open the Volume Viewer App
• MATLAB toolstrip: Open the Apps tab, under Image Processing and Computer

Vision, click the Volume Viewer app icon.
• MATLAB command prompt: Enter volumeViewer.

Examples

Load Labeled Volume into Volume Viewer

1 Load a labeled volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_001.mat'));
2 Open the labeled volume in the Volume Viewer. Use the 'VolumeType' parameter to

identify the volume as a labeled volume.

volumeViewer(label,'VolumeType','labels')

• “Explore 3-D Volumetric Data with Volume Viewer App”
• “Explore 3-D Labeled Volumetric Data with Volume Viewer App”

1 Functions — Alphabetical List

1-20

Programmatic Use
volumeViewer opens a volume visualization app.

volumeViewer(V) loads the intensity volume V into the app. V is a scalar-valued m-by-n-
by-p image of class logical, uint8, uint16, uint32, int8, int16, int32, single, or
double.

volumeViewer(V,L) loads the intensity volume V and the labeled volume L into the
Volume Viewer. L is a scalar-valued m-by-n-by-p image of class categorical, uint8,
uint16, uint32, int8, int16, int32, single, or double

volumeViewer(___ ,'VolumeType',vtype) loads the volumetric data into the app,
where 'VolumeType' defines the type of volume being loaded. vtype can be either
'Volume' or 'Labels'. If the volume is of class categorical, the default VolumeType
is 'Labels'. For volumes of any other class, the default VolumeType is 'Volume'. If
you specify both an intensity volume and a labeled volume, the Volume Viewer ignores
this name-value pair

volumeViewer(___ ,'ScaleFactors',sfactors) loads the volumetric data into the
app, where 'ScaleFactors' specifies the scale factors used to rescale volumes.
'ScaleFactors' is a 1-by-3 positive numeric array of the form [x y z], where the
values are scale factors applied in the x, y, and z directions. The default value is [1 1 1].
If 'VolumeType' is 'Labels', the Volume Viewer ignores this name-value pair.

volumeViewer close closes all open Volume Viewer apps.

See Also
Functions
isosurface | labelvolshow | slice | volshow

Topics
“Explore 3-D Volumetric Data with Volume Viewer App”
“Explore 3-D Labeled Volumetric Data with Volume Viewer App”

Introduced in R2017a

 Volume Viewer

1-21

activecontour
Segment image into foreground and background using active contours (snakes)

Syntax
bw = activecontour(A,mask)
bw = activecontour(A,mask,n)
bw = activecontour(A,mask,method)
bw = activecontour(A,mask,n,method)
bw = activecontour(___ ,Name,Value)

Description
bw = activecontour(A,mask) segments the image A into foreground (object) and
background regions using active contours. Using the active contour algorithm, also called
snakes, you specify curves on the image that move to find object boundaries. The
activecontour function evolves the segmentation using an iterative process and, by
default, activecontour performs 100 iterations.

The mask argument is a binary image that specifies the initial state of the active contour.
The boundaries of the object regions (white) in mask define the initial contour position
used for contour evolution to segment the image. The output image bw is a binary image
where the foreground is white (logical true) and the background is black (logical false).

To obtain faster and more accurate segmentation results, specify an initial contour
position that is close to the desired object boundaries.

bw = activecontour(A,mask,n) segments the image by evolving the contour for a
maximum of n iterations.

bw = activecontour(A,mask,method) specifies the active contour method used for
segmentation, either 'Chan-Vese' or 'edge'.

bw = activecontour(A,mask,n,method) segments the image by evolving the
contour for a maximum of n iterations using the specified method.

1 Functions — Alphabetical List

1-22

bw = activecontour(___ ,Name,Value) specifies parameters that control various
aspects of the segmentation. Parameter names can be abbreviated, and case does not
matter.

Examples

Segment an Image Specifying the Mask

This example shows how to segment an image using the default settings of the
activecontour function.

Read a grayscale image and display it.

I = imread('coins.png');
imshow(I)
title('Original Image')

 activecontour

1-23

Specify the initial contour and display it.

mask = zeros(size(I));
mask(25:end-25,25:end-25) = 1;
figure
imshow(mask)
title('Initial Contour Location')

Segment the image using the default method and 300 iterations.

bw = activecontour(I,mask,300);

Display the result.

figure
imshow(bw)
title('Segmented Image')

1 Functions — Alphabetical List

1-24

Segment Image Overlaying Mask and Contour on Original Image

Read image and display it.

I = imread('toyobjects.png');
imshow(I)
hold on
title('Original Image');

 activecontour

1-25

Specify initial contour location close to the object that is to be segmented.

mask = false(size(I));
mask(50:150,40:170) = true;

Display the initial contour on the original image in blue.

visboundaries(mask,'Color','b');

1 Functions — Alphabetical List

1-26

Segment the image using the 'edge' method and 200 iterations.

bw = activecontour(I, mask, 200, 'edge');

Display the final contour on the original image in red.

visboundaries(bw,'Color','r');
title('Initial contour (blue) and final contour (red)');

 activecontour

1-27

Display segmented image.

figure, imshow(bw)
title('Segmented Image');

1 Functions — Alphabetical List

1-28

Segment an Image Specifying a Polygonal Mask Created Interactively

Read image into the workspace and display it. Display instructions to specify initial
contour location.

I = imread('toyobjects.png');
imshow(I)

 activecontour

1-29

str = 'Click to select initial contour location. Double-click to confirm and proceed.';
title(str,'Color','b','FontSize',12);
disp(sprintf('\nNote: Click close to object boundaries for more accurate result.'))

Specify initial contour interactively.

mask = roipoly;

figure, imshow(mask)
title('Initial MASK');

1 Functions — Alphabetical List

1-30

Segment the image, specifying 200 iterations.

maxIterations = 200;
bw = activecontour(I, mask, maxIterations, 'Chan-Vese');

% Display segmented image
figure, imshow(bw)
title('Segmented Image');

 activecontour

1-31

Perform 3-D Segmentation Using 2-D Initial Seed Mask

Load 3-D volumetric image data, removing the singleton dimension.

D = load('mri.mat');
A = squeeze(D.D);

Create 2-D mask for initial seed points.

seedLevel = 10;
seed = A(:,:,seedLevel) > 75;

1 Functions — Alphabetical List

1-32

figure
imshow(seed)

Create an empty 3-D seed mask and put the seed points into it.

mask = zeros(size(A));
mask(:,:,seedLevel) = seed;

Perform the segmentation using active contours, specifying the seed mask.

bw = activecontour(A,mask,300);

Display the 3-D segmented image.

figure;
p = patch(isosurface(double(bw)));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 27/128]);
camlight;
lighting phong

 activecontour

1-33

Input Arguments
A — Image to be segmented
nonsparse, 2-D or 3-D, numeric array

Image to segmented, specified as a nonsparse, 2-D or 3-D, numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

mask — Initial contour at which the evolution of the segmentation begins
binary image

1 Functions — Alphabetical List

1-34

Initial contour at which the evolution of the segmentation begins, specified as a binary
image the same size as A.

For 2-D and 3-D grayscale images, the size of mask must match the size of the image A.
For color and multi-channel images, mask must be a 2-D logical array where the first two
dimensions match the first two dimensions of the image A.
Data Types: logical

n — Maximum number of iterations to perform in evolution of the segmentation
100 (default) | numeric scalar.

Maximum number of iterations to perform in evolution of the segmentation, specified as a
numeric scalar. activecontour stops the evolution of the active contour when it reaches
the maximum number of iterations. activecontour also stops the evolution if the
contour position in the current iteration is the same as the contour position in one of the
most recent five iterations.

If the initial contour position (specified by mask) is far from the object boundaries, specify
higher values of n to achieve desired segmentation results.
Data Types: double

method — Active contour method used for segmentation
'Chan-Vese' (default) | 'edge'

Active contour method used for segmentation, specified as 'Chan-Vese' or 'edge'. The
Chan and Vese region-based energy model is described in [1] on page 1-37. The edge-
based model, similar to Geodesic Active Contour, is described in [2] on page 1-37.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: bw = activecontour(I, mask, 200, 'edge','SmoothFactor',1.5);

 activecontour

1-35

SmoothFactor — Degree of smoothness or regularity of the boundaries of the
segmented regions
0, for 'Chan-Vese'; 1 for 'edge' (default) | positive numeric scalar

Degree of smoothness or regularity of the boundaries of the segmented regions, specified
as the comma-separated pair consisting of 'SmoothFactor' and a positive numeric
scalar. Higher values produce smoother region boundaries but can also smooth out finer
details. Lower values produce more irregularities (less smoothing) in the region
boundaries but allow finer details to be captured. The default smoothness value depends
on the method chosen.
Example: bw = activecontour(I, mask, 200, 'edge','SmoothFactor',1.5);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ContractionBias — Tendency of the contour to grow outwards or shrink inwards
0, for 'Chan-Vese'; 0.3 for 'edge' (default) | scalar

Tendency of the contour to grow outwards or shrink inwards, specified as the comma-
separated pair consisting of 'ContractionBias' and a scalar. Positive values bias the
contour to shrink inwards (contract). Negative values bias the contour to grow outwards
(expand). This parameter does not guarantee that the contour contracts (or expands). It is
possible that even with a positive value for this parameter, the contour could actually
expand. However, by specifying a bias, you slow the expansion when compared to an
unbiased contour. Typical values for this parameter are between -1 and 1.
Example: bw = activecontour(I, mask, 200,
'edge','ContractionBias',0.4);

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
bw — Segmented image
binary image the same size as the input image A.

Segmented image, returned as a binary image the same size as the input image A. The
foreground is white (logical true) and the background is black (logical false).

1 Functions — Alphabetical List

1-36

Tips
• activecontour uses the boundaries of the regions in mask as the initial state of the

contour from where the evolution starts. mask regions with holes can cause
unpredictable results. Use imfill to fill any holes in the regions in mask.

• If a region touches the image borders, activecontour removes a single-pixel layer
from the region, before further processing, so that the region does not touch the
image border.

• To get faster and more accurate results, specify an initial contour position that is close
to the desired object boundaries, especially for the 'edge' method.

• For the 'edge' method, the active contour is naturally biased towards shrinking
inwards (collapsing). In the absence of any image gradient, the active contour shrinks
on its own. Conversely, with the 'Chan-Vese' method, where the contour is unbiased,
the contour is free to either shrink or expand based on the image features.

• To achieve an accurate segmentation with the 'edge' method, specify an initial
contour that lies outside the boundaries of the object. The active contour with the
'edge' method is biased to shrink, by default.

• If object regions are of significantly different grayscale intensities, the 'Chan-Vese'
method [1] might not segment all objects in the image. For example, if the image
contains objects that are brighter than the background and some that are darker, the
'Chan-Vese' method typically segments out either the dark or the bright objects
only.

Algorithms
activecontour uses the Sparse-Field level-set method, similar to the method described
in [3], for implementing active contour evolution.

References
[1] T. F. Chan, L. A. Vese, Active contours without edges. IEEE Transactions on Image

Processing, Volume 10, Issue 2, pp. 266-277, 2001

[2] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. International Journal of
Computer Vision, Volume 22, Issue 1, pp. 61-79, 1997.

 activecontour

1-37

[3] R. T. Whitaker, A level-set approach to 3d reconstruction from range data.
International Journal of Computer Vision, Volume 29, Issue 3, pp.203-231, 1998.

See Also
Image Segmenter | imellipse | imfreehand | multithresh | poly2mask | roipoly

Introduced in R2013a

1 Functions — Alphabetical List

1-38

adapthisteq
Contrast-limited adaptive histogram equalization (CLAHE)

Syntax
J = adapthisteq(I)
J = adapthisteq(I,Name,Value)

Description
J = adapthisteq(I) enhances the contrast of the grayscale image I by transforming
the values using contrast-limited adaptive histogram equalization (CLAHE) [1].

J = adapthisteq(I,Name,Value) specifies additional name-value pairs. Parameter
names can be abbreviated, and case does not matter.

Examples

Apply Contrast-Limited Adaptive Histogram Equalization (CLAHE)

Apply CLAHE to an image and display the results.

I = imread('tire.tif');
J = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
imshowpair(I,J,'montage');
title('Original Image (left) and Contrast Enhanced Image (right)')

 adapthisteq

1-39

Apply CLAHE to Indexed Color Image

Read the indexed color image into the workspace.

[X, MAP] = imread('shadow.tif');

Convert the indexed image into a truecolor (RGB) image, then convert the RGB image
into the L*a*b* color space.

RGB = ind2rgb(X,MAP);
LAB = rgb2lab(RGB);

Scale values to the range expected by the adapthisteq function, [0 1].

L = LAB(:,:,1)/100;

Perform CLAHE on the L channel. Scale the result to get back to the range used by the
L*a*b* color space.

L = adapthisteq(L,'NumTiles',[8 8],'ClipLimit',0.005);
LAB(:,:,1) = L*100;

1 Functions — Alphabetical List

1-40

Convert the resulting image back into the RGB color space.

J = lab2rgb(LAB);

Display the original image and the processed image.

figure
imshowpair(RGB,J,'montage')
title('Original (left) and Contrast Enhanced (right) Image')

Shadows in the enhanced image look darker and highlights look brighter. The overall
contrast is improved.

Input Arguments
I — Input Image
2-D array

Input intensity image, specified as a numeric 2-D array.
Data Types: single | double | int16 | uint8 | uint16

 adapthisteq

1-41

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumTiles',[8 16] divides the image into 8 rows and 16 columns of tiles.

NumTiles — Number of tiles
[8,8] (default) | 2-element vector of positive integers

Number of rectangular contextual regions (tiles) into which adapthisteq divides the
image, specified as a 2-element vector of positive integers. With the original image
divided into M rows and N columns of tiles, the value of 'NumTiles' is [M N]. Both M and
N must be at least 2. The total number of tiles is equal to M*N. The optimal number of tiles
depends on the type of the input image, and it is best determined through
experimentation.
Data Types: double

ClipLimit — Contrast enhancement limit
0.01 (default) | real scalar

Contrast enhancement limit, specified as a real scalar in the range [0, 1]. Higher limits
result in more contrast.

'ClipLimit' is a contrast factor that prevents oversaturation of the image specifically
in homogeneous areas. These areas are characterized by a high peak in the histogram of
the particular image tile due to many pixels falling inside the same gray level range.
Without the clip limit, the adaptive histogram equalization technique could produce
results that, in some cases, are worse than the original image.
Data Types: double

NBins — Number of histogram bins used to build a contrast enhancing
transformation
256 (default) | positive integer scalar

Number of histogram bins used to build a contrast enhancing transformation, specified as
a positive integer scalar. Higher values result in greater dynamic range at the cost of
slower processing speed.

1 Functions — Alphabetical List

1-42

Data Types: double

Range — Range of output data
'full' (default) | 'original'

Range of the output image data, specified as one of the following values:

Value Description
'full' Use the full range of the output class (e.g. [0 255] for

uint8).
'original' Limit the range to [min(I(:)) max(I(:))].

Data Types: char | string

Distribution — Desired histogram shape
'uniform' (default) | 'rayleigh' | 'exponential'

Desired histogram shape, specified as one of the following values:

Value Description
'uniform' Create a flat histogram.
'rayleigh' Create a bell-shaped histogram.
'exponential' Create a curved histogram.

'Distribution' specifies the distribution that adapthisteq uses as the basis for
creating the contrast transform function. The distribution you select should depend on
the type of the input image. For example, underwater imagery appears to look more
natural when the Rayleigh distribution is used.
Data Types: char | string

Alpha — Distribution parameter
0.4 (default) | nonnegative real scalar

Distribution parameter, specified as a nonnegative real scalar. 'Alpha' is only used when
'Distribution' is set to 'rayleigh' or 'exponential'.
Data Types: double

 adapthisteq

1-43

Output Arguments
J — Output intensity image
2-D array

Output intensity image, returned as a 2-D array of the same class as the input image I.

Algorithms
CLAHE operates on small regions in the image, called tiles, rather than the entire image.
adapthisteq calculates the contrast transform function for each tile individually. Each
tile's contrast is enhanced, so that the histogram of the output region approximately
matches the histogram specified by the 'Distribution' value. The neighboring tiles
are then combined using bilinear interpolation to eliminate artificially induced
boundaries. The contrast, especially in homogeneous areas, can be limited to avoid
amplifying any noise that might be present in the image.

References
[1] Zuiderveld, Karel. “Contrast Limited Adaptive Histograph Equalization.” Graphic

Gems IV. San Diego: Academic Press Professional, 1994. 474–485.

See Also
histeq

Introduced before R2006a

1 Functions — Alphabetical List

1-44

adaptthresh
Adaptive image threshold using local first-order statistics

Syntax
T = adaptthresh(I)
T = adaptthresh(I,sensitivity)
T = adaptthresh(___ ,Name,Value)

Description
T = adaptthresh(I) computes a locally adaptive threshold for 2-D grayscale image or
3-D grayscale volume I. The adaptthresh function chooses the threshold based on the
local mean intensity (first-order statistics) in the neighborhood of each pixel. The
threshold T can be used with the imbinarize function to convert the grayscale image to
a binary image.

T = adaptthresh(I,sensitivity) computes a locally adaptive threshold with
sensitivity factor specified by sensitivity. sensitivity is a scalar in the range [0,1]
that indicates sensitivity towards thresholding more pixels as foreground.

T = adaptthresh(___ ,Name,Value) computes a locally adaptive threshold using
name-value pairs to control aspects of the thresholding.

Examples

Find Threshold and Segment Bright Rice Grains from Dark Background

Read image into the workspace.

I = imread('rice.png');

Use adaptthresh to determine threshold to use in binarization operation.

 adaptthresh

1-45

T = adaptthresh(I, 0.4);

Convert image to binary image, specifying the threshold value.

BW = imbinarize(I,T);

Display the original image with the binary version, side-by-side.

figure
imshowpair(I, BW, 'montage')

Find Threshold and Segment Dark Text from Bright Background

Read image into the workspace.

I = imread('printedtext.png');

Using adaptthresh compute adaptive threshold and display the local threshold image.
This represents an estimate of average background illumination.

1 Functions — Alphabetical List

1-46

T = adaptthresh(I,0.4,'ForegroundPolarity','dark');
figure
imshow(T)

Binarize image using locally adaptive threshold

BW = imbinarize(I,T);
figure
imshow(BW)

 adaptthresh

1-47

Calculate Threshold for 3-D Volume

Load 3-D volume into the workspace.

load mristack;
V = mristack;

Display the data.

figure
slice(double(V),size(V,2)/2,size(V,1)/2,size(V,3)/2)
colormap gray
shading interp

1 Functions — Alphabetical List

1-48

Calculate the threshold.

J = adaptthresh(V,'neigh',[3 3 3],'Fore','bright');

Display the threshold.

figure
slice(double(J),size(J,2)/2,size(J,1)/2,size(J,3)/2)
colormap gray
shading interp

 adaptthresh

1-49

Input Arguments
I — Grayscale image or volume
2-D numeric matrix | 3-D numeric array

Grayscale image or volume, specified as a 2-D numeric matrix or 3-D numeric array.

If the image contains Infs or NaNs, the behavior of adaptthresh is undefined.
Propagation of Infs or NaNs might not be localized to the neighborhood around Inf or
NaN pixels.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Functions — Alphabetical List

1-50

sensitivity — Determine which pixels get thresholded as foreground pixels
0.5 (default) | number in the range [0, 1]

Determine which pixels get thresholded as foreground pixels, specified as a number in the
range [0, 1]. High sensitivity values lead to thresholding more pixels as foreground, at the
risk of including some background pixels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: T = adaptthresh(I,0.4,'ForegroundPolarity','dark');

NeighborhoodSize — Size of neighborhood used to compute local statistic
around each pixel
2*floor(size(I)/16)+1 (default) | positive odd integer | 2-element vector of positive
odd integers

Size of neighborhood used to compute local statistic around each pixel, specified as a
positive odd integer or a 2-element vector of positive odd integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ForegroundPolarity — Determine which pixels are considered foreground
pixels
'bright' (default) | 'dark'

Determine which pixels are considered foreground pixels, specified using one of the
following:

Value Meaning
'bright' The foreground is brighter than the background.
'dark' The foreground is darker than the background

Data Types: char | string

 adaptthresh

1-51

Statistic — Statistic used to compute local threshold
'mean' (default) | 'median' | 'gaussian'

Statistic used to compute local threshold at each pixel, specified as one of the following:

Value Meaning
'mean' The local mean intensity in the neighborhood. This technique is also

called Bradley’s method [1].
'median' The local median in the neighborhood. Computation of this statistic can

be slow. Consider using a smaller neighborhood size to obtain faster
results.

'gaussian' The Gaussian weighted mean in the neighborhood.

Data Types: char | string

Output Arguments
T — Normalized intensity values
numeric matrix | numeric array

Normalized intensity values, returned as a numeric matrix or numeric array of the same
size as the input image or volume, I. Values are normalized to the range [0, 1].
Data Types: double

References
[1] Bradley, D., G. Roth, "Adapting Thresholding Using the Integral Image," Journal of

Graphics Tools. Vol. 12, No. 2, 2007, pp.13–21.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-52

Usage notes and limitations:

• adaptthresh supports the generation of C code (requires MATLAB Coder™). Note
that if you choose the generic MATLAB Host Computer target platform,
adaptthresh generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• The ForegroundPolarity and Statistic arguments must be compile-time
constants.

See Also
graythresh | imbinarize | otsuthresh

Introduced in R2016a

 adaptthresh

1-53

affine2d
2-D affine geometric transformation

Description
An affine2d object encapsulates a 2-D affine geometric transformation.

Creation
You can create an affine2d object using the following methods:

• imregtform — Estimates a geometric transformation that maps a moving image to a
fixed image using similarity optimization

• imregcorr — Estimates a geometric transformation that maps a moving image to a
fixed image using phase correlation

• fitgeotrans — Estimates a geometric transformation that maps pairs of control
points between two images

• The affine2d function described here

Syntax
tform = affine2d
tform = affine2d(A)

Description
tform = affine2d creates an affine2d object with default property settings that
correspond to the identity transformation.

tform = affine2d(A) sets the property T with a valid affine transformation defined by
nonsingular matrix A.

1 Functions — Alphabetical List

1-54

Properties
T — Forward 2-D affine transformation
nonsingular 3-by-3 numeric matrix

Forward 2-D affine transformation, specified as a nonsingular 3-by-3 numeric matrix.

The matrix T uses the convention:

[x y 1] = [u v 1] * T

where T has the form:

 [a b 0;
 c d 0;
 e f 1];

The default of T is the identity transformation.
Data Types: double | single

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions
invert Invert geometric transformation
isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

 affine2d

1-55

Define 2-D Affine Transformation Object for Rotation

Create an affine2d object that defines a 30 degree rotation in the counterclockwise
direction around the origin.

theta = 30;
tform = affine2d([cosd(theta) sind(theta) 0;...
 -sind(theta) cosd(theta) 0; 0 0 1])

tform =
 affine2d with properties:

 Dimensionality: 2
 T: [3x3 double]

Apply the forward geometric transformation to a point (10,0).

[x,y] = transformPointsForward(tform,10,0)

x = 8.6603

y = 5

Validate the transformation by plotting the original point (in blue) and the transformed
point (in red).

figure
plot(10,0,'bo',x,y,'ro')
axis([0 12 0 12]); axis square;

1 Functions — Alphabetical List

1-56

Transform Image Using 2-D Affine Transformation Object

Read an image into the workspace.

A = imread('pout.tif');

Create an affine2d object that defines an affine geometric transformation. This example
combines vertical shear and horizontal stretch.

tform = affine2d([2 0.33 0; 0 1 0; 0 0 1])

 affine2d

1-57

tform =
 affine2d with properties:

 Dimensionality: 2
 T: [3x3 double]

Apply the geometric transformation to the image using imwarp.

B = imwarp(A,tform);

Display the resulting image.

figure
imshow(B);
axis on equal;

1 Functions — Alphabetical List

1-58

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 affine2d

1-59

• affine2d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not
supported.

See Also
Functions
fitgeotrans | imregcorr | imregister | imregtform | imwarp

Objects
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
PolynomialTransformation2D | affine3d | geometricTransform2d |
projective2d

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a

1 Functions — Alphabetical List

1-60

affine3d
3-D affine geometric transformation

Description
An affine3d object encapsulates a 3-D affine geometric transformation.

Creation
You can create an affine3d object using the following methods:

• imregtform — Estimates a geometric transformation that maps a moving image to a
fixed image using similarity optimization

• The affine3d function described here

Syntax
tform = affine3d
tform = affine3d(A)

Description
tform = affine3d creates an affine3d object with default property settings that
correspond to the identity transformation.

tform = affine3d(A) sets the property T with a valid affine transformation defined by
nonsingular matrix A.

Properties
T — Forward 3-D affine transformation
nonsingular 4-by-4 numeric matrix

 affine3d

1-61

Forward 3-D affine transformation, specified as a nonsingular 4-by-4 numeric matrix.

The matrix T uses the convention:

[x y z 1] = [u v w 1] * T

where T has the form:

 [a b c 0;
 d e f 0;
 g h i 0;
 j k l 1];

The default of T is the identity transformation.
Data Types: double | single

Dimensionality — Describes the dimensionality of the geometric
transformation
3

Describes the dimensionality of the geometric transformation for both input and output
points, specified as the value 3.

Object Functions
invert Invert geometric transformation
isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Define 3-D Affine Transformation Object for Anisotropic Scaling

Create an affine3d object that scales a 3-D image by a different factor in each
dimension.

1 Functions — Alphabetical List

1-62

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =
 affine3d with properties:

 Dimensionality: 3
 T: [4x4 double]

Load a 3-D volume into the workspace.

load('mri');
D = squeeze(D);

Apply the geometric transformation to the image using imwarp.

B = imwarp(D,tform);

Visualize an axial slice through the center of each volume to see the effect of scale
translation. Note that the center slice of the transformed volume has a different index
than the center slice of the original volume because of the scaling in the z-dimension.

figure
imshowpair(D(:,:,14),B(:,:,33),'montage');

 affine3d

1-63

The original image is on the left, and the transformed image is on the right. The
transformed image is scaled more in the vertical direction than in the horizontal
direction, as expected since Sy is larger than Sx.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• affine3d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not
supported.

1 Functions — Alphabetical List

1-64

See Also
Functions
imregister | imregtform | imwarp

Objects
affine2d | geometricTransform3d

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a

 affine3d

1-65

analyze75info
Read metadata from header file of Analyze 7.5 data set

Syntax
info = analyze75info(filename)
info = analyze75info(___ ,Name,Value)

Description
info = analyze75info(filename) reads the header file of the Analyze 7.5 data set
specified by filename. The function returns info, a structure whose fields contain
information about the data set. Analyze 7.5 is a 3-D biomedical image visualization and
analysis product developed by the Biomedical Imaging Resource of the Mayo Clinic. An
Analyze 7.5 data set is made of two files, a header file and an image file. The files have
the same name with different file extensions. The header file has the file extension .hdr
and the image file has the file extension .img.

info = analyze75info(___ ,Name,Value) reads the Analyze 7.5 header file using
name-value pairs to control different aspects of the operation.

Examples

Get Information about an Analyze 7.5 Data Set

Get information about an Analyze 7.5 data set. An Analyze 7.5 data set is made up of two
files: a header file with the file extension .hdr and an image file with the file
extension .img. You don't need to specify a file extension when calling analyze75info.

info = analyze75info('brainMRI');

Get information about an Analyze 7.5 data set, this time specifying the byte ordering of
the data set. If you specify the wrong byte order, analyze75info attempts to read the
file with the other supported byte order.

1 Functions — Alphabetical List

1-66

info = analyze75info('brainMRI', 'ByteOrder', 'ieee-le');

Input Arguments
filename — Name of Analyze 7.5 data set
character vector | string

Name of Analyze 7.5 data set, specified as a string or character vector. You don’t need to
specify a file extension.
Example: info = analyze75info('brainMRI');
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: info = analyze75info('brainMRI','ByteOrder','ieee-le');

ByteOrder — Endianness of the data
character vector | string

Endianness of the data, specified as one of the strings or character vectors in the
following table. If the specified value results in a read error, analyze75info issues a
warning message and attempts to read the header file with the opposite ByteOrder
format.

Value Meaning
'ieee-le' Byte ordering is Little Endian
'ieee-be' Byte ordering is Big Endian

Data Types: char | string

 analyze75info

1-67

Output Arguments
info — Information about Analyze 7.5 data set
structure

Information about Analyze 7.5 data set, returned as a structure.

See Also
analyze75read

Introduced before R2006a

1 Functions — Alphabetical List

1-68

analyze75read
Read image data from image file of Analyze 7.5 data set

Syntax
X = analyze75read(filename)
X = analyze75read(info)

Description
X = analyze75read(filename) reads the image data from the image file of an
Analyze 7.5 format data set specified by the character vector filename. The function
returns the image data in X.

Analyze 7.5 is a 3-D biomedical image visualization and analysis product developed by the
Biomedical Imaging Resource of the Mayo Clinic. An Analyze 7.5 data set is made of two
files, a header file and an image file. The files have the same name with different file
extensions. The header file has the file extension .hdr and the image file has the file
extension .img.

Note By default, analyze75read returns image data in radiological orientation (LAS).
For more information, see “Read Image Data from Analyze 7.5 File” on page 1-69.

X = analyze75read(info) reads the image data from the image file specified in the
metadata structure info. info must be a valid metadata structure returned by the
analyze75info function.

Examples

Read Image Data from Analyze 7.5 File

Read image data from an Analyze 7.5 file.

 analyze75read

1-69

X = analyze75read('brainMRI');

View the data. First, because Analyze 7.5 format uses radiological orientation (LAS), flip
the data for correct image display in MATLAB.

X = flip(X);

Then, reshape the data to create an array that can be displayed using montage. Select
frames 12 to 17.

Y = reshape(X(:,:,12:17),[size(X,1) size(X,2) 1 6]);
montage(Y);

1 Functions — Alphabetical List

1-70

Read Image Data Using the Info Structure

Read image data from an Analyze 7.5 data set, using the structure returned by
analyze75info to specify the data set. First, use analyze75info to create the info
structure.

info = analyze75info('brainMRI');

Call analyze75read to read image data from the data set, specifying the info structure
returned by analyze75info.

X = analyze75read(info);

Input Arguments
filename — Name of Analyze 7.5 data set
character vector

Name of Analyze 7.5 data set, specified as a character vector. You don’t need to specify a
file extension.
Example: info = analyze75info('brainMRI');
Data Types: char

info — Information about Analyze 7.5 data set
structure

Information about the Analyze 7.5 data set, specified as a structure returned by the
analyze75info function.
Data Types: struct

Output Arguments
X — Image data from Analyze 7.5 data set
array

Image data from Analyze 7.5 data set, returned as an array. X can be logical, uint8,
int16, int32, single, or double. analyze75read uses a data type for X that is

 analyze75read

1-71

consistent with the data type specified in the data set header file. Complex and RGB data
types are not supported. For single-frame, grayscale images, X is an m-by-n array.

See Also
analyze75info

Introduced before R2006a

1 Functions — Alphabetical List

1-72

applycform
Apply device-independent color space transformation

Syntax
B = applycform(A,C)

Description
B = applycform(A,C) converts the color values in A to the color space specified in the
color transformation structure C.

Examples

Convert sRGB to L*a*b* Color Space using Applycform

Read color image that uses the sRGB color space into the workspace.

rgb = imread('peppers.png');

Create a color transformation structure that defines an sRGB to L*a*b* conversion.

C = makecform('srgb2lab');

Perform the transformation with applycform.

lab = applycform(rgb,C);

Input Arguments
A — Input color space
2-D numeric matrix | 3-D numeric array | string | character vector

 applycform

1-73

Input color space, specified as one of the following:

• 2-D numeric matrix. applycform interprets each row as a color unless the color
transformation structure, C, contains a grayscale ICC profile. In that case,
applycform interprets each pixel in A as a color.

• 3-D numeric matrix. Each row-column location is interpreted as a color. size(A,3) is
typically 1 or more, depending on the input color space.

• string or character vector. A is only a string or character vector if C is created with the
following syntax:

C = makecform('named', profile, space)

Data Types: double | uint8 | uint16 | char | string

C — Color transformation
structure

Color transformation, specified as a structure. The color transformation structure
specifies various parameters of the transformation. You can create a color transformation
structure using makecform.

Output Arguments
B — Output color space
numeric array

Output color space, returned as a numeric array. The size of B depends on the
dimensionality and size of the input color space, A:

• When A is two-dimensional, B has the same number of rows and one or more columns,
depending on the output color space. (The ICC specification currently supports up to
15-channel device spaces).

• When A is three-dimensional, B is the same number of rows and columns as A, and
size(B,3) is 1 or more, depending on the output color space.

See Also
lab2double | lab2uint16 | lab2uint8 | makecform | whitepoint | xyz2double |
xyz2uint16

1 Functions — Alphabetical List

1-74

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

 applycform

1-75

applylut
Neighborhood operations on binary images using lookup tables

Note applylut is not recommended. Use bwlookup instead.

Syntax
A = applylut(BW,lut)

Description
A = applylut(BW,lut) performs a 2-by-2 or 3-by-3 neighborhood operation on binary
image BW by using a lookup table, lut. The lookup table consists of the output values for
all possible 2-by-2 or 3-by-3 neighborhoods.

Examples

Perform Erosion Using a 2-by-2 Neighborhood

Create the LUT.

 lutfun = @(x)(sum(x(:))==4);
 lut = makelut(lutfun,2);

Read image into the workspace and then apply the LUT to the image. An output pixel is
on only if all four of the input pixel's neighborhood pixels are on .

 BW1 = imread('text.png');
 BW2 = applylut(BW1,lut);

Show the original image and the eroded image.

 figure, imshow(BW1);

1 Functions — Alphabetical List

1-76

 figure, imshow(BW2);

 applylut

1-77

Input Arguments
BW — Input image
2-D binary image

Input image, specified as a 2-D binary image. For numeric input, any nonzero pixels are
considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

lut — Lookup table of output pixel values
16-element numeric vector | 512-element numeric vector

Lookup table of output pixel values, specified as a 16- or 512-element vector as returned
by makelut.

1 Functions — Alphabetical List

1-78

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
A — Output image
binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values
are determined by the content of the lookup table, lut. The output image J is the same
size as the input image I.

• If all elements of lut are 0 or 1, then A has data type logical.
• If all elements of lut are integers between 0 and 255, then A has data type uint8.
• For all other cases, A has data type double.

Data Types: double | uint8 | logical

Algorithms
applylut performs a neighborhood operation on a binary image by producing a matrix
of indices into lut, and then replacing the indices with the actual values in lut. The
specific algorithm used depends on whether you use 2-by-2 or 3-by-3 neighborhoods.

2-by-2 Neighborhoods
For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image BW with this
matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0, 15]. applylut uses the
central part of the convolution, of the same size as BW, and adds 1 to each value to shift

 applylut

1-79

the range to [1, 16]. The function then constructs A by replacing the values in the cells of
the index matrix with the values in lut that the indices point to.

3-by-3 Neighborhoods
For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image BW with this
matrix.

256 32 4
128 16 2
 64 8 1

The resulting convolution contains integer values in the range [0, 511]. applylut uses
the central part of the convolution, of the same size as BW, and adds 1 to each value to
shift the range to [1, 512]. It then constructs A by replacing the values in the cells of the
index matrix with the values in lut that the indices point to.

Compatibility Considerations

applylut is not recommended
Not recommended starting in R2012b

Starting in R2012b, use bwlookup to perform neighborhood operations on binary images
using lookup tables. For bwlookup, the data type of the returned image is the same as
the data type of the lookup table. bwlookup supports code generation. There are no plans
to remove applylut at this time.

To update your code, replace instances of applylut with bwlookup. You do not need to
change the input arguments.

See Also
makelut

1 Functions — Alphabetical List

1-80

Introduced before R2006a

 applylut

1-81

axes2pix
Convert axes coordinates to pixel coordinates

Syntax
pixelCoord = axes2pix(n,extent,axesCoord)

Description
pixelCoord = axes2pix(n,extent,axesCoord) converts an axes coordinate into an
intrinsic ("pixel") coordinate.

Note The imref2d object has several methods that facilitate conversion between
intrinsic coordinates, world coordinates and array indices.

Examples

Convert Axes Coordinate into Intrinsic Coordinate

Display image.

h = imshow('pout.tif');

1 Functions — Alphabetical List

1-82

Get the size of the image.

[nrows,ncols] = size(get(h,'CData'));

Get the image XData and YData.

xdata = get(h,'XData')

xdata = 1×2

 1 240

ydata = get(h,'YData')

ydata = 1×2

 axes2pix

1-83

 1 291

Convert an axes coordinate into an intrinsic coordinate for the x and y dimensions.

px = axes2pix(ncols,xdata,30)

px = 30

py = axes2pix(nrows,ydata,30)

py = 30

Convert Axes Coordinate to Intrinsic Coordinate with Nondefault XData and
YData

Read an image and display it. Get the size of the image.

I = imread('pout.tif');
[nrows,ncols] = size(I)

nrows = 291

ncols = 240

Create a spatial referencing object for this image, with default property settings. By
default, the upper-left corner of the image has intrinsic coordinate (1,1).

RI = imref2d(size(I));
h = imshow(I,RI);

1 Functions — Alphabetical List

1-84

xData = get(h,'XData')

xData = 1×2

 1 240

yData = get(h,'YData')

yData = 1×2

 1 291

For illustrative purposes, specify an arbitrary image extent in the x- and y-directions. This
example shifts the image up by 20 pixels and to the right by 400 pixels. The example also

 axes2pix

1-85

shifts the image to the right by 100 pixels and compresses the image horizontally by a
factor of 2.

xWorldLimits = 0.5*xData + 400;
yWorldLimits = yData - 20;
RA = imref2d(size(I),xWorldLimits,yWorldLimits);
imshow(I,RA)

Select a pixel, such as a pixel near the nose of the child. This pixel occurs around the axes
coordinate (x, y) = (450, 90) in the modified image.

Convert the axes coordinate to an intrinsic coordinate.

px = axes2pix(ncols,xWorldLimits,450)

px = 100

py = axes2pix(nrows,yWorldLimits,90)

1 Functions — Alphabetical List

1-86

py = 110

The intrinsic coordinate of the point is at (100, 110). This agrees with the location of the
nose in the original image.

Input Arguments
n — Number of image rows or columns
positive integer

Number of image rows or columns, specified as a positive integer. n is the number of
image columns for the x-coordinate, or the number of image rows for the y-coordinate.

extent — Image world extent
2-element numeric vector

Image world extent, specified as a 2-element numeric vector. extent is returned by
get(image_handle,'XData') or get(image_handle,'YData').

axesCoord — Axes coordinates to convert
numeric vector

Axes coordinate to convert to intrinsic coordinates, specified as a numeric vector.

Output Arguments
pixelCoord — Intrinsic coordinates
numeric vector

Intrinsic coordinates, returned as a numeric vector.
Data Types: double

Tips
• axes2pix performs minimal checking on the validity of the n, axesCoord, or extent

arguments. For example, axes2pix can extrapolate from extent to return a negative
coordinate. The function calling axes2pix bears responsibility for error checking.

 axes2pix

1-87

See Also
bwselect | impixel | impixelinfo | improfile | imref2d | roipoly

Topics
“Image Coordinate Systems”

Introduced before R2006a

1 Functions — Alphabetical List

1-88

bestblk
Determine optimal block size for block processing

Syntax
siz = bestblk([M N],k)
[m,n] = bestblk([M N],k)

Description
siz = bestblk([M N],k) returns the optimal block size for block processing of an M-
by-N image. The optimal block size minimizes the padding required along the outer partial
blocks. k specifies the maximum row and column dimensions for the block.

[m,n] = bestblk([M N],k) returns the row and column dimensions for the block in m
and n, respectively.

Examples

Determine Optimal Block Size

siz = bestblk([640 800],72)

siz = 1×2

 64 50

Input Arguments
[M N] — Image size
2-element vector of positive integers

 bestblk

1-89

Image size, specified as a 2-element vector of positive integers. M is the number of rows
and N is the number of columns in the image.
Data Types: double

k — Maximum number of block rows or columns
100 (default) | positive integer

Maximum number of block rows or columns, specified as a positive integer.
Data Types: double

Output Arguments
siz — Optimal block size
2-element numeric row vector

Optimal block size, returned as a 2-element numeric row vector. siz is equivalent to [m
n].

m, n — Optimal number of block rows or columns
numeric scalar

Optimal number of block rows or columns, returned as a numeric scalar.

Algorithms
The algorithm for determining the optimal value of m from M and k is:

• If M is less than or equal to k, return M.
• If M is greater than k, consider all values between min(M/10,k/2) and k. Return the

value that minimizes the padding required.

The same algorithm is used to find the optimal value of n from N and k.

See Also
blockproc

1 Functions — Alphabetical List

1-90

Introduced before R2006a

 bestblk

1-91

bfscore
Contour matching score for image segmentation

Syntax
score = bfscore(prediction,groundTruth)
[score,precision,recall] = bfscore(prediction,groundTruth)
[___] = bfscore(prediction,groundTruth,threshold)

Description
score = bfscore(prediction,groundTruth) computes the BF (Boundary F1)
contour matching score between the predicted segmentation in prediction and the true
segmentation in groundTruth. prediction and groundTruth can be a pair of logical
arrays for binary segmentation, or a pair of label or categorical arrays for multiclass
segmentation.

[score,precision,recall] = bfscore(prediction,groundTruth) also returns
the precision and recall values for the prediction image compared to the
groundTruth image.

[___] = bfscore(prediction,groundTruth,threshold) computes the BF score
using a specified threshold as the distance error tolerance, to decide whether a boundary
point has a match or not.

Examples

Compute BF Score for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the
result.

A = imread('hands1.jpg');
I = rgb2gray(A);

1 Functions — Alphabetical List

1-92

figure
imshow(I)
title('Original Image')

Use the active contours (snakes) method to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read the ground truth segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the BF score of the active contours segmentation against the ground truth.

similarity = bfscore(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

 bfscore

1-93

figure
imshowpair(BW, BW_groundTruth)
title(['BF Score = ' num2str(similarity)])

Compute BF Score for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then
computes the BF score for each region.

Read an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The
first region classifies the yellow flower. The second region classifies the green stem and
leaves. The last region classifies the brown dirt in two separate patches of the image.
Regions are specified by a 4-element vector, whose elements indicate the x- and y-

1 Functions — Alphabetical List

1-94

coordinate of the upper left corner of the ROI, the width of the ROI, and the height of the
ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

figure
imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed regions')

 bfscore

1-95

1 Functions — Alphabetical List

1-96

Segment the image into three regions using geodesic distance-based color segmentation.

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth),'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the BF score for each segmented region.

similarity = bfscore(L, L_groundTruth)

 bfscore

1-97

similarity = 3×1

 0.7992
 0.5333
 0.7466

The BF score is noticeably smaller for the second region. This result is consistent with the
visual comparison of the segmentation results, which erroneously classifies the dirt in the
lower right corner of the image as leaves.

Input Arguments
prediction — Predicted segmentation
2-D or 3-D logical, numeric, or categorical array

Predicted segmentation, specified as a 2-D or 3-D logical, numeric, or categorical
array. If prediction is a numeric array, then it represents a label array and must contain
nonnegative integers of data type double.
Data Types: logical | double | categorical

groundTruth — Ground truth segmentation
2-D or 3-D logical, numeric, or categorical array

Ground truth segmentation, specified as a 2-D or 3-D logical, numeric, or categorical
array of the same size and data type as prediction. If groundTruth is a numeric array,
then it represents a label array and must contain nonnegative integers of data type
double.
Data Types: logical | double | categorical

threshold — Distance error tolerance threshold
positive scalar

Distance error tolerance threshold in pixels, specified as a positive scalar. The threshold
determines whether a boundary point has a match or not. If threshold is not specified,
then the default value is 0.75% of the length of the image diagonal.
Example: 3
Data Types: double

1 Functions — Alphabetical List

1-98

Output Arguments
score — BF score
numeric scalar | numeric vector

BF score, returned as a numeric scalar or vector with values in the range [0, 1]. A score
of 1 means that the contours of objects in the corresponding class in prediction and
groundTruth are a perfect match. If the input arrays are:

• logical arrays, score is a scalar and represents the BF score of the foreground.
• label or categorical arrays, score is a vector. The first coefficient in score is the BF

score for the first foreground class, the second coefficient is the score for the second
foreground class, and so on.

precision — Precision
numeric scalar | numeric vector

Precision, returned as a numeric scalar or numeric vector with values in the range [0, 1].
Each element indicates the precision of object contours in the corresponding foreground
class.

Precision is the ratio of the number of points on the boundary of the predicted
segmentation that are close enough to the boundary of the ground truth segmentation to
the length of the predicted boundary. In other words, precision is the fraction of
detections that are true positives rather than false positives.

recall — Recall
numeric scalar | numeric vector

Recall, returned as a numeric scalar or numeric vector with values in the range [0, 1].
Each element indicates the recall of object contours in the corresponding foreground
class.

Recall is the ratio of the number of points on the boundary of the ground truth
segmentation that are close enough to the boundary of the predicted segmentation to the
length of the ground truth boundary. In other words, recall is the fraction of true positives
that are detected rather than missed.

 bfscore

1-99

Definitions

BF (Boundary F1) Score
The BF score measures how close the predicted boundary of an object matches the
ground truth boundary.

The BF score is defined as the harmonic mean (F1-measure) of the precision and
recall values with a distance error tolerance to decide whether a point on the predicted
boundary has a match on the ground truth boundary or not.

score = 2 * precision * recall / (recall + precision)

References
[1] Csurka, G., D. Larlus, and F. Perronnin. "What is a good evaluation measure for

semantic segmentation?" Proceedings of the British Machine Vision Conference,
2013, pp. 32.1-32.11.

See Also
dice | jaccard

Introduced in R2017b

1 Functions — Alphabetical List

1-100

blendexposure
Create well-exposed image from images with different exposures

Syntax
J = blendexposure(I1,I2,...,In)
J = blendexposure(I1,I2,...,In,Name,Value)

Description
J = blendexposure(I1,I2,...,In) blends grayscale or RGB images that have
different exposures. blendexposure blends the images based on their contrast,
saturation, and well-exposedness, and returns the well-exposed image, J.

J = blendexposure(I1,I2,...,In,Name,Value) blends images that have different
exposures, using name-value pairs to adjust how each input image contributes to the
blended image.

Examples

Blend Images with Strong Light Sources

Read a series of images with different exposures that were captured from a fixed camera
with no moving objects in the scene.

I1 = imread('car_1.jpg');
I2 = imread('car_2.jpg');
I3 = imread('car_3.jpg');
I4 = imread('car_4.jpg');

Display the images. In the underexposed images, only bright regions like headlights have
informative details. Conversely, the headlights are saturated in the overexposed images,
and the best contrast comes from darker regions such as the brick floor and the roof.

montage({I1,I2,I3,I4})

 blendexposure

1-101

Blend the images using exposure fusion. By default, the blendexposure function
attempts to suppress highlights from strong light sources. For comparison, also blend the
images without suppressing the highlights. Display the two results.

E = blendexposure(I1,I2,I3,I4);
F = blendexposure(I1,I2,I3,I4,'ReduceStrongLight',false);
montage({E,F})
title('Exposure Fusion With (Left) and Without (Right) Strong Light Suppression')

1 Functions — Alphabetical List

1-102

In the fused images, bright regions and dark regions retain informative details. With
strong light suppression, the shape of the headlights is identifiable, and saturated pixels
do not extend past the boundary of the headlights. Without strong light perception, the
shape of the headlights is not identifiable, and there are saturated pixels in the reflection
of the headlights on the ground and on some parts of the other cars.

Blend Images of Stationary Scene Using Exposure Fusion

Read a series of images with different exposures. The images were captured from a fixed
camera, and there are no moving objects in the scene.

I1 = imread('office_1.jpg');
I2 = imread('office_2.jpg');
I3 = imread('office_3.jpg');
I4 = imread('office_4.jpg');
I5 = imread('office_5.jpg');
I6 = imread('office_6.jpg');
montage({I1,I2,I3,I4,I5,I6})
title('Images with Different Exposures')

 blendexposure

1-103

Blend the registered images using exposure fusion, optionally varying the weight of
contrast, saturation and well-exposedness in the fusion, and without reducing strong light
sources. Display the result.

1 Functions — Alphabetical List

1-104

E = blendexposure(I1,I2,I3,I4,I5,I6,'contrast',0.8,...
 'saturation',0.8,'wellexposedness',0.8,'reduceStrongLight',false);
imshow(E)
title('Blended Image Using Exposure Fusion')

Input Arguments
I1,I2,...,In — Grayscale or RGB images
m-by-n numeric matrices | m-by-n-by-3 numeric arrays

Grayscale or RGB images, specified as a series of m-by-n numeric matrices or m-by-n-by-3
numeric arrays. All images must have the same size and data type.
Data Types: single | double | uint8 | uint16

 blendexposure

1-105

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: blendexposure(I1,I2,I3,'Contrast',0.5,'Saturation',0.9)

Contrast — Relative weight given to contrast
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to contrast during blending, specified as the comma-separated pair
consisting of 'Contrast' and a numeric scalar in the range [0, 1].

Saturation — Relative weight given to saturation
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to saturation during blending, specified as the comma-separated
pair consisting of 'Saturation' and a numeric scalar in the range [0, 1].

Wellexposedness — Relative weight given to exposure quality
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to exposure quality during blending, specified as the comma-
separated pair consisting of 'Wellexposedness' and a numeric scalar in the range [0,
1]. The exposure quality of each image is based on the divergence of the pixel intensities
from a model of pixels with good exposure.

ReduceStrongLight — Reduce strong light
true (default) | false

Reduce strong light, specified as the comma-separated pair consisting of
'ReduceStrongLight' and true or false. If 'ReduceStrongLight' is true, then
blendexposure attempts to suppress highlights from strong light sources in the images.

Note If the input images do not have strong light sources and you specify
ReduceStrongLight as true, then the output image J has less contrast.

1 Functions — Alphabetical List

1-106

Output Arguments
J — Fused image
numeric matrix or array

Fused image, returned as a numeric matrix or array of the same size and data type as the
input images I1,I2,...,In.

Tips
• To blend images of moving scenes or with camera jitter, first register the images by

using the imregmtb function. imregmtb considers only translations, not rotations or
other types of geometric transformations, when registering the images.

Algorithms
The blendexposure function computes the weight of each quality measure as follows:

• Contrast weights are computed using Laplacian filtering.
• Saturation weights are computed from the standard deviation of each image.
• Well-exposedness is determined by comparing parts of the image to a Gaussian

distribution with a mean of 0.5 and a standard deviation of 0.2.
• Strong light reduction weights are computed as a mixture of the other three weights,

multiplied by a Gaussian distribution with a fixed mean and variance.

The weights are decomposed using Gaussian pyramids for seamless blending with a
Laplacian pyramid of the corresponding image, which helps preserve scene details.

References
[1] Mertens, T., J. Kautz, and F. V. Reeth. "Exposure Fusion." Pacific Graphics 2007:

Proceedings of the Pacific Conference on Computer Graphics and Applications.
Maui, HI, 2007, pp. 382–390.

 blendexposure

1-107

See Also
imregmtb | makehdr | tonemap

Introduced in R2018a

1 Functions — Alphabetical List

1-108

blockproc
Distinct block processing for image

Syntax
B = blockproc(A,[m n],fun)
B = blockproc(src_filename,[m n],fun)
B = blockproc(adapter,[m n],fun)
blockproc(___ ,Name,Value)

Description
B = blockproc(A,[m n],fun) processes the image A by applying the function fun to
each distinct block of size [m n] and concatenating the results into the output matrix, B.

B = blockproc(src_filename,[m n],fun) processes the image with file name
src_filename, reading and processing one block at a time. This syntax is useful for
processing large images.

B = blockproc(adapter,[m n],fun) processes the source image specified by
adapter, an ImageAdapter object.

blockproc(___ ,Name,Value) processes the input image, specifying arguments and
corresponding values that control various aspects of the block behavior. Argument names
are case insensitive.

Examples

Create Thumbnail of Image

Read image into the workspace.

I = imread('pears.png');

 blockproc

1-109

Create block processing function.

fun = @(block_struct) imresize(block_struct.data,0.15);

Process the image, block-by-block.

I2 = blockproc(I,[100 100],fun);

Display the original image and the processed image.

figure;
imshow(I);

figure;
imshow(I2);

1 Functions — Alphabetical List

1-110

Set Pixels in 32-by-32 blocks to Standard Deviation

Create block processing function.

fun = @(block_struct) ...
 std2(block_struct.data) * ones(size(block_struct.data));

Perform the block processing operation, specifying the input image by filename.

I2 = blockproc('moon.tif',[32 32],fun);

Display the original image and the processed version.

figure;
imshow('moon.tif');

 blockproc

1-111

1 Functions — Alphabetical List

1-112

figure;
imshow(I2,[]);

 blockproc

1-113

1 Functions — Alphabetical List

1-114

Switch Red and Green Bands of RGB Image

Read image into the workspace.

I = imread('peppers.png');

Create block processing function.

fun = @(block_struct) block_struct.data(:,:,[2 1 3]);

Perform the block processing operation.

blockproc(I,[200 200],fun,'Destination','grb_peppers.tif');

Display original image and the processed image.

figure;
imshow('peppers.png');

 blockproc

1-115

figure;
imshow('grb_peppers.tif');

1 Functions — Alphabetical List

1-116

Convert Large TIFF Image into JPEG2000 Image

Note: To run this example, you must replace 'largeImage.tif' with the name of your
file.

Create block processing function.

fun = @(block_struct) block_struct.data;

Convert a TIFF image into a new JPEG2000 image. Replace 'largeImage.tif' with the
name of an actual image file.

 blockproc

1-117

blockproc('largeImage.tif',[1024 1024],fun,'Destination','New.jp2');

Input Arguments
A — Input image
numeric matrix

Input image, specified as a numeric matrix.

src_filename — Source file name
character vector

Source file name, specified as a character vector. Files must have one of these file types
and must be named with one of the listed file extensions.

• TIFF (*.tif, *.tiff)
• JPEG2000 (*.jp2, *.jpf, *.jpx, *.j2c, *.j2k)

Data Types: char

adapter — Image adapter
ImageAdapter object

Image adapter, specified as an ImageAdapter object. An ImageAdapter is a user-
defined class that provides blockproc with a common API for reading and writing to a
particular image file format. For more information, see “Perform Block Processing on
Image Files in Unsupported Formats”.

[m n] — Block size
2-element vector

Block size, specified as a 2-element vector. m is the number of rows and n is the number of
columns in the block.

fun — Function handle
handle

Function handle, specified as a handle. The function must accept a block_struct on page
1-121 as input and return a matrix, vector, or scalar. If fun returns empty, then
blockproc does not generate any output and returns empty after processing all blocks.

1 Functions — Alphabetical List

1-118

For more information about function handles, see “Create Function Handle” (MATLAB).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'BorderSize',[8 4]

Destination — Destination
character vector | ImageAdapter object

Destination for the output, specified as the comma-separated pair consisting of
'Destination' and one of the following.

• A character vector with a destination filename. Files must have one of these file types
and must be named with one of the listed file extensions.

• TIFF (*.tif, *.tiff)
• JPEG2000 (*.jp2, *.j2c, *.j2k)

If a file with this name exists, it is overwritten.
• An ImageAdapter object, which provides a common API for reading and writing to a

particular image file format. For more information, see “Perform Block Processing on
Image Files in Unsupported Formats”.

When you specify the 'Destination' argument, blockproc does not return the
processed image as an output argument, but instead writes the output to the
'Destination'. The 'Destination' argument is useful when you expect your output
to be too large to fit into memory. It provides a workflow for file-to-file image processing
for arbitrarily large images.

Note You cannot request an output argument when the'Destination' argument is
specified.

BorderSize — Border size
[0 0] (default) | 2-element vector of positive integers

 blockproc

1-119

Number of border pixels to add to each block, specified as the comma-separated pair
consisting of 'BorderSize' and a 2-element vector of positive integers, of the form [v
h]. The function adds v rows above and below each block and h columns left and right of
each block. The size of each resulting block is:

[m+2*v, n+2*h]

By default, the function automatically removes the border from the result of fun. See the
TrimBorder argument for more information.

The function pads blocks with borders extending beyond the image edges with zeros.

PadPartialBlocks — Pad partial blocks
false (default) | true

Pad partial blocks to make them full-sized, specified as the comma-separated pair
consisting of 'PadPartialBlocks' and false or true. Partial blocks arise when the
image size is not exactly divisible by the block size. If they exist, partial blocks lie along
the right and bottom edge of the image.

When set to true, blockproc pads partial blocks to make them full-sized m-by-n blocks.
The default is false, meaning that the function does not pad the partial blocks, but
processes them as-is. blockproc uses zeros to pad partial blocks when necessary.

PadMethod — Pad method
0 (default) | 'replicate' | 'symmetric' | numeric scalar

Method used to pad the image boundary, specified as the comma-separated pair
consisting of 'PadMethod' and one of the following.

Value Description
'replicate' Repeat border elements.
'symmetric' Pad image with mirror reflections of itself.
numeric scalar Pad image with a scalar value. By default, the image

boundary is padded with the value 0.

Data Types: char | string

TrimBorder — Remove border pixels
true (default) | false

1 Functions — Alphabetical List

1-120

Remove border pixels from the output of the user function, specified as the comma-
separated pair consisting of 'TrimBorder' and true or false. When set to true, the
blockproc function removes border pixels from the output of the user function, fun. The
function removes v rows from the top and bottom of the output of fun, and h columns
from the left and right edges. The BorderSize argument defines v and h.

UseParallel — Use parallel processing
false (default) | true

Use parallel processing, specified as the comma-separated pair consisting of
'UseParallel' and false or true. If you have Parallel Computing Toolbox™ installed,
when set to true, MATLAB automatically opens a parallel pool of workers on your local
machine. blockproc runs the computation across the available workers. For more
information, see “Parallel Block Processing on Large Image Files”.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as the comma-separated pair consisting of
'DisplayWaitbar' and true or false. When set to true, blockproc displays a
waitbar to indicate progress for long-running operations. To prevent blockproc from
displaying a waitbar, set DisplayWaitbar to false.

Output Arguments
B — Output matrix
numeric matrix

Output matrix, returned as a numeric matrix.

Definitions

Block Struct
A block struct is a MATLAB structure that contains the block data and other information
about the block. Fields in the block struct are:

 blockproc

1-121

Field Description
border 2-element vector of the form [v h]. The border field specifies

the size of the vertical and horizontal padding around the block of
data. See the BorderSize argument for more information.

blockSize 2-element vector of the form [rows cols]. The blockSize field
specifies the size of the block data. If a border has been specified,
the size does not include the border pixels.

data m-by-n or m-by-n-by-p matrix of block data.
imageSize 2-element vector of the form [rows cols]. The imageSize field

specifies the full size of the input image.
location 2-element vector of the form [row col]. The location field

specifies the position of the first pixel (minimum-row, minimum-
column) of the block data in the input image. If a border has been
specified, the location refers to the first pixel of the discrete block
data, not the added border pixels.

Tips
• Choosing an appropriate block size can significantly improve performance. For more

information, see “Block Size and Performance”.
• If the output matrix B is too large to fit into memory, omit the output argument and

instead use the Destination name-value pair argument to write the output to a file.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function supports automatic parallel processing (requires Parallel Computing
Toolbox). To run in parallel, specify the 'UseParallel' argument as true. For more
information, see “Parallel Block Processing on Large Image Files”.

1 Functions — Alphabetical List

1-122

• Control parallel behavior with the parallel preferences, including scaling up to a
cluster. See parpool for information on configuring your parallel environment.

• To run in parallel, this function requires a parallel pool with SPMD enabled.
• Parallel processing does not support an adapter source image.

See Also
ImageAdapter | colfilt | nlfilter

Topics
“Distinct Block Processing”
“Parallel Block Processing on Large Image Files”

Introduced in R2009b

 blockproc

1-123

boundarymask
Find region boundaries of segmentation

Syntax
mask = boundarymask(L)
mask = boundarymask(BW)
mask = boundarymask(___ ,conn)

Description
mask = boundarymask(L) computes a mask that represents the region boundaries for
the input label matrix L. The output, mask, is a logical image that is true at boundary
locations and false at non-boundary locations.

mask = boundarymask(BW) computes the region boundaries for the input binary image
BW.

mask = boundarymask(___ ,conn) computes the region boundaries using a
connectivity specified by conn.

Examples

Create Rasterized Grid of Region Boundaries

Read image into the workspace.

A = imread('kobi.png');

Create a superpixel representation of the image, returned as a label matrix.

L = superpixels(A,100);

Create the rasterized grid of the regions in the label matrix.

1 Functions — Alphabetical List

1-124

mask = boundarymask(L);

Display the boundary mask binary image.

figure
imshow(mask,'InitialMagnification',67)

 boundarymask

1-125

Input Arguments
L — Label matrix
2-D numeric matrix | 2-D logical matrix

Label matrix, specified as a 2-D numeric matrix of nonnegative numbers or a 2-D logical
matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

BW — Binary image
numeric matrix | logical matrix

Binary image, specified as a numeric or logical matrix of the same size as L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 4 or 8.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Functions — Alphabetical List

1-126

Output Arguments
mask — Rasterized grid of region boundaries
2-D logical matrix

Rasterized grid of region boundaries, specified as a 2-D logical matrix of the same size as
the input image. A pixel in mask is true when the corresponding pixel in the input image
with value P has a neighboring pixel with a different value than P.
Data Types: logical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• boundarymask supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
boundarymask generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the input argument conn must be a compile-time constant.

See Also
imoverlay | label2idx | superpixels

Introduced in R2016a

 boundarymask

1-127

brisque
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) no-reference image
quality score

Syntax
score = brisque(A)
score = brisque(A,model)

Description
score = brisque(A) calculates the no-reference image quality score for image A using
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). brisque compare A
to a default model computed from images of natural scenes with similar distortions. A
smaller score indicates better perceptual quality.

score = brisque(A,model) calculates the image quality score using a custom feature
model.

Examples

Calculate BRISQUE Score Using Default Feature Model

Compute the BRISQUE score for a natural image and its distorted versions using the
default model.

Read an image into the workspace. Create copies of the image with noise and blurring
distortions.

I = imread('lighthouse.png');
Inoise = imnoise(I,'salt & pepper',0.02);
Iblur = imgaussfilt(I,2);

Display the images.

1 Functions — Alphabetical List

1-128

montage({I,Inoise,Iblur},'Size',[1 3],'ThumbnailSize',([]))
title('Original Image | Noisy Image | Blurry Image')

Calculate the BRISQUE score for each image using the default model, and display the
score.

brisqueI = brisque(I);
fprintf('BRISQUE score for original image is %0.4f.\n',brisqueI)

BRISQUE score for original image is 20.6586.

brisqueInoise = brisque(Inoise);
fprintf('BRISQUE score for noisy image is %0.4f.\n',brisqueInoise)

BRISQUE score for noisy image is 52.6074.

brisqueIblur = brisque(Iblur);
fprintf('BRISQUE score for blurry image is %0.4f.\n',brisqueIblur)

BRISQUE score for blurry image is 47.7552.

The original undistorted image has the best perceptual quality and therefore the lowest
BRISQUE score.

 brisque

1-129

Calculate BRISQUE Score Using Custom Feature Model

Train a custom BRISQUE model from a set of quality-aware features and corresponding
human opinion scores. Use the custom model to calculate a BRISQUE score for an image
of a natural scene.

Save images from an image datastore. These images all have compression artifacts
resulting from JPEG compression.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Specify the opinion score for each image. The following differential mean opinion score
(DMOS) values are for illustrative purposes only. They are not real DMOS values obtained
through experimentation.

opinionScores = 100*rand(1,size(imds.Files,1));

Create the custom model of quality-aware features using the image datastore and the
opinion scores. Because the scores are random, the property values will vary.

model = fitbrisque(imds,opinionScores')

Extracting features from 37 images.
..
Completed 4 of 37 images. Time: Calculating...
...
Completed 13 of 37 images. Time: 00:26 of 01:02
...
Completed 23 of 37 images. Time: 00:37 of 00:55
.....Training support vector regressor...

Done.

model =
 brisqueModel with properties:

 Alpha: [35x1 double]
 Bias: 56.2632
 SupportVectors: [35x36 double]
 Kernel: 'gaussian'
 Scale: 0.2717

1 Functions — Alphabetical List

1-130

Read an image of a natural scene that has the same type of distortion as the training
images. Display the image.

I = imread('car1.jpg');
imshow(I)

Calculate the BRISQUE score for the image using the custom model. Display the score.

brisqueI = brisque(I,model);
fprintf('BRISQUE score for the image is %0.4f.\n',brisqueI)

BRISQUE score for the image is 78.7367.

 brisque

1-131

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale or RGB image.
Data Types: single | double | int16 | uint8 | uint16

model — Custom model
brisqueModel object

Custom model trained on a set of quality-aware features, specified as a brisqueModel
object. model is derived from natural scene statistics.

Output Arguments
score — No-reference image quality score
nonnegative scalar

No-reference image quality score, returned as a nonnegative scalar. The BRISQUE score
is usually in the range [0, 100]. Lower values of score reflect better perceptual quality of
image A with respect to the input model.
Data Types: double

Algorithms
brisque predicts the BRISQUE score by using a support vector regression (SVR) model
trained on an image database with corresponding differential mean opinion score (DMOS)
values. The database contains images with known distortion such as compression
artifacts, blurring, and noise, and it contains pristine versions of the distorted images.
The image to be scored must have at least one of the distortions for which the model was
trained.

1 Functions — Alphabetical List

1-132

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in

the Spatial Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12,
December 2012, pp. 4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality
Evaluation Engine." Presentation at the 45th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2011.

See Also
Functions
fitbrisque | fitniqe | niqe | piqe

Objects
brisqueModel

Topics
“Image Quality Metrics”

Introduced in R2017b

 brisque

1-133

brisqueModel
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) model

Description
A brisqueModel object encapsulates a model used to calculate the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) perceptual quality score of an image. The
object contains a support vector regressor (SVR) model.

Creation
You can create a brisqueModel object using the following methods:

• fitbrisque — Train a BRISQUE model containing a custom trained support vector
regressor (SVR) model. Use this function if you do not have a pretrained model.

• The brisqueModel function described here. Use this function if you have a
pretrained SVR model, or if the default model is sufficient for your application.

Syntax
m = brisqueModel
m = brisqueModel(alpha,bias,supportVectors,scale)

Description
m = brisqueModel creates a BRISQUE model object with default property values that
are derived from the LIVE IQA image database [1] [2].

m = brisqueModel(alpha,bias,supportVectors,scale) creates a custom
BRISQUE model and sets the Alpha on page 1-0 , Bias on page 1-0 ,
SupportVectors on page 1-0 , and Scale on page 1-0 properties. You must
provide all four arguments to create a custom model.

1 Functions — Alphabetical List

1-134

Note It is difficult to predict good property values without running an optimization
routine. Use this syntax only if you are creating a brisqueModel object using a
pretrained SVR model with known property values.

Properties
Alpha — Coefficients obtained by solving dual problem
m-by-1 numeric vector

Coefficients obtained by solving the dual problem, specified as an m-by-1 numeric vector.
The length of Alpha must match the number of support vectors (the number of rows of
SupportVectors on page 1-0).
Example: rand(10,1)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Bias — Bias term in SVM model
43.4582 (default) | numeric scalar

Bias term in SVM model, specified as a numeric scalar.
Example: 47.4
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SupportVectors — Support vectors
m-by-36 numeric vector

Support vectors, specified as an m-by-36 numeric vector. The number of rows, m, matches
the length of Alpha on page 1-0 .
Example: rand(10,36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Kernel — Kernel function
'gaussian' (default)

This property is read-only.

Kernel function, specified as 'gaussian'.

 brisqueModel

1-135

Scale — Kernel scale factor
0.3210 (default) | numeric scalar

Kernel scale factor, specified as a numeric scalar. The scale factor divides predictor values
in the SVR kernel.
Example: 0.25
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Examples

Create BRISQUE Model Object with Default Properties
model = brisqueModel

model =
 brisqueModel with properties:

 Alpha: [593x1 double]
 Bias: 43.4582
 SupportVectors: [593x36 double]
 Kernel: 'gaussian'
 Scale: 0.3210

Create BRISQUE Model Object with Custom Properties

Create a brisqueModel object using precomputed Alpha, Bias, SupportVectors, and
Scale properties. Random initializations are shown for illustrative purposes only.

model = brisqueModel(rand(10,1),47,rand(10,36),0.25)

model =
 brisqueModel with properties:

 Alpha: [10x1 double]
 Bias: 47
 SupportVectors: [10x36 double]
 Kernel: 'gaussian'

1 Functions — Alphabetical List

1-136

 Scale: 0.2500

You can use the custom model to calculate the BRISQUE score for an image.

I = imread('lighthouse.png');
score = brisque(I,model)

score = 47

Algorithms
The support vector regressor (SVR) calculates regression scores for predictor matrix X as:

F = G(X,SupportVectors on page 1-0) × Alpha on page 1-0 + Bias
on page 1-0

G(X,SupportVectors) is an n-by-m matrix of kernel products for n rows in X and m rows
in SupportVectors. The SVR has 36 predictors, which determine the number of
columns in SupportVectors.

The SVR computes a kernel product between vectors x and z using Kernel on page 1-
0 (x/Scale on page 1-0 ,z/Scale).

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in

the Spatial Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12,
December 2012, pp. 4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality
Evaluation Engine." Presentation at the 45th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2011.

See Also
Functions
brisque | fitbrisque

 brisqueModel

1-137

Objects
CompactRegressionSVM | niqeModel

Topics
“Image Quality Metrics”
“Train and Use a No-Reference Quality Assessment Model”

Introduced in R2017b

1 Functions — Alphabetical List

1-138

burstinterpolant
Create high-resolution image from set of low-resolution burst mode images

Syntax
B = burstinterpolant(imds,tforms,scale)
B = burstinterpolant(images,tforms,scale)

Description
B = burstinterpolant(imds,tforms,scale) creates a high-resolution image, B
from a set of low-resolution burst mode images stored as an ImageDatastore object,
imds. scale specifies the magnification value for high-resolution image. The size of B is
scale times the size of input images.

B = burstinterpolant(images,tforms,scale) creates a high-resolution image, B
from a set of low-resolution burst mode images stored in cell array images. The size of B
is scale times the size of input images.

Examples

Create High-Resolution Image from Burst Mode Images in Image Datastore

Specify the location of low-resolution burst mode images to be stored as an image
datastore object. The input images are 2-D RGB images.

setDir = fullfile(toolboxdir('images'),'imdata','notebook');

Use the imageDatastore function to read and store the low-resolution burst mode
images as an image datastore object.

imds = imageDatastore(setDir,'FileExtensions',{'.png'});

Display the images as a montage.

 burstinterpolant

1-139

montage(imds)
title('Set of Low-Resolution Burst Mode Images')

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into
lightness images by using rgb2lightness function. The burst mode lightness images
are stored as an image datastore object.

imdsTransformed = transform(imds,@(x) rgb2lightness(x));

Read the first lightness image into the workspace and use it as the reference image for
estimating geometric transformations.

refImg = read(imdsTransformed);

1 Functions — Alphabetical List

1-140

Get the optimal configuration parameters required for registration of the burst mode
lightness images by using imregconfig function. Specify the image capture modality as
'monomodal'.

[optimizer,metric] = imregconfig('monomodal');

Find the total number of images stored in the image datastore object by using
numpartitions function.

numImages = numpartitions(imds);

Create an array of 2-D affine transformation object to store 2-D affine transformations of
each low-resolution burst mode lightness image excluding the reference image. Set the
number of rows in the transformation array as total number of images in the image
datastore object minus one.

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each
low-resolution burst mode lightness image with respect to the reference image.

idx = 1;
while hasdata(imdsTransformed)
 movingImg = read(imdsTransformed);
 tforms(idx) = imregtform(refImg,movingImg,'rigid',optimizer,metric);
 idx = idx + 1;
end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.

scale = 4;

Create the high-resolution image from the set of low-resolution burst mode RGB images.
Specify the transformation parameter to robustly estimate the high-resolution pixel
values.

B = burstinterpolant(imds,tforms,scale);

Display the high-resolution image.

figure('WindowState','maximized')
imshow(B)
title ('High-Resolution Image')

 burstinterpolant

1-141

Read a low-resolution burst mode RGB image from the image datastore and display its
size.

Img = read(imds);
inputDim = [size(Img,1) size(Img,2)]

inputDim = 1×2

1 Functions — Alphabetical List

1-142

 161 186

Display the size of the high-resolution image. Because the scale factor is 4, the size of the
high-resolution image is 4 times the size of the low-resolution burst mode RGB images.

outputDim = [size(B,1) size(B,2)]

outputDim = 1×2

 644 744

Create High-Resolution Image from Cell Array of Burst Mode Images

Load cell array data containing the low-resolution burst mode image into the workspace.
The input images are monomodal and 2-D RGB images.

load('LRData')

Display images in the cell array data as a montage.

montage(images,'Size',[2 4],'BackgroundColor',[1 1 1]);
title('Set of Low-Resolution Burst Mode Images')

 burstinterpolant

1-143

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into
lightness images by using rgb2lightness function.

imagesT = cellfun(@rgb2lightness,images,'UniformOutput',false);

Read the first lightness image into the workspace and use it as the reference image for
estimating geometric transformations.

refImg = imagesT{1};

Get the optimal configuration parameters required for registration of the burst mode
lightness images by using imregconfig. Specify the image capture modality as
'monomodal'.

[optimizer,metric] = imregconfig('monomodal');

Find the total number of images stored in the cell array.

numImages = length(images);

Create an array of 2-D affine transformation object to store 2-D affine transformations of
each low-resolution burst mode lightness image excluding the reference image. Set the
number of rows in the transformation array as total number of images in the cell array
minus one.

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each
low-resolution burst mode lightness image with respect to the reference image.

for i= 2:length(images)
 movingImg = imagesT{i};
 tforms(i-1) = imregtform(refImg,movingImg,'rigid',optimizer,metric);
end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.

scale = 3;

1 Functions — Alphabetical List

1-144

Construct the high-resolution image from the set of low-resolution burst mode RGB
images. Specify the transformation parameter to robustly estimate the high-resolution
pixel values.

B = burstinterpolant(images,tforms,scale);

Display the high-resolution image.

figure
imshow(B);
title ('High-Resolution Image')

Read a low-resolution burst mode RGB image from the cell array and display its size.

Img = images{1};
inputDim = [size(Img,1) size(Img,2)]

inputDim = 1×2

 burstinterpolant

1-145

 154 265

Display the size of the high-resolution image. Because the scale factor is 3, the size of the
high-resolution image is 3 times the size of the low-resolution burst mode images.

ouputDim = [size(B,1) size(B,2)]

ouputDim = 1×2

 462 795

Input Arguments
imds — Input image datastore
ImageDatastore object

Input image datastore, specified as an ImageDatastore object. The input image
datastore contains multiple low-resolution burst mode images used for creating the high-
resolution image output.

• Images in the input image datastore must be 2-D grayscale images of size m-by-n or 2-
D RGB images of size m-by-n-by-3.

• All images in the input image datastore must be of the same size and data type.
• The number of images in the input image datastore must be greater than or equal to 2.

Data Types: single | double | uint8 | uint16

images — Input images
k-by-1 cell array

Input images, specified as a k-by-1 cell array. k is the number of input images stored in
the cell array. All the input images must have same size.
Data Types: single | double | uint8 | uint16

tforms — Transformation parameter
affine2d object array

Transformation parameter, specified as an affine2d object array of size (k-1)-by-1 or 1-
by-(k-1). k is the number of images in input imds or images.

1 Functions — Alphabetical List

1-146

scale — Resize factor
scalar greater than or equal to 1

Resize factor, specified as a scalar greater than or equal to 1.
Data Types: single | double | uint8 | uint16

Output Arguments
B — High-resolution image
2-D grayscale image | 2-D RGB image

High-resolution image, returned as a 2-D grayscale image or 2-D RGB image. B is of the
same data type as the input images. The size of B is the value of scale times the size of
the images in input imds or images.

For example, let L be the value of scale, and m-by-n be the size of the low-resolution
burst mode images. Then, the size of the high-resolution image is mL-by-nL.

Tips
• Compute tforms with respect to each input image using the imregtform function.

The first image in the input can be used as the reference image for estimating rigid
geometric transformations (rotations and translations only).

• Compute input arguments optimizer and metric in imregtform using
imregconfig function. optimizer must be a RegularStepGradientDescent
object and metric must be a MeanSquares object.

• To improve the high-resolution output, you can modify the input argument value of
RegularStepGradientDescent optimizer object in imregtform. For more details
about these modifications, see the properties of RegularStepGradientDescent.

Algorithms
The burstinterpolant function uses the inverse distance weighting method [1] to
generate high-resolution image from a set of low-resolution burst mode images. The
function predicts a high-resolution pixel value from a set of pixels in the low-resolution
burst mode images, selected based on the transformation parameter. The use of

 burstinterpolant

1-147

transformation parameter tforms makes the pixel selection robust to any rigid geometric
transformations (rotations and translations only).

Note

• If the input images are 2-D RGB images, estimate tforms from the lightness
component. You can use the rgb2lightness function to compute lightness values
from the RGB color values.

References
[1] Shepard, Donald. “A Two-Dimensional Interpolation Function for Irregularly-Spaced

Data”, In Proceedings of the 1968 23rd ACM National Conference, 517-524. New
York, NY: ACM, 1968.

See Also
imregconfig | imregtform | rgb2lightness | scatteredInterpolant

Introduced in R2019a

1 Functions — Alphabetical List

1-148

bwarea
Area of objects in binary image

Syntax
total = bwarea(BW)

Description
total = bwarea(BW) estimates the area of the objects in binary image BW. total is a
scalar whose value corresponds roughly to the total number of on pixels in the image, but
might not be exactly the same because different patterns of pixels are weighted
differently.

Examples

Calculate Area of Objects in Binary Image

Read a binary image and display it.

BW = imread('circles.png');
imshow(BW)

 bwarea

1-149

Calculate the area of objects in the image.

bwarea(BW)

ans = 1.4187e+04

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be 1 (true).
Example: BW = imread('text.png'); L = bwlabel(BW);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-150

Output Arguments
total — Estimated number of on pixels
numeric scalar

Estimated number of on pixels in binary image BW, returned as a numeric scalar.
Data Types: double

Algorithms
bwarea estimates the area of all of the on pixels in an image by summing the areas of
each pixel in the image. The area of an individual pixel is determined by looking at its 2-
by-2 neighborhood. There are six different patterns, each representing a different area:

• Patterns with zero on pixels (area = 0)
• Patterns with one on pixel (area = 1/4)
• Patterns with two adjacent on pixels (area = 1/2)
• Patterns with two diagonal on pixels (area = 3/4)
• Patterns with three on pixels (area = 7/8)
• Patterns with all four on pixels (area = 1)

Each pixel is part of four different 2-by-2 neighborhoods. This means, for example, that a
single on pixel surrounded by off pixels has a total area of 1.

References
[1] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991,

p. 634.

See Also
bweuler | bwferet | bwperim

Introduced before R2006a

 bwarea

1-151

bwareafilt
Extract objects from binary image by size

Syntax
BW2 = bwareafilt(BW,range)
BW2 = bwareafilt(BW,n)
BW2 = bwareafilt(BW,n,keep)
BW2 = bwareafilt(___ ,conn)

Description
BW2 = bwareafilt(BW,range) extracts all connected components (objects) from the
binary image BW, where the area of the objects is in the specified range, producing
another binary image BW2. bwareafilt returns a binary image BW2 containing only
those objects that meet the criteria.

BW2 = bwareafilt(BW,n) keeps the n largest objects. In the event of a tie for n-th
place, only the first n objects are included in BW2.

BW2 = bwareafilt(BW,n,keep) specifies whether to keep the n largest objects or the
n smallest objects.

BW2 = bwareafilt(___ ,conn) specifies the pixel connectivity that defines the
objects.

Examples

Filter Binary Image by Area of Objects

Read image.

BW = imread('text.png');

1 Functions — Alphabetical List

1-152

Filter image, retaining only those objects with areas between 40 and 50.

BW2 = bwareafilt(BW,[40 50]);

Display the original image and filtered image side by side.

imshowpair(BW,BW2,'montage')

Filter Binary Image by Size of Objects

Read image.

BW = imread('text.png');

Filter image, retaining only the 5 objects with the largest areas.

BW2 = bwareafilt(BW,5);

Display the original image and the filtered image side by side.

 bwareafilt

1-153

imshowpair(BW,BW2,'montage')

Input Arguments
BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.
Data Types: logical

range — Minimum and maximum areas
2-by-1 numeric vector

Minimum and maximum values of the area, specified as a 2-by-1 numeric vector of the
form [low high].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-154

n — Number of objects to include
numeric scalar

Number of objects to include when filtering image objects by size, specified as a numeric
scalar.
Data Types: double

keep — Size of objects to include
'largest' (default) | 'smallest'

Size of objects to include in the output image, specified as 'largest' or 'smallest'. In
the event of a tie for n-th place, bwareafilt includes only the first n objects.
Data Types: char | string

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.
Data Types: double | logical

 bwareafilt

1-155

Output Arguments
BW2 — Filtered image
binary image

Filtered image, returned as a binary image of the same size and class as the input image
BW.

See Also
bwareaopen | bwconncomp | bwpropfilt | conndef | regionprops

Topics
“Filter Images on Region Properties Using Image Region Analyzer App”

Introduced in R2014b

1 Functions — Alphabetical List

1-156

bwareaopen
Remove small objects from binary image

Syntax
BW2 = bwareaopen(BW,P)
BW2 = bwareaopen(BW,P,conn)

Description
BW2 = bwareaopen(BW,P) removes all connected components (objects) that have fewer
than P pixels from the binary image BW, producing another binary image, BW2. This
operation is known as an area opening.

BW2 = bwareaopen(BW,P,conn) removes all connected components, where conn
specifies the desired connectivity.

Examples

Remove Objects in Image Containing Fewer Than 50 Pixels

Read binary image.

BW = imread('text.png');

Remove objects containing fewer than 50 pixels using bwareaopen function.

BW2 = bwareaopen(BW, 50);

Display original image next to morphologically opened image.

imshowpair(BW,BW2,'montage')

 bwareaopen

1-157

Input Arguments
BW — Binary image
logical array | numeric array

Binary image, specified as a logical or numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

P — Maximum number of pixels in objects
nonnegative integer

Maximum number of pixels in objects, specified as a nonnegative integer.
Example: 50
Data Types: double

1 Functions — Alphabetical List

1-158

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 bwareaopen

1-159

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwareaopen uses the default value
conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Area-opened image
logical array

Area-opened image, returned as a logical array of the same size as BW.

Algorithms
The basic steps are

1 Determine the connected components:

CC = bwconncomp(BW, conn);

1 Functions — Alphabetical List

1-160

2 Compute the area of each component:

S = regionprops(CC, 'Area');
3 Remove small objects:

L = labelmatrix(CC);
BW2 = ismember(L, find([S.Area] >= P));

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwareaopen supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• BW must be a 2-D binary image. N-D arrays are not supported.
• conn can only one of the two-dimensional connectivities (4 or 8) or a 3-by-3 matrix.

The 3-D connectivities (6, 18, and 26) are not supported. Matrices of size 3-by-3-by-...-
by-3 are not supported.

• conn must be a compile-time constant.

See Also
bwconncomp | conndef

Introduced before R2006a

 bwareaopen

1-161

bwboundaries
Trace region boundaries in binary image

Syntax
B = bwboundaries(BW)
B = bwboundaries(BW,conn)
B = bwboundaries(BW,conn,options)
[B,L]= bwboundaries(___)
[B,L,n,A] = bwboundaries(___)

Description
B = bwboundaries(BW) traces the exterior boundaries of objects, as well as boundaries
of holes inside these objects, in the binary image BW. bwboundaries also descends into
the outermost objects (parents) and traces their children (objects completely enclosed by
the parents). Returns B, a cell array of boundary pixel locations.

B = bwboundaries(BW,conn) traces the exterior boundaries of objects, where conn
specifies the connectivity to use when tracing parent and child boundaries.

B = bwboundaries(BW,conn,options) traces the exterior boundaries of objects,
where options is either 'holes' or 'noholes', specifying whether you want to
include the boundaries of holes inside other objects.

[B,L]= bwboundaries(___) returns a label matrix L where objects and holes are
labeled.

[B,L,n,A] = bwboundaries(___) returns n, the number of objects found, and A, an
adjacency matrix.

Examples

1 Functions — Alphabetical List

1-162

Overlay Region Boundaries on Image

Read grayscale image into the workspace.

I = imread('rice.png');

Convert grayscale image to binary image using local adaptive thresholding.

BW = imbinarize(I);

Calculate boundaries of regions in image and overlay the boundaries on the image.

[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
 boundary = B{k};
 plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

 bwboundaries

1-163

Overlay Region Boundaries on Image and Annotate with Region Numbers

Read binary image into the workspace.

BW = imread('blobs.png');

Calculate boundaries of regions in the image.

[B,L,N,A] = bwboundaries(BW);

Display the image with the boundaries overlaid. Add the region number next to every
boundary (based on the label matrix). Use the zoom tool to read individual labels.

imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B),
 boundary = B{k};
 cidx = mod(k,length(colors))+1;
 plot(boundary(:,2), boundary(:,1),...
 colors(cidx),'LineWidth',2);

 %randomize text position for better visibility
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
 h = text(col+1, row-1, num2str(L(row,col)));
 set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold');
end

1 Functions — Alphabetical List

1-164

Display the adjacency matrix using the spy function.

figure
spy(A);

 bwboundaries

1-165

Display Object Boundaries in Red and Hole Boundaries in Green

Read binary image into workspace.

BW = imread('blobs.png');

Calculate boundaries.

[B,L,N] = bwboundaries(BW);

Display object boundaries in red and hole boundaries in green.

1 Functions — Alphabetical List

1-166

imshow(BW); hold on;
for k=1:length(B),
 boundary = B{k};
 if(k > N)
 plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
 else
 plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
 end
end

Display Parent Boundaries in Red and Holes in Green

Read image into workspace.

BW = imread('blobs.png');

 bwboundaries

1-167

Display parent boundaries in red and their holes in green.

[B,L,N,A] = bwboundaries(BW);
figure; imshow(BW); hold on;
% Loop through object boundaries
for k = 1:N
 % Boundary k is the parent of a hole if the k-th column
 % of the adjacency matrix A contains a non-zero element
 if (nnz(A(:,k)) > 0)
 boundary = B{k};
 plot(boundary(:,2),...
 boundary(:,1),'r','LineWidth',2);
 % Loop through the children of boundary k
 for l = find(A(:,k))'
 boundary = B{l};
 plot(boundary(:,2),...
 boundary(:,1),'g','LineWidth',2);
 end
 end
end

1 Functions — Alphabetical List

1-168

Input Arguments
BW — Input binary image
2-D numeric matrix | 2-D logical matrix

Binary input image, specified as a 2-D logical or numeric matrix. BW must be a binary
image where nonzero pixels belong to an object and zero-valued pixels constitute the
background. The following figure illustrates these components.

 bwboundaries

1-169

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of the values in this table.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Data Types: double

options — Determine whether to search for both parent and child boundaries
'holes' (default) | 'noholes'

Determine whether to search for both parent and child boundaries, specified as either of
the following:

1 Functions — Alphabetical List

1-170

Option Meaning
'holes' Search for both object and hole boundaries. This is the default.
'noholes' Search only for object (parent and child) boundaries. This can provide

better performance.

Data Types: char | string

Output Arguments
B — Row and column coordinates of boundary pixels
p-by-1 cell array

Row and column coordinates of boundary pixels, returned as a p-by-1 cell array, where p
is the number of objects and holes. Each cell in the cell array contains a q-by-2 matrix.
Each row in the matrix contains the row and column coordinates of a boundary pixel. q is
the number of boundary pixels for the corresponding region.

L — Label matrix
2-D matrix of nonnegative integers

Label matrix of contiguous regions, returned as a 2-D matrix of nonnegative integers. The
kth region includes all elements in L that have value k. The number of objects and holes
represented by L is equal to max(L(:)). The zero-valued elements of L make up the
background.
Data Types: double

n — Number of objects found
nonnegative integer

Number of objects found, returned as a nonnegative integer.
Data Types: double

A — Parent-child dependencies between boundaries and holes
square, sparse, logical matrix

Parent-child dependencies between boundaries and holes, returned as a square, sparse,
logical matrix of class double with side of length max(L(:)). The rows and columns of A
correspond to the positions of boundaries stored in B. The first n cells in B are object

 bwboundaries

1-171

boundaries. A(i,j)=1 means that object i is a child of object j. .The boundaries that
enclose or are enclosed by the k-th boundary can be found using A as follows:

enclosing_boundary = find(A(m,:));
enclosed_boundaries = find(A(:,m));

Algorithms
The bwboundaries function implements the Moore-Neighbor tracing algorithm modified
by Jacob's stopping criteria. This function is based on the boundaries function
presented in the first edition of Digital Image Processing Using MATLAB, by Gonzalez, R.
C., R. E. Woods, and S. L. Eddins, New Jersey, Pearson Prentice Hall, 2004.

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using

MATLAB, New Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwboundaries supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
bwboundaries generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• The parameter conn must be a compile-time constant.
• The parameter options must be a compile-time constant.
• The return value A can only be a full matrix, not a sparse matrix.

1 Functions — Alphabetical List

1-172

See Also
bwlabel | bwlabeln | bwperim | bwtraceboundary

Introduced before R2006a

 bwboundaries

1-173

bwconncomp
Find connected components in binary image

Syntax
CC = bwconncomp(BW)
CC = bwconncomp(BW,conn)

Description
CC = bwconncomp(BW) returns the connected components CC found in the binary image
BW. bwconncomp uses a default connectivity of 8 for two dimensions, 26 for three
dimensions, and conndef(ndims(BW),'maximal') for higher dimensions.

CC = bwconncomp(BW,conn) returns the connected components where conn specifies
the desired connectivity for the connected components.

Examples

Calculate Centroids of 3-D Objects

Create a small sample 3-D array.

BW = cat(3, [1 1 0; 0 0 0; 1 0 0],...
 [0 1 0; 0 0 0; 0 1 0],...
 [0 1 1; 0 0 0; 0 0 1]);

Find the connected components in the array.

CC = bwconncomp(BW)

CC = struct with fields:
 Connectivity: 26
 ImageSize: [3 3 3]
 NumObjects: 2

1 Functions — Alphabetical List

1-174

 PixelIdxList: {[5x1 double] [3x1 double]}

Calculate centroids of the objects in the array.

S = regionprops(CC,'Centroid')

S = 2x1 struct array with fields:
 Centroid

Erase Largest Component from Image

Read image into the workspace and display it.

BW = imread('text.png');
imshow(BW)

 bwconncomp

1-175

Find the number of connected components in the image.

CC = bwconncomp(BW)

CC = struct with fields:
 Connectivity: 8
 ImageSize: [256 256]
 NumObjects: 88
 PixelIdxList: {1x88 cell}

Determine which is the largest component in the image and erase it (set all the pixels to
0).

numPixels = cellfun(@numel,CC.PixelIdxList);
[biggest,idx] = max(numPixels);
BW(CC.PixelIdxList{idx}) = 0;

Display the image, noting that the largest component happens to be the two consecutive
f's in the word different.

figure
imshow(BW)

1 Functions — Alphabetical List

1-176

Input Arguments
BW — Input binary image
numeric array | logical array

Input binary image, specified as a numeric or logical array of any dimension. For numeric
input, any nonzero pixels are considered to be on.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

 bwconncomp

1-177

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

1 Functions — Alphabetical List

1-178

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwconncomp uses the default value
conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
CC — Connected components
struct

Connected components, returned as a structure with four fields.

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of BW
NumObjects Number of connected components (objects) in BW
PixelIdxList 1-by-NumObjects cell array where the k-th element in the cell

array is a vector containing the linear indices of the pixels in the
k-th object.

 bwconncomp

1-179

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected

components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other
functions.

Function Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Label matrix with

double-precision
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

• To extract features from a binary image using regionprops with default connectivity,
just pass BW directly into regionprops (i.e., regionprops(BW)).

• To compute a label matrix having more memory-efficient data type (e.g., uint8 versus
double), use the labelmatrix function on the output of bwconncomp. See the
documentation for each function for more information.

Algorithms
The basic steps in finding the connected components are:

1 Search for the next unlabeled pixel, p.
2 Use a flood-fill algorithm to label all the pixels in the connected component

containing p.
3 Repeat steps 1 and 2 until all the pixels are labeled.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-180

Usage notes and limitations:

• bwconncomp supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• bwconncomp only supports 2-D inputs.
• The conn arguments must be a compile-time constant and the only connectivities

supported are 4 or 8. You can also specify connectivity as a 3-by-3 matrix, but it can
only be [0 1 0;1 1 1;0 1 0] or ones(3)

• The PixelIdxList field in the CC struct return value is not supported.

See Also
bwlabel | bwlabeln | labelmatrix | regionprops

Introduced in R2009a

 bwconncomp

1-181

bwconvhull
Generate convex hull image from binary image

Syntax
CH = bwconvhull(BW)
CH = bwconvhull(BW,method)
CH = bwconvhull(BW,'objects',conn)

Description
CH = bwconvhull(BW) computes the convex hull of all objects in BW and returns CH, a
binary convex hull image.

CH = bwconvhull(BW,method) specifies the desired method for computing the convex
hull image.

CH = bwconvhull(BW,'objects',conn) specifies the desired connectivity used when
defining individual foreground objects.

Examples

Display Binary Convex Hull of Image

Read a grayscale image into the workspace. Convert it into a binary image and calculate
the union binary convex hull. Finally, calculate the objects convex hull and display all the
images in one figure window.

subplot(2,2,1);
I = imread('coins.png');
imshow(I);
title('Original');

subplot(2,2,2);

1 Functions — Alphabetical List

1-182

BW = I > 100;
imshow(BW);
title('Binary');

subplot(2,2,3);
CH = bwconvhull(BW);
imshow(CH);
title('Union Convex Hull');

subplot(2,2,4);
CH_objects = bwconvhull(BW,'objects');
imshow(CH_objects);
title('Objects Convex Hull');

 bwconvhull

1-183

Input Arguments
BW — Input binary image
2-D logical matrix

Input binary image, specified as a 2-D logical matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Method used to compute the convex hull
'union' (default) | 'objects'

Method used to compute the convex hull, specified as one of the following:

Value Description
'union' Compute the convex hull of all foreground objects,

treating them as a single object
'objects' Compute the convex hull of each connected component

of BW individually. CH contains the convex hulls of each
connected component.

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values The conn parameter is only valid when
the method is 'objects'.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

1 Functions — Alphabetical List

1-184

Value Meaning
8-connected Pixels are connected if their edges or

corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.
Data Types: double

Output Arguments
CH — Binary mask of the convex hull of all foreground objects in the input image
2-D logical matrix

Binary mask of the convex hull of all foreground objects in the input image, returned as a
2-D logical matrix.

See Also
bwconncomp | bwlabel | labelmatrix | regionprops

Introduced in R2011a

 bwconvhull

1-185

bwdist
Distance transform of binary image

Syntax
D = bwdist(BW)
[D,idx] = bwdist(BW)
[D,idx] = bwdist(BW,method)

Description
D = bwdist(BW) computes the Euclidean distance transform of the binary image BW.
For each pixel in BW, the distance transform assigns a number that is the distance
between that pixel and the nearest nonzero pixel of BW.

You optionally can compute the Euclidean distance transform of a 2-D binary image using
a GPU (requires Parallel Computing Toolbox). For more information, see “Image
Processing on a GPU”.

[D,idx] = bwdist(BW) also computes the closest-pixel map in the form of an index
array, idx. Each element of idx contains the linear index of the nearest nonzero pixel of
BW. The closest-pixel map is also called the feature map, feature transform, or nearest-
neighbor transform.

[D,idx] = bwdist(BW,method) computes the distance transform using an alternate
distance metric, specified by method.

Only the 'euclidean' method is supported on a GPU.

Examples

1 Functions — Alphabetical List

1-186

Compute the Euclidean Distance Transform

This example shows how to compute the Euclidean distance transform of a binary image,
and the closest-pixel map of the image.

Create a binary image.

bw = zeros(5,5);
bw(2,2) = 1;
bw(4,4) = 1

bw = 5×5

 0 0 0 0 0
 0 1 0 0 0
 0 0 0 0 0
 0 0 0 1 0
 0 0 0 0 0

Calculate the distance transform.

[D,IDX] = bwdist(bw)

D = 5x5 single matrix

 1.4142 1.0000 1.4142 2.2361 3.1623
 1.0000 0 1.0000 2.0000 2.2361
 1.4142 1.0000 1.4142 1.0000 1.4142
 2.2361 2.0000 1.0000 0 1.0000
 3.1623 2.2361 1.4142 1.0000 1.4142

IDX = 5x5 uint32 matrix

 7 7 7 7 7
 7 7 7 7 19
 7 7 7 19 19
 7 7 19 19 19
 7 19 19 19 19

In the nearest-neighbor matrix IDX the values 7 and 19 represent the position of the
nonzero elements using linear matrix indexing. If a pixel contains a 7, its closest nonzero
neighbor is at linear position 7.

 bwdist

1-187

Compute Euclidean Distance Transform on a GPU

Create an image.

bw = gpuArray.zeros(5,5);
bw(2,2) = 1;
bw(4,4) = 1;

Calculate the distance transform.

[D,IDX] = bwdist(bw)

Compare 2-D Distance Transforms for Supported Distance Methods

This example shows how to compare the 2-D distance transforms for supported distance
methods. In the figure, note how the quasi-Euclidean distance transform best
approximates the circular shape achieved by the Euclidean distance method.

bw = zeros(200,200);
bw(50,50) = 1; bw(50,150) = 1; bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
RGB1 = repmat(rescale(D1), [1 1 3]);
RGB2 = repmat(rescale(D2), [1 1 3]);
RGB3 = repmat(rescale(D3), [1 1 3]);
RGB4 = repmat(rescale(D4), [1 1 3]);

figure
subplot(2,2,1), imshow(RGB1), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), imshow(RGB2), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), imshow(RGB3), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), imshow(RGB4), title('Quasi-Euclidean')
hold on, imcontour(D4)

1 Functions — Alphabetical List

1-188

Compare Isosurface Plots for Distance Transforms of 3-D Image

This example shows how to compare isosurface plots for the distance transforms of a 3-D
image containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure

 bwdist

1-189

subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')

1 Functions — Alphabetical List

1-190

Input Arguments
BW — Binary image
numeric array | logical array | gpuArray

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).

To compute the Euclidean distance transform using a GPU, specify BW as a gpuArray that
contains a 2-D numeric or logical matrix with fewer than 232 elements.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Distance metric
'euclidean' (default) | 'chessboard' | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of the these values.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2)

is

max(│x1 – x2│,│y1 – y2│).
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│
'euclidean' In 2-D, the Euclidean distance between (x1,y1) and (x2,y2) is

(x1− x2)2 + (y1− y2)2 .

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and
(x2,y2) is

x1− x2 + (2 − 1) y1− y2 , x1− x2 > y1− y2

(2 − 1) x1− x2 + y1− y2 , otherwise.

Only the 'euclidean' method is supported on a GPU.

For more information, see “Distance Transform of a Binary Image”.

 bwdist

1-191

Data Types: char | string

Output Arguments
D — Distance array
numeric array | gpuArray

Distance, returned as a numeric array of the same size as BW. The value of each element
is the distance between that pixel and the nearest nonzero pixel in BW, as defined by the
distance metric, method.

If the Euclidean distance transform is computed using a GPU, then D is returned as a
gpuArray containing a 2-D numeric matrix.
Data Types: single

idx — Index array
numeric array | gpuArray

Index array, returned as a numeric array of the same size as BW. Each element of idx
contains the linear index of the nearest nonzero pixel of BW. The class of idx depends on
the number of elements in the input image, and is determined as follows.

Class Range
'uint32' numel(BW) <= 232 − 1
'uint64' numel(BW) >= 232

If the Euclidean distance transform is computed using a GPU, then idx is returned as a
gpuArray containing a 2-D numeric matrix of data type uint32.
Data Types: uint32 | uint64

Tips
• bwdist uses fast algorithms to compute the true Euclidean distance transform,

especially in the 2-D case. The other methods are provided primarily for pedagogical
reasons. However, the alternative distance transforms are sometimes significantly
faster for multidimensional input images, particularly those that have many nonzero
elements.

1 Functions — Alphabetical List

1-192

• The function bwdist changed in version 6.4 (R2009b). Previous versions of the Image
Processing Toolbox used different algorithms for computing the Euclidean distance
transform and the associated label matrix. If you need the same results produced by
the previous implementation, use the function bwdist_old.

Algorithms
• For Euclidean distance transforms, bwdist uses the fast algorithm. [1]
• For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist uses the

two-pass, sequential scanning algorithm. [2]
• The different distance measures are achieved by using different sets of weights in the

scans, as described in [3].

References
[1] Maurer, Calvin, Rensheng Qi, and Vijay Raghavan, "A Linear Time Algorithm for

Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary
Dimensions," IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 25, No. 2, February 2003, pp. 265-270.

[2] Rosenfeld, Azriel and John Pfaltz, "Sequential operations in digital picture processing,"
Journal of the Association for Computing Machinery, Vol. 13, No. 4, 1966, pp.
471-494.

[3] Paglieroni, David, "Distance Transforms: Properties and Machine Vision Applications,"
Computer Vision, Graphics, and Image Processing: Graphical Models and Image
Processing, Vol. 54, No. 1, January 1992, pp. 57-58.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 bwdist

1-193

• bwdist supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, bwdist generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the optional second input argument, method, must be a
compile-time constant. Input images must have fewer than 232 pixels.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Input images must be 2-D and have less than 232 elements.
• Euclidean is the only distance metric supported.

For more information, see “Image Processing on a GPU”.

See Also
bwulterode | watershed

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a

1 Functions — Alphabetical List

1-194

bwdistgeodesic
Geodesic distance transform of binary image

Syntax
D = bwdistgeodesic(BW,mask)
D = bwdistgeodesic(BW,C,R)
D = bwdistgeodesic(BW,idx)
D = bwdistgeodesic(___ ,method)

Description
D = bwdistgeodesic(BW,mask) computes the geodesic distance transform, given the
binary image BW and the seed locations specified by mask. Regions where BW is true
represent valid regions that can be traversed in the computation of the distance
transform. Regions where BW is false represent constrained regions that cannot be
traversed in the distance computation. For each true pixel in BW, the geodesic distance
transform assigns a number that is the constrained distance between that pixel and the
nearest true pixel in mask. Output matrix D contains geodesic distances.

D = bwdistgeodesic(BW,C,R) computes the geodesic distance transform of the
binary image BW. Vectors C and R contain the column and row coordinates of the seed
locations.

D = bwdistgeodesic(BW,idx) computes the geodesic distance transform of the
binary image BW. idx is a vector of linear indices of seed locations.

D = bwdistgeodesic(___ ,method) computes the geodesic distance transform using
an alternate distance metric, specified by method.

Examples

 bwdistgeodesic

1-195

Compute Geodesic Distance Transformation of Binary Image

Create a sample binary image for this example.

BW = [1 1 1 1 1 1 1 1 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 0 0 0 0 0 1 0 0 1 0;...
 0 0 0 0 1 1 0 1 1 0;...
 0 1 0 0 1 1 0 0 0 0;...
 0 1 1 1 1 1 1 0 1 0;...
 0 1 1 0 0 0 1 1 1 0;...
 0 0 0 0 1 0 0 0 0 0];
 BW = logical(BW);

Create two vectors of seed locations.

C = [1 2 3 3 3];
R = [3 3 3 1 2];

Calculate the geodesic distance transform. Output pixels for which BW is false have
undefined geodesic distance and contain NaN values. Because there is no connected path
from the seed locations to element BW(10,5), the output D(10,5) has a value of Inf.

D = bwdistgeodesic(BW,C,R)

D = 10x10 single matrix

 2 1 0 1 2 3 4 5 6 7
 1 1 0 1 2 3 NaN NaN 6 7
 0 0 0 1 2 3 NaN NaN 7 7
 1 1 1 1 2 3 NaN NaN 8 8
 NaN NaN NaN NaN NaN 3 NaN NaN 9 NaN
 NaN NaN NaN NaN 4 4 NaN 10 10 NaN
 NaN 8 NaN NaN 5 5 NaN NaN NaN NaN
 NaN 8 7 6 6 6 6 NaN 8 NaN
 NaN 8 7 NaN NaN NaN 7 7 8 NaN
 NaN NaN NaN NaN Inf NaN NaN NaN NaN NaN

1 Functions — Alphabetical List

1-196

Input Arguments
BW — Binary image
real, nonsparse, numeric or logical array of any dimension

Binary image, specified as a real, nonsparse, numeric or logical array of any dimension.
For numeric input, any nonzero pixels are considered to be on.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

mask — Seed locations
logical array

Seed locations, specified as a logical array of the same size as BW.

C, R — Column or row coordinates of seed locations
vector of positive integers

Column or row coordinates of seed locations, specified as a vector of positive integers.
Coordinate values are valid C,R subscripts in BW.

idx — Linear indices of seed locations
vector of positive integers

Linear indices of seed locations, specified as a vector of positive integers.

method — Distance metric
'chessboard' (default) | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of the following.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2)

is

max(abs(x1-x2),abs(y1-y2))

'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

abs(x1-x2) + abs(y1-y2)

 bwdistgeodesic

1-197

Method Description
'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and

(x2,y2) is

x1− x2 + (2 − 1) y1− y2 , x1− x2 > y1− y2

(2 − 1) x1− x2 + y1− y2 , otherwise.

Data Types: char | string

Output Arguments
D — Geodesic distances
numeric array

Geodesic distances, returned as a numeric array of the same size as BW.
Data Types: single

Algorithms
bwdistgeodesic uses the geodesic distance algorithm described in Soille, P.,
Morphological Image Analysis: Principles and Applications, 2nd Edition, Secaucus, NJ,
Springer-Verlag, 2003, pp. 219–221.

See Also
bwdist | graydist

Introduced in R2011b

1 Functions — Alphabetical List

1-198

bweuler
Euler number of binary image

Syntax
eul = bweuler(BW,conn)

Description
eul = bweuler(BW,conn) returns the Euler number for the binary image BW. The
Euler number is the total number of objects in the image minus the total number of holes
in those objects. conn specifies the connectivity. Objects are connected sets of on pixels,
that is, pixels having a value of 1.

Examples

Calculate Euler Number for Binary Image

Read binary image into workspace, and display it.

BW = imread('circles.png');
imshow(BW)

 bweuler

1-199

Calculate the Euler number. In this example, all the circles touch so they create one
object. The object contains four "holes", which are the black areas created by the
touching circles. Thus the Euler number is 1 minus 4, or -3.

bweuler(BW)

ans = -3

Input Arguments
BW — Binary image
2-D real, nonsparse, numeric or logical matrix

Binary image, specified as a 2-D, real, nonsparse, numeric or logical matrix. For numeric
input, any nonzero pixels are considered to be on.

1 Functions — Alphabetical List

1-200

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Connectivity
8 (default) | 4

Connectivity, specified as the values 4, for 4-connected objects, or 8, for 8-connected
objects.
Example: BW = imread('text.png'); L = bweuler(BW,4);
Data Types: double

Output Arguments
eul — Euler number
numeric scalar

Euler number, returned as a numeric scalar.
Data Types: double

Algorithms
bweuler computes the Euler number by considering patterns of convexity and concavity
in local 2-by-2 neighborhoods. See [2] on page 1-201 for a discussion of the algorithm
used.

References
[1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp. 73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991,
p. 633.

 bweuler

1-201

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bweuler supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bweuler generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

See Also
bwmorph | bwperim

Introduced before R2006a

1 Functions — Alphabetical List

1-202

bwferet
Measure Feret properties

Syntax
out = bwferet(BW,properties)
out = bwferet(CC,properties)
out = bwferet(L,properties)
out = bwferet(input)
[out,LM] = bwferet(___)

Description
out = bwferet(BW,properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each object in input binary image BW. The measured Feret
properties include the minimum and maximum Feret diameters, Feret angles, and
endpoint coordinates of Feret diameters.

out = bwferet(CC,properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each connected component in the input CC. The measured
Feret properties include the minimum and the maximum Feret diameters, Feret angles,
and endpoint coordinates of Feret diameters.

out = bwferet(L,properties) measures the Feret properties of objects in an image
and returns the measurements in a table. The input properties specifies the Feret
properties to be measured for each object in the input label matrix L. The measured Feret
properties include the minimum and the maximum Feret diameter, Feret angles, and
endpoint coordinates of Feret diameters.

out = bwferet(input) measures the maximum Feret diameter, its relative angle, and
coordinate values measured from the input. The function returns the measurements in a
table. The input can be binary image BW, connected component CC, or label matrix L.

[out,LM] = bwferet(___) also returns a label matrix containing label values that
represent the row indices of the table out. You can use any of the input arguments from

 bwferet

1-203

previous syntaxes. Each row entry in out corresponds to a labeled region (object) in label
matrix LM.

Examples

Measure Feret Properties of Objects in Binary Image

Read an image into the workspace.

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I,'adaptive');

Extract the first two largest objects from the binary image.

bw = bwareafilt(bw,2);

Fill holes in the extracted object regions.

bw = imfill(bw,'holes');

Calculate the minimum Feret properties and the label matrix of the extracted objects.

[out,LM] = bwferet(bw,'MinFeretProperties');

Get the maximum number of objects in the output label matrix.

maxLabel = max(LM(:));

Display the output containing the table of minimum Feret properties.

out

out=2×3 table
 MinDiameter MinAngle MinCoordinates
 ___________ ________ ______________

 116.23 99.462 {2×2 double}
 132.08 -159.27 {2×2 double}

1 Functions — Alphabetical List

1-204

Display the minimum Feret properties of the object with label-value 1 from the output
label matrix.

out.MinDiameter(1)

ans = 116.2301

out.MinAngle(1)

ans = 99.4623

out.MinCoordinates{1}

ans = 2×2

 120.5000 311.5000
 139.6081 196.8514

Display the minimum Feret properties of the object with label-value 2 from the output
label matrix.

out.MinDiameter(2)

ans = 132.0776

out.MinAngle(2)

ans = -159.2744

out.MinCoordinates{2}

ans = 2×2

 215.5000 197.5000
 339.0304 244.2412

Display the output label matrix. Plot the endpoint coordinates and minimum Feret
diameter of objects with different label values from the output label matrix.

h = imshow(LM,[]);
axis = h.Parent;
for labelvalues = 1:maxLabel
 xmin = [out.MinCoordinates{labelvalues}(1,1) out.MinCoordinates{labelvalues}(2,1)];
 ymin = [out.MinCoordinates{labelvalues}(1,2) out.MinCoordinates{labelvalues}(2,2)];

 bwferet

1-205

 imdistline(axis,xmin,ymin);
end
title(axis,'Minimum Feret Diameter of Objects');
colorbar('Ticks',1:maxLabel)

Measure Feret Properties of Connected Components

Read an image into the workspace.

1 Functions — Alphabetical List

1-206

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I,'adaptive');

Fill holes in the object regions of the input binary image.

bw = imfill(bw,'holes');

Use the bwconncomp function to generate connected components from the resulting
image.

cc = bwconncomp(bw);

Measure the maximum Feret properties of the connected components.

[out,LM] = bwferet(cc,'MaxFeretProperties');

Get the maximum number of objects in the output label matrix.

maxLabel = max(LM(:));

Inspect the table to verify the measured maximum Feret properties.

out

out=4×3 table
 MaxDiameter MaxAngle MaxCoordinates
 ___________ ________ ______________

 162.6 -175.06 {2×2 double}
 156.21 -127.46 {2×2 double}
 187.96 121.07 {2×2 double}
 63.781 -131.19 {2×2 double}

Display the maximum Feret diameters of objects with different label values from output
label matrix.

out.MaxDiameter(1:maxLabel)

ans = 4×1

 162.6038
 156.2082

 bwferet

1-207

 187.9628
 63.7809

Display the directional angles of the maximum Feret diameters specific to objects with
different label values from output label matrix.

out.MaxAngle(1:maxLabel)

ans = 4×1

 -175.0608
 -127.4568
 121.0683
 -131.1859

Display the endpoint coordinates of the maximum Feret diameters specific to objects with
different label values from output label matrix.

out.MaxCoordinates{1:maxLabel}

ans = 2×2

 186.5000 113.5000
 24.5000 99.5000

ans = 2×2

 156.5000 315.5000
 61.5000 191.5000

ans = 2×2

 337.5000 174.5000
 240.5000 335.5000

ans = 2×2

 288.5000 129.5000
 246.5000 81.5000

1 Functions — Alphabetical List

1-208

Display the output label matrix. Plot the endpoint coordinates and the maximum Feret
diameter of objects with different label values from output label matrix.

h = imshow(LM,[]);
axis = h.Parent;
for labelvalues = 1:maxLabel
 xmax = [out.MaxCoordinates{labelvalues}(1,1) out.MaxCoordinates{labelvalues}(2,1)];
 ymax = [out.MaxCoordinates{labelvalues}(1,2) out.MaxCoordinates{labelvalues}(2,2)];
 imdistline(axis,xmax,ymax);
end
title(axis,'Maximum Feret Diameter of Objects');
colorbar('Ticks',1:maxLabel)

 bwferet

1-209

Input Arguments
BW — Input binary image
numeric matrix | logical matrix

Input binary image, specified as a logical or numeric matrix. BW must be a binary image
where nonzero pixels correspond to an object and zero-valued pixels correspond to the
background.

1 Functions — Alphabetical List

1-210

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

CC — Connected components
structure

Connected components, specified as a structure with the four fields shown in this table.

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of input binary image
NumObjects Number of connected components (objects) in the input binary

image
PixelIdxList 1-by-NumObjects cell array, where the kth element is a vector

containing the linear indices of the pixels in the kth object

You can use the bwconncomp function to generate connected components from a binary
image.
Data Types: struct

L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, specified as a matrix of nonnegative integers. The
pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on. The number of objects represented by L is
equal to the maximum value of L. You can use the bwlabel function to generate label
matrix from a binary image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

properties — Label for Feret properties
MaxFeretProperties | MinFeretProperties | all

Label for Feret properties, specified as MaxFeretProperties, MinFeretProperties,
or all.
Data Types: char | string

 bwferet

1-211

input — Generic input
numeric matrix | logical matrix | structure | matrix of nonnegative integers

Generic input, specified as one of these values:

• Numeric matrix or logical matrix — When input is a binary image, BW.
• Structure — When input is the connected component, CC.
• Matrix of nonnegative integers — When input is the label matrix, L.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical | struct

Output Arguments
out — Table of Feret properties
m-by-n table

Table of Feret properties, returned as an m-by-n table. m is the number of objects for
which the Feret properties are measured. n is 3 or 6, depending on the properties
input.

• If properties is 'MaxFeretProperties', then the table out is of size m-by-3 with
columns MaxDiameter, MaxAngle, and MaxCoordinates.

• If properties is 'MinFeretProperties', then the table out is of size m-by-3 with
columns MinDiameter, MinAngle, and MinCoordinates.

• If properties is 'all', then the table out is of size m-by-6 with all columns listed in
this table.

Column Name Description
MaxDiameter Maximum Feret diameter of an object, measured as the maximum

distance between any two boundary points on the antipodal
vertices of the convex hull that encloses that object

MaxAngle Directional angle of the maximum Feret diameter with respect to
the horizontal axis of the image. The value, in degrees, is in the
range [–180o,180o]

1 Functions — Alphabetical List

1-212

Column Name Description
MaxCoordinates Endpoint coordinates of the maximum Feret diameter, returned in

the form
x1 y1
x2 y2

MinDiameter Minimum Feret diameter of an object, measured as the minimum
distance between any two boundary points on the antipodal
vertices of the convex hull that encloses that object

MinAngle Directional angle of the minimum Feret diameter with respect to
the horizontal axis of the image. The value, in degrees, is in the
range [–180o,180o]

MinCoordinates Endpoint coordinates of the minimum Feret diameter, returned in

the form
x1 y1
x2 y2

LM — Output label matrix
matrix of nonnegative integers

Output label matrix of contiguous regions, specified as a matrix of nonnegative integers.
The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the
pixels labeled 2 make up a second object; and so on. The Feret properties in the kth row
entry of out correspond to the kth region (object) in LM that have the value k. The
number of objects represented by LM is equal to the maximum value of LM.

Note If the input to bwferet is a label matrix, then the output label matrix LM is same
as the input label matrix.

Data Types: uint8

Algorithms
The Feret properties of an object are measured by using boundary points on the antipodal
vertices of the convex hull that encloses that object.

 bwferet

1-213

Given the endpoint coordinates of the maximum (or minimum) Feret diameter,

x y

x y

1 1

2 2

È

Î
Í

˘

˚
˙

,

the maximum (or minimum) Feret angle is measured as
angle

y y

x x
=

-
-

Ê

Ë
Á

ˆ

¯
˜

-
tan

1 2 1

2 1 .

See Also
bwconncomp | bwlabel | bwlabeln | labelmatrix | regionprops

Introduced in R2019a

1 Functions — Alphabetical List

1-214

bwhitmiss
Binary hit-miss operation

Syntax
BW2 = bwhitmiss(BW,SE1,SE2)
BW2 = bwhitmiss(BW,interval)

Description
BW2 = bwhitmiss(BW,SE1,SE2) performs the hit-miss operation defined by the
structuring elements SE1 and SE2. The hit-miss operation preserves pixels in binary
image BW whose neighborhoods match the shape of SE1 and don't match the shape of
SE2.

This syntax is equivalent to imerode(BW,SE1) & imerode(~BW,SE2).

BW2 = bwhitmiss(BW,interval) performs the hit-miss operation defined in terms of a
single array, called an interval. An interval is an array whose elements are 1, 0, or -1. The
1-valued elements make up the domain of SE1, the -1-valued elements make up the
domain of SE2, and the 0-valued elements are ignored.

This syntax is equivalent to bwhitmiss(BW,interval==1,interval==-1).

Examples

Perform Hit-miss Operation on Binary Image

Create sample binary image for this example.

bw = [0 0 0 0 0 0
 0 0 1 1 0 0
 0 1 1 1 1 0
 0 1 1 1 1 0

 bwhitmiss

1-215

 0 0 1 1 0 0
 0 0 1 0 0 0]

bw = 6×6

 0 0 0 0 0 0
 0 0 1 1 0 0
 0 1 1 1 1 0
 0 1 1 1 1 0
 0 0 1 1 0 0
 0 0 1 0 0 0

Define an interval.

interval = [0 -1 -1
 1 1 -1
 0 1 0];

Perform hit-miss operation.

bw2 = bwhitmiss(bw,interval)

bw2 = 6x6 logical array

 0 0 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).

SE1, SE2 — Structuring element
strel object | numeric array

1 Functions — Alphabetical List

1-216

Flat structuring element, specified as a strel object or a numeric matrix with values of 1
and 0. The neighborhoods of SE1 and SE2 should not have overlapping elements.

interval — Interval
numeric array

Interval, specified as a numeric array with values of 1, 0, and -1.
Data Types: single | double | int8 | int16 | int32 | int64

Output Arguments
BW2 — Processed binary image
logical array

Processed binary image after the hit-miss operation, specified as a logical array of the
same size as BW.
Data Types: logical

See Also
imdilate | imerode | strel

Introduced before R2006a

 bwhitmiss

1-217

bwlabel
Label connected components in 2-D binary image

Syntax
L = bwlabel(BW)
L = bwlabel(BW,conn)
[L,n] = bwlabel(___)

Description
L = bwlabel(BW) returns the label matrix L that contains labels for the 8-connected
objects found in BW.

You optionally can label connected components in a 2-D binary image using a GPU
(requires Parallel Computing Toolbox). For more information, see “Image Processing on a
GPU”.

L = bwlabel(BW,conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabel(___) also returns n, the number of connected objects found in BW.

Examples

Label Components Using 4-connected Objects

Create a small binary image.

BW = logical ([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0

1 Functions — Alphabetical List

1-218

 1 1 1 0 0 1 1 0
 1 1 1 0 0 0 0 0]);

Create the label matrix using 4-connected objects.

L = bwlabel(BW,4)

L = 8×8

 1 1 1 0 0 0 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 3 3 0
 1 1 1 0 0 0 0 0

Use the find command to get the row and column coordinates of the object labeled "2".

[r, c] = find(L==2);
rc = [r c]

rc = 4×2

 2 5
 3 5
 2 6
 3 6

Label Components Using 4-connected Objects on a GPU

Create a small binary image and create a gpuArray object to contain it.

BW = gpuArray(logical([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0

 bwlabel

1-219

 1 1 1 0 0 1 1 0
 1 1 1 0 0 0 0 0]));

Create the label matrix using 4-connected objects.

L = bwlabel(BW,4)

Use the find command to get the row and column coordinates of the object labeled "2".

[r,c] = find(L == 2)

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix | gpuArray

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be on.

To label connected components using a GPU, specify BW as a gpuArray that contains a 2-
D numeric or logical matrix.
Example: BW = imread('text.png');
Example: BW = gpuArray(imread('text.png'));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

1 Functions — Alphabetical List

1-220

Value Meaning
8-connected Pixels are connected if their edges or

corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Data Types: double | logical

Output Arguments
L — Label matrix
matrix of nonnegative integers | gpuArray

Label matrix of contiguous regions, returned as matrix of nonnegative integers with the
same size as BW. The pixels labeled 0 are the background. The pixels labeled 1 make up
one object; the pixels labeled 2 make up a second object; and so on.

If connected components are labeled using a GPU, then L is returned as a gpuArray
containing a matrix of nonnegative integers.
Data Types: double

n — Number of connected objects
nonnegative integer

Number of connected objects in BW, returned as a nonnegative integer.
Data Types: double

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected

components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other
functions.

 bwlabel

1-221

 Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Double-precision label

matrix
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

• You can use the MATLAB find function in conjunction with bwlabel to return vectors
of indices for the pixels that make up a specific object. For example, to return the
coordinates for the pixels in object 2, enter the following:.

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object
appears in a different color, so the objects are easier to distinguish than in the original
image. For more information, see label2rgb.

• To compute a label matrix having a more memory-efficient data type (e.g., uint8
versus double), use the labelmatrix function on the output of bwconncomp.

• To extract features from a binary image using regionprops with default connectivity,
just pass BW directly into regionprops by using the command regionprops(BW).

• The bwlabel function can take advantage of hardware optimization for data types
logical, uint8, and single to run faster. Hardware optimization requires marker
and mask to be 2-D images and conn to be either 4 or 8.

Algorithms
bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

1 Run-length encode the input image.
2 Scan the runs, assigning preliminary labels and recording label equivalences in a

local equivalence table.
3 Resolve the equivalence classes.
4 Relabel the runs based on the resolved equivalence classes.

1 Functions — Alphabetical List

1-222

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I,

Addison-Wesley, 1992, pp. 28-48.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwlabel supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the parameter n must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
bwconncomp | bwlabeln | bwselect | label2rgb | labelmatrix | regionprops

Introduced before R2006a

 bwlabel

1-223

bwlabeln
Label connected components in binary image

Syntax
L = bwlabeln(BW)
L = bwlabeln(BW,conn)
[L,n] = bwlabeln(___)

Description
L = bwlabeln(BW) returns a label matrix, L, containing labels for the connected
components in BW.

L = bwlabeln(BW,conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabeln(___) also returns n, the number of connected objects found in BW.

Examples

Calculate Centroids of 3-D Objects

Create simple sample 3-D binary image.

BW = cat(3, [1 1 0; 0 0 0; 1 0 0],...
 [0 1 0; 0 0 0; 0 1 0],...
 [0 1 1; 0 0 0; 0 0 1])

BW =
BW(:,:,1) =

 1 1 0
 0 0 0
 1 0 0

1 Functions — Alphabetical List

1-224

BW(:,:,2) =

 0 1 0
 0 0 0
 0 1 0

BW(:,:,3) =

 0 1 1
 0 0 0
 0 0 1

Label connected components in the image.

bwlabeln(BW)

ans =
ans(:,:,1) =

 1 1 0
 0 0 0
 2 0 0

ans(:,:,2) =

 0 1 0
 0 0 0
 0 2 0

ans(:,:,3) =

 0 1 1
 0 0 0
 0 0 2

 bwlabeln

1-225

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be on.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected in:

• One of these directions: in, out, left,
right, up, and down

1 Functions — Alphabetical List

1-226

Value Meaning
18-connected Pixels are connected if their faces or

edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges,
or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwlabeln uses the default value
conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
L — Label matrix
array of nonnegative integers

 bwlabeln

1-227

Label matrix, returned as an array of nonnegative integers with the same size as BW. The
pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on.
Data Types: double

L — Label matrix
2-D array of nonnegative integers

Label matrix of contiguous regions, returned as a 2-D array of nonnegative integers of
class double. The kth region includes all elements in L that have value k. The number of
objects and holes represented by L is equal to max(L(:)). The zero-valued elements of L
make up the background.
Data Types: double

n — Number of connected objects
nonnegative integer

Number of connected objects in BW, returned as a nonnegative integer.
Data Types: double

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected

components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses significantly less memory and is sometimes faster than the other
functions.

Function Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Label matrix with

double-precision
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any
• To extract features from a binary image using regionprops with default connectivity,

just pass BW directly into regionprops, i.e. regionprops(BW).
• To compute a label matrix having a more memory-efficient data type (e.g., uint8

versus double), use the labelmatrix function on the output of bwconncomp:

1 Functions — Alphabetical List

1-228

C = bwconncomp(BW);
L = labelmatrix(CC);

CC = bwconncomp(BW,n);
S = regionprops(CC);

Algorithms
bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels and recording
label equivalences in a union-find table.

2 Resolve the equivalence classes using the union-find algorithm [1].
3 Relabel the pixels based on the resolved equivalence classes.

References
[1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp. 11-20.

See Also
bwconncomp | bwlabel | label2rgb | labelmatrix | regionprops

Introduced before R2006a

 bwlabeln

1-229

bwlookup
Nonlinear filtering using lookup tables

Syntax
J = bwlookup(BW,lut)

Description
J = bwlookup(BW,lut) performs a 2-by-2 or 3-by-3 nonlinear neighborhood filtering
operation on binary or grayscale image I and returns the results in output image J. The
neighborhood processing determines an integer index value used to access values in
lookup table lut. The fetched lut value becomes the pixel value in output image J at the
targeted position.

You optionally can perform the filtering using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Perform Erosion Along Edges of Binary Image

Construct the vector lut such that the filtering operation places a 1 at the targeted pixel
location in the input image only when all four pixels in the 2-by-2 neighborhood of BW are
set to 1.

lutfun = @(x)(sum(x(:))==4);
lut = makelut(lutfun,2)

lut = 16×1

 0
 0
 0

1 Functions — Alphabetical List

1-230

 0
 0
 0
 0
 0
 0
 0
 ⋮

Load a binary image.

BW1 = imread('text.png');

Perform 2-by-2 neighborhood processing with 16-element vector lut .

BW2 = bwlookup(BW1,lut);

Show zoomed before and after images.

figure;
h1 = subplot(1,2,1); imshow(BW1), axis off; title('Original Image')
h2 = subplot(1,2,2); imshow(BW2); axis off; title('Eroded Image')
% 16X zoom to see effects of erosion on text
set(h1,'Ylim',[1 64],'Xlim',[1 64]);
set(h2,'Ylim',[1 64],'Xlim',[1 64]);

 bwlookup

1-231

Input Arguments
BW — Input image
binary image

Input image transformed by nonlinear neighborhood filtering operation, specified as a
binary image. For numeric input, any nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-232

lut — Lookup table of output pixel values
16-element vector | 512-element vector

Lookup table of output pixel values, specified as a 16- or 512-element vector. The size of
lut determines which of the two neighborhood operations is performed.

• If lut contains 16 data elements, then the neighborhood matrix is 2-by-2.
• If lut contains 512 data elements, then the neighborhood matrix is 3-by-3.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
J — Output image
binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values
are determined by the content of the lookup table, lut. The output image J is the same
size as the input image I and the same data type as lut.

Algorithms
The first step in each iteration of the filtering operation performed by bwlookup entails
computing the index into vector lut based on the binary pixel pattern of the
neighborhood matrix on image I. The value in lut accessed at index, lut(index), is
inserted into output image J at the targeted pixel location. This results in image J being
the same data type as vector lut.

Since there is a 1-to-1 correspondence in targeted pixel locations, image J is the same
size as image I. If the targeted pixel location is on an edge of image I and if any part of
the 2-by-2 or 3-by-3 neighborhood matrix extends beyond the image edge, then these non-
image locations are padded with 0 in order to perform the filtering operation.

The following figures show the mapping from binary 0 and 1 patterns in the neighborhood
matrices to its binary representation. Adding 1 to the binary representation yields index
which is used to access lut.

 bwlookup

1-233

2-by-2 Neighborhood Lookup
For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 24 = 16.

1 Functions — Alphabetical List

1-234

 bwlookup

1-235

To illustrate, this example shows how the pixel pattern in a 2-by-2 matrix determines
which entry in lut is placed in the targeted pixel location.

1 Create random 16-element lut vector containing uint8 data.

scurr = rng; % save current random number generator seed state
rng('default') % always generate same set of random numbers
lut = uint8(round(255*rand(16,1))) % generate lut
rng(scurr); % restore

lut =

 208
 231
 32
 233
 161
 25
 71
 139
 244
 246
 40
 248
 244
 124
 204
 36

2 Create a 2-by-2 image and assume for this example that the targeted pixel location is
location I(1,1).

I = [1 0; 0 1]

I =

 1 0
 0 1

3 By referring to the color coded mapping figure above, the binary representation for
this 2-by-2 neighborhood can be computed as shown in the code snippet below. The
logical 1 at I(1,1) corresponds to blue in the figure which maps to the Least
Significant Bit (LSB) at position 0 in the 4-bit binary representation (,20= 1). The
logical 1 at I(2,2) is red which maps to the Most Significant Bit (MSB) at position 3
in the 4-bit binary representation (23= 8) .

1 Functions — Alphabetical List

1-236

% I(1,1): blue square; sets bit position 0 on right
% I(2,2): red square; sets bit position 3 on left
binNot = '1 0 0 1'; % binary representation of 2x2 neighborhood matrix

X = bin2dec(binNot); % convert from binary to decimal
index = X + 1 % add 1 to compute index value for uint8 vector lut
A11 = lut(index) % value at A(1,1)

index =

 10

A11 =

 246
4 The above calculation predicts that output image A should contain the value 246 at

targeted position A(1,1).

A = bwlookup(I,lut) % perform filtering

A =

 246 32
 161 231

A(1,1) does in fact equal 246.

3-by-3 Neighborhood Lookup
For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each
neighborhood, and two possible states for each pixel, so the total number of permutations
is 29 = 512.

The process for computing the binary representation of 3-by-3 neighborhood processing
is the same as for 2-by-2 neighborhoods.

 bwlookup

1-237

1 Functions — Alphabetical List

1-238

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwlookup supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwlookup
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, specify an input image of class logical.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
makelut

Introduced in R2012b

 bwlookup

1-239

bwmorph
Morphological operations on binary images

Syntax
BW2 = bwmorph(BW,operation)
BW2 = bwmorph(BW,operation,n)

Description
BW2 = bwmorph(BW,operation) applies a specific morphological operation to the
binary image BW.

Note To perform morphological operations on a 3-D volumetric image, use bwmorph3.

You optionally can perform the morphological operation using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf, in
which case the operation is repeated until the image no longer changes.

Examples

Perform Morphological Operations on Binary Image
Read binary image and display it.

BW = imread('circles.png');
imshow(BW);

1 Functions — Alphabetical List

1-240

Remove interior pixels to leave an outline of the shapes.

BW2 = bwmorph(BW,'remove');
figure
imshow(BW2)

 bwmorph

1-241

Get the image skeleton.

BW3 = bwmorph(BW,'skel',Inf);
figure
imshow(BW3)

1 Functions — Alphabetical List

1-242

Perform Morphological Operations on a GPU
This example performs the same operations as the previous example but performs them
on a GPU. The example starts by reading the image into a gpuArray.

BW1 = gpuArray(imread('circles.png'));
figure
imshow(BW1)

BW2 = bwmorph(BW1,'remove');
figure
imshow(BW2)

BW3 = bwmorph(BW1,'skel',Inf);
figure
imshow(BW3)

 bwmorph

1-243

Input Arguments
BW — Input image
binary image | gpuArray

Input image, specified as a binary image. The input image can be numeric or logical, and
must be 2-D, real and nonsparse.

To perform the morphological operation using a GPU, specify BW as a gpuArray that
contains a binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following.

Operation Description
'bothat' Performs the morphological “bottom hat” operation, returning the

image minus the morphological closing of the image (dilation
followed by erosion).

'branchpoints' Find branch points of skeleton. For example:

0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 becomes 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Note: To find branch points, the image must be skeletonized. To
create a skeletonized image, use bwmorph(BW,'skel').

'bridge' Bridges unconnected pixels, that is, sets 0-valued pixels to 1 if
they have two nonzero neighbors that are not connected. For
example:

1 0 0 1 1 0
1 0 1 becomes 1 1 1
0 0 1 0 1 1

1 Functions — Alphabetical List

1-244

Operation Description
'clean' Removes isolated pixels (individual 1s that are surrounded by 0s),

such as the center pixel in this pattern.

0 0 0
0 1 0
0 0 0

'close' Performs morphological closing (dilation followed by erosion).
'diag' Uses diagonal fill to eliminate 8-connectivity of the background.

For example:

0 1 0 0 1 0
1 0 0 becomes 1 1 0
0 0 0 0 0 0

'endpoints' Finds end points of skeleton. For example:

1 0 0 0 1 0 0 0
0 1 0 0 becomes 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

Note: To find end points, the image must be skeletonized. To
create a skeletonized image, use bwmorph(BW,'skel').

'fill' Fills isolated interior pixels (individual 0s that are surrounded by
1s), such as the center pixel in this pattern.

1 1 1
1 0 1
1 1 1

'hbreak' Removes H-connected pixels. For example:

1 1 1 1 1 1
0 1 0 becomes 0 0 0
1 1 1 1 1 1

'majority' Sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood
are 1s; otherwise, it sets the pixel to 0.

'open' Performs morphological opening (erosion followed by dilation).

 bwmorph

1-245

Operation Description
'remove' Removes interior pixels. This option sets a pixel to 0 if all its 4-

connected neighbors are 1, thus leaving only the boundary pixels
on.

'shrink' With n = Inf, shrinks objects to points. It removes pixels so that
objects without holes shrink to a point, and objects with holes
shrink to a connected ring halfway between each hole and the
outer boundary. This option preserves the Euler number.

'skel' With n = Inf, removes pixels on the boundaries of objects but
does not allow objects to break apart. The pixels remaining make
up the image skeleton. This option preserves the Euler number.

When working with 3-D volumes, or when you want to prune a
skeleton, use the bwskel function.

'spur' Removes spur pixels. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 becomes 0 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0

'thicken' With n = Inf, thickens objects by adding pixels to the exterior of
objects until doing so would result in previously unconnected
objects being 8-connected. This option preserves the Euler
number.

'thin' With n = Inf, thins objects to lines. It removes pixels so that an
object without holes shrinks to a minimally connected stroke, and
an object with holes shrinks to a connected ring halfway between
each hole and the outer boundary. This option preserves the Euler
number. See “Algorithms” on page 1-247 for more detail.

'tophat' Performs morphological "top hat" operation, returning the image
minus the morphological opening of the image (erosion followed
by dilation).

Example: BW3 = bwmorph(BW,'skel');
Data Types: char | string

1 Functions — Alphabetical List

1-246

n — Number of times to perform the operation
numeric value

Number of times to perform the operation, specified as a numeric value. n can be Inf, in
which case bwmorph repeats the operation until the image no longer changes.
Example: BW3 = bwmorph(BW,'skel',100);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
BW2 — Output image
binary image | gpuArray

Output image, returned as a binary image.

If the morphological operation is performed using a GPU, then BW2 is returned as a
gpuArray that contains a binary image.
Data Types: logical

Tips
• To perform erosion or dilation, use the imerode or imdilate functions. If you want to

duplicate the dilation or erosion performed by bwmorph, then specify the structuring
element ones(3) with these functions.

Algorithms
When used with the 'thin' option, bwmorph uses the following algorithm [3]:

1 In the first subiteration, delete pixel p if and only if the conditions G1, G2, and G3 are
all satisfied.

2 In the second subiteration, delete pixel p if and only if the conditions G1, G2, and G3′
are all satisfied.

 bwmorph

1-247

Condition G1:
XH(p) = 1

where

XH(p) = ∑
i = 1

4
bi

bi =
1, if x2i− 1 = 0 and (x2i = 1 or x2i + 1 = 1)
0, otherwise

x1, x2, ..., x8 are the values of the eight neighbors of p, starting with the east neighbor and
numbered in counter-clockwise order.

Condition G2:
2 ≤ min n1(p), n2(p) ≤ 3

where

n1(p) = ∑
k = 1

4
x2k− 1 ∨ x2k

n2(p) = ∑
k = 1

4
x2k ∨ x2k + 1

Condition G3:
(x2 ∨ x3 ∨ x8) ∧ x1 = 0

Condition G3':
(x6 ∨ x7 ∨ x4) ∧ x5 = 0

The two subiterations together make up one iteration of the thinning algorithm. When the
user specifies an infinite number of iterations (n=Inf), the iterations are repeated until
the image stops changing. The conditions are all tested using applylut with
precomputed lookup tables.

1 Functions — Alphabetical List

1-248

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Vol. 1,

Addison-Wesley, 1992.

[2] Kong, T. Yung and Azriel Rosenfeld, Topological Algorithms for Digital Image
Processing, Elsevier Science, Inc., 1996.

[3] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning Methodologies-A
Comprehensive Survey," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 14, No. 9, September 1992, page 879, bottom of first column
through top of second column.

[4] Pratt, William K., Digital Image Processing, John Wiley & Sons, Inc., 1991.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwmorph supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwmorph generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the character vectors or string scalars specifying the operation
must be a compile-time constant and, for best results, the input image must be of class
logical.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

 bwmorph

1-249

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
bweuler | bwmorph3 | bwperim | bwskel | imdilate | imerode

Introduced before R2006a

1 Functions — Alphabetical List

1-250

bwmorph3
Morphological operations on binary volume

Syntax
J = bwmorph3(V,operation)

Description
J = bwmorph3(V,operation) applies the morphological operation specified by the
string or character vector operation to the binary volume V. bwmorph3 returns the
results of the operation in logical volume J, which has the same dimensions as the input
volume.

Examples

Compare the Clean and Majority Operations of bwmorph3

Load 3-D MRI volumetric data and create a binary volume. Use volshow to view the
volumetric data.

load mristack;
BW1 = mristack > 127;
volshow(BW1);

 bwmorph3

1-251

To remove voxels that are set to 1 and that are also surrounded by voxels set to 0,
perform the 'clean' operation on the volumetric data. When determining which voxels
to remove, the 'clean' operation considers 26 neighboring voxels. Use volshow to view
the results.

BW2 = bwmorph3(BW1,'clean');
volshow(BW2);

1 Functions — Alphabetical List

1-252

For comparison, perform the 'majority' operation on the volumetric data. The
'majority' operation performs a similar task to the 'clean' operation but only retains
voxels if more than half (the majority) of the voxels in the neighborhood of the target
voxel are set to 1. When determining which voxels to retain, the 'majority' operation
also considers 26 neighboring voxels. Use volshow to view the results.

BW3 = bwmorph3(BW1,'majority');
volshow(BW3);

Illustrations of Morphological Operations

This example shows how each of the morphological operations supported by bwmorph3
works on simple volumes.

Make a 9-by-9-by-3 cuboid of 0s that contains a 3-by-3-by-3 cube of 1s at its center.

innercube = ones(3,3,3);
cube_center = padarray(innercube,[3 3],0,'both')

cube_center =
cube_center(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 bwmorph3

1-253

 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Turning Pixels Off with the Remove Operation

Set the center voxel of the inner cube to 0 using the 'remove' operation. This operation
sets the value of any 'on' voxel completely surrounded by 'on' voxels to 'off'.

remove_center = bwmorph3(cube_center,'remove')

remove_center = 9x9x3 logical array
remove_center(:,:,1) =

 0 0 0 0 0 0 0 0 0

1 Functions — Alphabetical List

1-254

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

remove_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 0 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

remove_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Setting Pixels to On with the Fill Operation

Set the center voxel of the inner cube to 1 using the 'fill' operation. This operation
sets the value of any 'off' voxel completely surrounded by 'on' voxels to 'on'.

fill_center = bwmorph3(remove_center,'fill')

fill_center = 9x9x3 logical array
fill_center(:,:,1) =

 bwmorph3

1-255

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

fill_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

fill_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Removing Unconnected Pixels with the Clean Operation

Use the 'clean' operation to remove any stray voxels that are set to 1 but are not
connected to a component in the volume. The example creates a stray voxel by setting a
random voxel on the second plane to 1 and then uses the 'clean' operation to remove it.

cube_center(2,2,2) = 1

1 Functions — Alphabetical List

1-256

cube_center =
cube_center(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned = bwmorph3(cube_center,'clean')

cube_cleaned = 9x9x3 logical array
cube_cleaned(:,:,1) =

 bwmorph3

1-257

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Finding the Majority

Find the majority of the cube_center using the 'majority' operation. This operation
retains a voxel only if more than half (the majority) of the voxels in the 26-connected
neighborhood around the voxel are set to 1.

cube_major = bwmorph3(cube_center,'majority')

1 Functions — Alphabetical List

1-258

cube_major = 9x9x3 logical array
cube_major(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_major(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_major(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Creating a Shape Similar to a Skeleton

To illustrate the branch points and end points options, create another small matrix, this
time with a linear shape, like a skeleton.

 bwmorph3

1-259

x1 = eye(5);
x2 = zeros(5);
x2(3,3) = 1;
x3 = x2;
shape = cat(3,x1,x2,x3)

shape =
shape(:,:,1) =

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

shape(:,:,2) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

shape(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

Finding End Points

Find the end points of the shape using the 'endpoints' operation. The shape has three
end points, one at each end of the diagonal in the first plane and one at the end of the line
through the center, on the third plane.

shape_endpts = bwmorph3(shape,'endpoints')

shape_endpts = 5x5x3 logical array
shape_endpts(:,:,1) =

1 Functions — Alphabetical List

1-260

 1 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 1

shape_endpts(:,:,2) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

shape_endpts(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

Finding Branch Points

Find the branch points of the shape using the 'branchpoints' operation. The shape has
a single branch point, where the diagonal line and the horizontal line meet.

shape_brpts = bwmorph3(shape,'branchpoints')

shape_brpts = 5x5x3 logical array
shape_brpts(:,:,1) =

 0 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 0

shape_brpts(:,:,2) =

 0 0 0 0 0

 bwmorph3

1-261

 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

shape_brpts(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

Input Arguments
V — Input volume
real, nonsparse, numeric or logical array

Input volume, specified as a real, nonsparse, numeric or logical array. bwmorph3 accepts
1-D, 2-D, or 3-D arrays. If you specify 1-D or 2-D input arrays, bwmorph3 performs the
morphogical operation as defined for a 3-D volume. If you want 2-D behavior, use
bwmorph instead.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following character vectors or
string scalar. For examples of these operations, see “Illustrations of Morphological
Operations” on page 1-253.

1 Functions — Alphabetical List

1-262

Operation Description Illustration
'branchpoi
nts'

Find branch points of skeleton. Branch
points are the voxels at the junction where
multiple branches meet.

To find branch points, the image must be
skeletonized. To create a skeletonized
image, use bwskel.

'clean' Remove isolated voxels, setting them to 0.
An isolated voxel is an individual, 26-
connected voxel that is set to 1 that are
surrounded by voxels set to 0.

'endpoints
'

Find end points of skeleton. End points are
voxels at the ends of branches.

Note: To find end points, the image must be
skeletonized. To create a skeletonized
image, use bwskel.

'fill' Fill isolated interior voxels, setting them to
1. Isolated interior voxels are individual
voxels that are set to 0 that are surrounded
(6-connected) by voxels set to 1.

 bwmorph3

1-263

Operation Description Illustration
'majority' Keep a voxel set to 1 if 14 or more voxels

(the majority) in its 3-by-3-by-3, 26-
connected neighborhood are set to 1;
otherwise, set the voxel to 0.

See “Illustrations of
Morphological Operations”
on page 1-253.

'remove' Remove interior voxels, setting it to 0.
Interior voxels are individual voxels that are
set to 1 that are surrounded (6-connected)
by voxels set to 1.

Data Types: char | string

Output Arguments
J — Output volume
logical array

Output volume, returned as a logical array.

Tips
• To perform the morphological operations erosion or dilation on 3-D volumes, use the

imerode or imdilate functions, specifying the structuring element ones(3,3,3).
• To perform morphological closing, opening, top-hat filtering, or bottom-hat filtering on

3-D volumes, use the imclose, imopen, imtophat, or imbothat functions,
specifying the structuring element ones(3,3,3).

See Also
bwmorph | bwskel | imbothat | imclose | imdilate | imerode | imopen | imtophat

1 Functions — Alphabetical List

1-264

Topics
“Types of Morphological Operations”

Introduced in R2018a

 bwmorph3

1-265

bwpack
Pack binary image

Syntax
BWP = bwpack(BW)

Description
BWP = bwpack(BW) packs the binary image BW into the uint32 array BWP, which is
known as a packed binary image. Because each pixel value in the binary image has only
two possible values, 1 and 0, bwpack can map each pixel to a single bit in the packed
output image.

Examples

Pack, Dilate, and Unpack Binary Image

Read binary image into the workspace.

BW = imread('text.png');
imshow(BW)

1 Functions — Alphabetical List

1-266

Pack the image.

BWp = bwpack(BW);

Dilate the packed image.

BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');

Unpack the dilated image and display it.

BW_dilated = bwunpack(BWp_dilated, size(BW,1));
imshow(BW_dilated)

 bwpack

1-267

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any
nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
BWP — Packed binary image
numeric matrix

1 Functions — Alphabetical List

1-268

Packed binary image, returned as a numeric matrix of type uint32.
Data Types: uint32

Tips
• Binary image packing is used to accelerate some binary morphological operations,

such as dilation and erosion. If the input to imdilate or imerode is a packed binary
image, then the function uses a specialized routine to perform the operation faster.

• Use bwunpack to unpack packed binary images.

Algorithms
bwpack processes the input image pixels by column, mapping groups of 32 pixels into the
bits of a uint32 value. The first pixel in the first row corresponds to the least significant
bit of the first uint32 element of the output array. The first pixel in the 32nd input row
corresponds to the most significant bit of this same element. The first pixel of the 33rd
row corresponds to the least significant bit of the second output element, and so on. If BW
is M-by-N, then BWP is ceil(M/32)-by-N. This figure illustrates how bwpack maps the
pixels in a binary image to the bits in a packed binary image.

 bwpack

1-269

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwpack supports the generation of C code (requires MATLAB Coder). The code
generated for bwpack uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

See Also
bwunpack | imdilate | imerode

1 Functions — Alphabetical List

1-270

Introduced before R2006a

 bwpack

1-271

bwperim
Find perimeter of objects in binary image

Syntax
BW2 = bwperim(BW)
BW2 = bwperim(BW,conn)

Description
BW2 = bwperim(BW) returns a binary image that contains only the perimeter pixels of
objects in the input image BW. A pixel is part of the perimeter if it is nonzero and it is
connected to at least one zero-valued pixel.

BW2 = bwperim(BW,conn) specifies the pixel connectivity, conn.

Examples

Find Perimeter of Objects in Binary Image

Read binary image into workspace.

BW = imread('circles.png');

Calculate the perimeters of objects in the image.

BW2 = bwperim(BW,8);

Display the original image and the perimeters side-by-side.

imshowpair(BW,BW2,'montage')

1 Functions — Alphabetical List

1-272

Find Perimeter Pixels in Binary Image

This example shows how to find the perimeter pixels in a binary image using the bwperim
function.

Read a binary image into the workspace.

BW1 = imread('circbw.tif');

Find the perimeters of objects in the image.

BW2 = bwperim(BW1);

Display the original image and the image showing perimeters side-by-side.

montage({BW1,BW2},'BackgroundColor','blue','BorderSize',5)

 bwperim

1-273

Input Arguments
BW — Input binary image
2-D numeric matrix | 2-D logical matrix

Input binary image, specified as a 2-D numeric or logical matrix.
Example: BW = imread('circles.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 4
for 2-D images, and 6 for 3-D images.

1 Functions — Alphabetical List

1-274

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 bwperim

1-275

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwperim uses the default value
conndef(ndims(BW),'minimal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Output binary image containing only perimeter pixels of objects
logical array

Output image containing only perimeter pixels of objects, returned as a logical array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-276

• bwperim supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwperim generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• bwperim supports only 2-D images.
• bwperim does not support a no-output-argument syntax.
• The connectivity matrix input argument, conn, must be a constant.

See Also
bwarea | bwboundaries | bweuler | bwferet | bwtraceboundary | conndef | imfill

Topics
“Types of Morphological Operations”

Introduced before R2006a

 bwperim

1-277

bwpropfilt
Extract objects from binary image using properties

Syntax
BW2 = bwpropfilt(BW,attrib,range)
BW2 = bwpropfilt(BW,attrib,n)
BW2 = bwpropfilt(BW,attrib,n,keep)
BW2 = bwpropfilt(BW,I,attrib,___)
BW2 = bwpropfilt(BW,___,conn)

Description
BW2 = bwpropfilt(BW,attrib,range) extracts all connected components (objects)
from a binary image BW whose value of property attrib is in the specified range.
bwpropfilt returns a binary image BW2 containing only those objects that meet the
criteria.

BW2 = bwpropfilt(BW,attrib,n) sorts the objects based on the value of the
specified property, attrib, returning a binary image that contains only the top n largest
objects. In the event of a tie for n-th place, bwpropfilt keeps only the first n objects in
BW2.

BW2 = bwpropfilt(BW,attrib,n,keep) specifies whether to keep the n largest
objects or the n smallest objects when sorted by property attrib.

BW2 = bwpropfilt(BW,I,attrib,___) sorts objects based on the intensity values in
the grayscale image I and the property attrib.

BW2 = bwpropfilt(BW,___,conn) specifies the pixel connectivity, conn.

Examples

1 Functions — Alphabetical List

1-278

Find Regions Without Holes

Read image and display it.

BW = imread('text.png');
figure
imshow(BW)
title('Original Image')

Use filtering to create a second image that contains only those regions in the original
image that do not have holes. For these regions, the Euler number property is equal to 1.
Display filtered image.

BW2 = bwpropfilt(BW,'EulerNumber',[1 1]);
figure
imshow(BW2)
title('Regions with Euler Number == 1')

 bwpropfilt

1-279

Find Which Ten Objects Have Largest Perimeters

Read image.

BW = imread('text.png');

Find the ten objects in the image with the largest perimeters and display filtered image.

BW2 = bwpropfilt(BW,'perimeter',10);
figure;
imshow(BW2)
title('Objects with the Largest Perimeters')

1 Functions — Alphabetical List

1-280

Input Arguments
BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.
Data Types: logical

attrib — Name of attribute on which to filter
character vector | string scalar

Name of attribute on which to filter, specified as one of the following values. For detailed
information about these attributes, see regionprops.

 bwpropfilt

1-281

Area EulerNumber MinorAxisLength
ConvexArea Extent Orientation
Eccentricity FilledArea Perimeter
EquivDiameter MajorAxisLength Solidity

If you specify a grayscale image, then attrib can have one of these additional values.

MaxIntensity MeanIntensity MinIntensity

Data Types: char | string

range — Minimum and maximum property values
2-by-1 numeric vector

Minimum and maximum property values, specified as a 2-by-1 numeric vector of the form
[low high].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Number of objects to return
positive integer

Number of object to return, specified as a positive integer.
Data Types: double

keep — Objects to retain
'largest' (default) | 'smallest'

Objects to retain, specified as 'largest' or 'smallest'.
Data Types: char | string

I — Marker image
grayscale image

Marker image, specified as a grayscale image, the same size as the input binary image.
Intensity values in the grayscale image define regions in the input binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-282

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s
and 1s. The 1-valued elements define neighborhood locations relative to the center
element of conn. The matrix must be symmetric about its center element.
Data Types: double | logical

Output Arguments
BW2 — Filtered image
binary image

Filtered image, returned as a binary image the same size as BW.

See Also
bwareafilt | bwareaopen | bwconncomp | conndef | regionprops

Topics
“Filter Images on Region Properties Using Image Region Analyzer App”

 bwpropfilt

1-283

Introduced in R2014b

1 Functions — Alphabetical List

1-284

bwselect
Select objects in binary image

Syntax
BW2 = bwselect(BW,c,r,n)
BW2 = bwselect(BW,n)
[BW2,idx] = bwselect(___)
BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(___)

Description
BW2 = bwselect(BW,c,r,n) returns a binary image containing the objects that
overlap the pixel (r,c), where n specifies the connectivity. Objects are connected sets of
on pixels, that is, pixels having a value of 1. By default, bwselect looks for 4-connected
objects.

BW2 = bwselect(BW,n) displays the image BW on the screen and lets you select the
(r,c) coordinates using the mouse. If you omit BW, bwselect operates on the image in
the current axes. Use normal button clicks to add points. Press Backspace or Delete to
remove the previously selected point. A shift-click, right-click, or double-click selects the
final point; press Return to finish the selection without adding a point.

[BW2,idx] = bwselect(___) returns the linear indices of the pixels belonging to the
selected objects.

BW2 = bwselect(x,y,BW,xi,yi,n) uses the vectors x and y to establish a nondefault
spatial coordinate system for BW. The arguments xi and yi are scalars or equal-length
vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect(___) returns the XData and YData in x and y,
the output image in BW2, linear indices of all the pixels belonging to the selected objects
in idx, and the specified spatial coordinates in xi and yi.

 bwselect

1-285

Examples

Select Objects in Binary Image

Select objects in a binary image and create a new image containing only those objects.

Read binary image into the workspace.

BW = imread('text.png');

Specify the locations of objects in the image using row and column indices.

c = [43 185 212];
r = [38 68 181];

Create a new binary image containing only the selected objects. This example specifies 4-
connected objects.

BW2 = bwselect(BW,c,r,4);

Display the original image and the new image side-by-side.

imshowpair(BW,BW2,'montage');

1 Functions — Alphabetical List

1-286

Input Arguments
BW — Input binary image
2-D, nonsparse, logical or numeric matrix

Input binary image, specified as a 2-D, nonsparse, logical or numeric matrix. If you do not
specify an output argument, bwselect displays the output image in a new figure.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

c — Column index
numeric scalar or vector

Column index, specified as a numeric scalar or vector. If c and r are equal-length vectors,
BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).

 bwselect

1-287

Example: c = [43 185 212];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

r — Row index
numeric scalar or vector

Row index, specified as a numeric scalar or vector. If r and c are equal-length vectors,
BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).
Example: r = [38 68 181];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Connectivity
8 (default) | 4

Connectivity, specified as either the value 4 or 8.

Value Description
4 4-connected objects
8 8-connected objects

Example: BW2 = bwselect(BW,c,r,4);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

x — x coordinates of nondefault coordinate system
numeric scalar or vector

x coordinates of nondefault coordinate system, specified as a numeric scalar or vector.
Example: x = [19.5 23.5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

y — y coordinates of nondefault coordinate system
numeric scalar or vector

y coordinates of nondefault coordinate system, specified as a numeric scalar or vector.

1 Functions — Alphabetical List

1-288

Example: y = [8.0 12.0];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

xi — x coordinates of locations in nondefault coordinate system
numeric scalar or vector

x coordinates of locations in nondefault coordinate system, specified as a numeric scalar
or vector.
Example: x = [19.5 23.5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yi — y coordinates of locations in nondefault coordinate system
numeric scalar or vector

y coordinates of locations in nondefault coordinate system, specified as a numeric scalar
or vector.
Example: y = [8.0 12.0];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW2 — Binary image containing objects that overlap the specified pixels
logical array

Binary image containing objects that overlap the specified pixels, returned as a logical
array.

If you do not specify an output argument, bwselect displays the output image in a new
figure.

idx — Linear indices of the pixels belonging to the selected objects
numeric vector

Linear indices of the pixels belonging to the selected objects, returned as a numeric
vector.

 bwselect

1-289

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwselect supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwselect
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, bwselect only supports the following syntaxes:

• BW2 = bwselect(BW, c, r)
• [BW2, idx] = bwselect(BW, c, r)
• BW2 = bwselect(BW, c, r, n)
• [BW2, idx] = bwselect(BW, c, r, n)

• In addition, the optional fourth input argument, n, must be a compile-time constant.

See Also
bwlabel | bwselect3 | grayconnected | imfill | regionfill | roipoly

Introduced before R2006a

1 Functions — Alphabetical List

1-290

bwselect3
Select objects in binary image

Syntax
J = bwselect3(V,C,R,P)
J = bwselect3(X,Y,Z,V,Xi,Yi,Zi)
[J] = bwselect3(___ ,N)
[J,idx] = bwselect3(___)
[X,Y,Z,J,Xi,Yi,Zi] = bwselect3(___)
[X,Y,Z,J,idx,Xi,Yi,Zi] = bwselect3(___)

Description
J = bwselect3(V,C,R,P) returns the binary volume J containing the objects that
overlap the pixel location (R,C,P). R,C, and P are scalars or equal-length vectors that
specify the row, column, and plane index of the pixel location. Objects are connected sets
of pixels with the value 1.

If you specify R,C, and P as vectors, J contains the set of objects overlapping with any of
the pixels (R(k),C(k),P(k)), where k is an index into the vector.

J = bwselect3(X,Y,Z,V,Xi,Yi,Zi) uses the vectors X, Y, and Z to establish a
nondefault spatial coordinate system for V. Xi, Yi, and Zi are scalars or equal-length
vectors that specify pixel locations in this coordinate system.

[J] = bwselect3(___ ,N) returns a binary volume where N specifies the connectivity
used to define objects.

[J,idx] = bwselect3(___) returns idx, a column vector of linear indices specifying
the pixels belonging to the selected objects.

[X,Y,Z,J,Xi,Yi,Zi] = bwselect3(___) returns the binary volume J, along with
the XData, YData, and ZData of the output volume in X,Y, and Z. Xi,Yi, and Zi contain
the specified spatial coordinates.

 bwselect3

1-291

[X,Y,Z,J,idx,Xi,Yi,Zi] = bwselect3(___)returns the binary volume J, along
with idx, a column vector of linear indices specifying the pixels belonging to the selected
objects.

Examples

Find Objects in Volume

Load a volume and change its name to V.

load mristack;
V = mristack;

Define a set of points in the volume.

C = [126 87 11];
R = [34 120 20];
P = [20 2 12];

Return a volume that contains objects that intersect with the points specified.

J = bwselect3(V,C,R,P);

Input Arguments
V — Input volume
nonsparse, logical or numeric 3-D array

Input volume, specified as a nonsparse, 3-D, logical or numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

R — Row index of object
numeric scalar | numeric vector

Row index of object, specified as a numeric scalar or vector. If you specify a vector, R must
be the same length as C and P.

1 Functions — Alphabetical List

1-292

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C — Column index of object
numeric scalar | numeric vector

Column index of object, specified as a scalar or vector. If you specify a vector, C must be
the same length as R and P.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

P — Plane index of object
numeric scalar | numeric vector

Plane index of object, specified as a scalar or vector. If you specify a vector, P must be the
same length as R and C.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

N — Connectivity
26 (default) | 6 | 18

Connectivity, specified as 6, 18, or 26. Objects are connected sets of pixels with the value
1.

Connectivities

Value Connectivity
6 6-connected objects (Face-Face)
18 18-connected objects (Face-Face and Edge-Edge)
26 26-connected objects (Face-Face, Edge-Edge, and

Vertex-Vertex)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Limits of nondefault coordinate system in X direction
vector

Limits of nondefault coordinate system in X direction, specified as a vector.

 bwselect3

1-293

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Y — Limits of nondefault coordinate system in Y direction
vector

Limits of nondefault coordinate system in Y direction, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Z — Limits of nondefault coordinate system in Z direction
vector

Limits of nondefault coordinate system in Z direction, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Xi — X-coordinate of location in nondefault coordinate system
scalar | vector

X-coordinate of location in nondefault coordinate system, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Yi — Y-coordinate of location in nondefault coordinate system
scalar | vector

Y-coordinate of location in nondefault coordinate system, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Zi — Z-coordinate of location in nondefault coordinate system
scalar or vector

Z-coordinate of location in nondefault coordinate system, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-294

Output Arguments
J — Output volume
N-D logical array

Output volume, returned as an N-D logical array. J contains the set of objects overlapping
with any of the pixels specified by R,C, and P, or Xi,Yi, and Zi.

idx — Linear indices of pixels belonging to selected objects
vector

Linear indices of pixels belonging to the selected objects, returned as a vector.

X — Volume Xdata property
vector

Volume Xdata property, returned as a vector.

Y — Volume Ydata property
vector

Volume Ydata property, returned as a vector.

Z — Volume Zdata property
vector

Volume Zdata property, returned as a vector.

Xi — X-coordinate of location in nondefault coordinate system
scalar | vector

X-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

Yi — Y-coordinate of location in nondefault coordinate system
scalar | vector

Y-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

Zi — Z-coordinate of location in nondefault coordinate system
scalar | vector

Z-coordinate of location in nondefault coordinate system, returned as a scalar or vector.

 bwselect3

1-295

See Also
bwlabel | bwselect | imfill | regionfill | roipoly

Introduced in R2017b

1 Functions — Alphabetical List

1-296

bwskel
Reduce all objects to lines in 2-D binary image or 3-D binary volume

Syntax
B = bwskel(A)
B = bwskel(V)
B = bwskel(___ ,'MinBranchLength',N)

Description
B = bwskel(A) reduces all objects in the 2-D binary image A to 1-pixel wide curved
lines, without changing the essential structure of the image. This process, called
skeletonization, extracts the centerline while preserving the topology and Euler number
of the objects.

B = bwskel(V) returns the skeleton of a 3-D binary volume.

B = bwskel(___ ,'MinBranchLength',N) specifies the minimum branch length N of
the skeleton. bwskel removes (prunes) all branches shorter than the specified length.
bwskel calculates the length as the number of pixels in a branch using 8-connectivity for
2-D and 26-connectivity for 3-D.

Examples

Skeletonize 2-D Grayscale Image

Read a 2-D grayscale image into the workspace. Display the image. Objects of interest are
dark threads against a light background.

I = imread('threads.png');
imshow(I)

 bwskel

1-297

Skeletonization requires a binary image in which foreground pixels are 1 (white) and the
background is 0 (black). To make the original image suitable for skeletonization, take the
complement of the image so that the objects are light and the background is dark. Then,
binarize the result.

1 Functions — Alphabetical List

1-298

Icomplement = imcomplement(I);
BW = imbinarize(Icomplement);
imshow(BW)

Perform skeletonization of the binary image using bwskel.

 bwskel

1-299

out = bwskel(BW);

Display the skeleton over the original image by using the labeloverlay function. The
skeleton appears as a 1-pixel wide cyan line over the dark threads.

imshow(labeloverlay(I,out,'Transparency',0))

1 Functions — Alphabetical List

1-300

Prune small spurs that appear on the skeleton and view the result. One short branch is
pruned from a thread near the center of the image.

out2 = bwskel(BW,'MinBranchLength',15);
imshow(labeloverlay(I,out2,'Transparency',0))

 bwskel

1-301

Skeletonize Binary Image

Read a binary image into the workspace.

BW1 = imread('circbw.tif');

Skeletonize objects in the image using the bwskel function.

BW2 = bwskel(BW1);

View the original image and the skeletonized image side by side.

montage({BW1,BW2},'BackgroundColor','blue','BorderSize',5)

1 Functions — Alphabetical List

1-302

Skeletonize 3-D Volume

Load a volumetric data set into the workspace. The name of the data set is spiralVol.
Display the volume using volshow.

load spiralVol.mat;
volshow(spiralVol);

Convert the spiralVol data set to a binary format which is required by the bwskel
function.

spiralVolLogical = imbinarize(spiralVol);

Skeletonize the spiral shape in the data set. Display the skeletonized volume with
volshow.

spiralVolSkel = bwskel(spiralVolLogical);

.

 bwskel

1-303

Input Arguments
A — Binary image
2-D logical array

Binary image, specified as a 2-D logical array.
Data Types: logical

V — 3-D binary volume
3-D logical array

3-D binary volume, specified as a 3-D logical array.
Data Types: logical

N — Minimum branch length
0 (default) | nonnegative integer

Minimum branch length, specified as a nonnegative integer. bwskel prunes branches
shorter than N. By default, bwskel does not prune branches.

1 Functions — Alphabetical List

1-304

Output Arguments
B — Skeletonized image or volume
2-D logical array | 3-D logical array

Skeletonized image or volume, returned as a 2-D or 3-D logical array of the same size as
the input image or volume.

Tips
• While both bwskel and bwmorph can skeletonize 2-D images, you might get different

results using bwmorph than when using bwskel. Because they use different
algorithms, the bwskel function uses 4-connectivity with 2-D images; bwmorph uses
8-connectivity.

• bwskel assumes that foreground objects in the binary image are white (logical true).
If your image has a white background and black objects, then use the complement of
your image as the input to bwskel. You can compute the complement using
imcomplement.

Algorithms
• The bwskel function uses the medial axis transform.

References
[1] Ta-Chih Lee, Rangasami L. Kashyap and Chong-Nam Chu. Building skeleton models

via 3-D medial surface/axis thinning algorithms. Computer Vision, Graphics, and
Image Processing, 56(6):462-478, 1994.

[2] Kerschnitzki, M, Kollmannsberger, P, Burghammer, M. et al. Architecture of the
osteocyte network correlates with bone material quality. Journal of Bone and
Mineral Research, 28(8):1837-1845, 2013.

See Also
bwmorph | bwmorph3

 bwskel

1-305

Topics
“Types of Morphological Operations”

Introduced in R2018a

1 Functions — Alphabetical List

1-306

bwtraceboundary
Trace object in binary image

Syntax
B = bwtraceboundary(BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,conn)
B = bwtraceboundary(BW,P,fstep,conn,m,dir)

Description
B = bwtraceboundary(BW,P,fstep) traces the outline of an object in binary image
BW. Nonzero pixels belong to an object and zero-valued pixels constitute the background.
P specifies the row and column coordinates of the point on the object boundary where you
want the tracing to begin. fstep specifies the initial search direction for the next object
pixel connected to P. B holds the row and column coordinates of the boundary pixels for
the region.

B = bwtraceboundary(BW,P,fstep,conn) traces the boundary, where conn specifies
the desired connectivity.

B = bwtraceboundary(BW,P,fstep,conn,m,dir) specifies m, the maximum number
of boundary pixels to extract, and dir, the direction in which to trace the boundary. By
default, bwtraceboundary identifies all the pixels on the boundary.

Examples

Trace Boundary and Visualize Contours

Read an image and display it.

BW = imread('blobs.png');
imshow(BW)

 bwtraceboundary

1-307

Pick an object in the image and trace the boundary. To select an object, specify a pixel on
its boundary. This example uses the coordinates of a pixel on the boundary of the thick
white circle, obtained through visual inspection using impixelinfo. By default,
bwtraceboundary identifies all pixels on the boundary.

r1 = 163;
c1 = 37;
contour = bwtraceboundary(BW,[r1 c1],'W');

Plot the contour on the image.

hold on
plot(contour(:,2),contour(:,1),'g','LineWidth',2)

1 Functions — Alphabetical List

1-308

Pick a point on the boundary of a second object. This example uses the coordinates of a
pixel near the upper-left corner of the largest rectangle. Trace the first fifty boundary
pixels in the clockwise direction.

r2 = 68;
c2 = 95;
contourCW = bwtraceboundary(BW,[r2 c2],'W',8,50,'clockwise');

Starting at the same point on the second object boundary, trace the first fifty boundary
pixels in the counterclockwise direction.

contourCCW = bwtraceboundary(BW,[r2 c2],'W',8,50,'counterclockwise');

Plot the clockwise contour on the image in red. Plot the conterclockwise contour on the
image in blue.

plot(contourCW(:,2),contourCW(:,1),'r','LineWidth',2)
plot(contourCCW(:,2),contourCCW(:,1),'b','LineWidth',2)

 bwtraceboundary

1-309

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

P — Coordinates of starting point
2-element vector

Coordinates of starting point on the object boundary where you want the tracing to begin,
specified as a 2-element vector of the format [row column].

1 Functions — Alphabetical List

1-310

Data Types: double

fstep — Initial search direction
'N' | 'NE' | 'E' | 'SE' | 'S' | 'SW' | 'W' | 'NW'

Initial search direction for the next object pixel connected to P, specified as a character
vector or string scalar as depicted in the diagram.

Note When the connectivity conn is 4, fstep is limited to the values 'N', 'E', 'S', and
'W'.

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 8 or 4.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

 bwtraceboundary

1-311

Value Meaning
8-connected Pixels are connected if their edges or

corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Data Types: double

m — Maximum number of boundary pixels to extract
Inf (default) | positive integer

Maximum number of boundary pixels to extract, specified as a positive integer. By default,
m is Inf and bwtraceboundary identifies all the pixels on the boundary.
Data Types: double

dir — Direction in which to trace boundary
'clockwise' (default) | 'counterclockwise'

Direction in which to trace boundary, specified as 'clockwise' or
'counterclockwise'.
Data Types: char | string

Output Arguments
B — Row and column coordinates of boundary pixels
q-by-2 matrix

Row and column coordinates of the boundary pixels for the region, returned as a q-by-2
matrix. Each row in B has the form [row column].

Algorithms
The bwtraceboundary function implements the Moore-Neighbor tracing algorithm
modified by Jacob's stopping criteria. This function is based on the boundaries function
presented in the first edition of Digital Image Processing Using MATLAB, by Gonzalez, R.
C., R. E. Woods, and S. L. Eddins, New Jersey, Pearson Prentice Hall, 2004.

1 Functions — Alphabetical List

1-312

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using

MATLAB, New Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwtraceboundary supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

• When generating code, the dir, fstep, and conn arguments must be compile-time
constants.

See Also
bwboundaries | bwperim

Introduced before R2006a

 bwtraceboundary

1-313

bwulterode
Ultimate erosion

Syntax
BW2 = bwulterode(BW)
BW2 = bwulterode(BW,method)
BW2 = bwulterode(___ ,conn)

Description
BW2 = bwulterode(BW) computes the ultimate erosion of the binary image BW. The
ultimate erosion of BW consists of the regional maxima of the Euclidean distance
transform of the complement of BW.

BW2 = bwulterode(BW,method) specifies the distance transform method.

BW2 = bwulterode(___ ,conn) specifies the pixel connectivity.

Examples

Perform Ultimate Erosion of Binary Image

Read a binary image into the workspace and display it.

originalBW = imread('circles.png');
imshow(originalBW)

1 Functions — Alphabetical List

1-314

Perform the ultimate erosion of the image and display it.

ultimateErosion = bwulterode(originalBW);
figure, imshow(ultimateErosion)

 bwulterode

1-315

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input,
any nonzero pixels are considered to be 1 (true).
Example: BW = imread('circles.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Distance transform method
'euclidean' (default) | 'quasi-euclidean' | 'cityblock' | 'chessboard'

Distance transform method, specified as one of the values in this table.

1 Functions — Alphabetical List

1-316

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2)

is

max(│x1 – x2│,│y1 – y2│).
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│
'euclidean' In 2-D, the Euclidean distance between (x1,y1) and (x2,y2) is

(x1− x2)2 + (y1− y2)2 .

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and
(x2,y2) is

x1− x2 + (2 − 1) y1− y2 , x1− x2 > y1− y2

(2 − 1) x1− x2 + y1− y2 , otherwise.

For more information, see “Distance Transform of a Binary Image”.

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

 bwulterode

1-317

Value Meaning
8-connected Pixels are connected if their edges or

corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges,
or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, bwulterode uses the default value
conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood

1 Functions — Alphabetical List

1-318

locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Eroded image
logical array

Eroded image, returned as a logical array of the same size as BW.
Data Types: logical

See Also
bwdist | conndef | imregionalmax

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a

 bwulterode

1-319

bwunpack
Unpack binary image

Syntax
BW = bwunpack(BWP,m)

Description
BW = bwunpack(BWP,m) unpacks the packed binary image BWP into binary image BW
with m rows.

Examples

Pack, Dilate, and Unpack Binary Image

Read binary image into the workspace.

BW = imread('text.png');
imshow(BW)

1 Functions — Alphabetical List

1-320

Pack the image.

BWp = bwpack(BW);

Dilate the packed image.

BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');

Unpack the dilated image and display it.

BW_dilated = bwunpack(BWp_dilated, size(BW,1));
imshow(BW_dilated)

 bwunpack

1-321

Input Arguments
BWP — Packed binary image
2-D numeric matrix

Packed binary image, specified as a 2-D numeric array of data type uint32.
Data Types: uint32

m — Number of image rows
positive integer

Number of image rows, specified as a positive integer. The default value of m is
32*size(BWP,1).
Data Types: uint32

1 Functions — Alphabetical List

1-322

Output Arguments
BW — Unpacked binary image
m-by-n logical matrix

Unpacked binary image, returned as a logical matrix with m rows.
Data Types: logical

Algorithms
When bwunpack unpacks BWP, the function maps the least significant bit of the first row
of BWP to the first pixel in the first row of BW. The most significant bit of the first element
of BWP maps to the first pixel in the 32nd row of BW, and so on.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwunpack supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, bwunpack
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, all input arguments must be compile-time constants.

See Also
bwpack | imdilate | imerode

 bwunpack

1-323

Introduced before R2006a

1 Functions — Alphabetical List

1-324

camresponse
Estimate camera response function

Syntax
crf = camresponse(files)
crf = camresponse(imds)
crf = camresponse(___ ,'ExposureTimes',expTimes)

Description
crf = camresponse(files) estimates the camera response function from a set of
spatially registered, low dynamic range (LDR) images listed in files.

crf = camresponse(imds) estimates the camera response function from a set of
spatially registered LDR images stored as an ImageDatastore object, imds.

crf = camresponse(___ ,'ExposureTimes',expTimes) specifies the exposure
time for each image in the input set using a name-value pair. You can specify this name-
value pair in addition to the input argument from any of the previous syntaxes.

Examples

Estimate Camera Response Function from Set of Images

Estimate the camera response function from a set of six low dynamic range (LDR) color
images and their exposure times read from the EXIF metadata. Plot the estimated output
values as a curve.

Specify a set of six spatially registered LDR images. These LDR images have same f-stop
values and varying exposure times.

files = ["office_1.jpg","office_2.jpg","office_3.jpg",...
 "office_4.jpg","office_5.jpg","office_6.jpg"];

 camresponse

1-325

Estimate the camera response function from the set of specified images.

crf = camresponse(files);

Specify the range of intensity levels in the input images.

range = 0:length(crf)-1;

Plot the estimated camera response function for each of the red, green, and blue color
components. The plot shows the relationship between log-exposure and image intensity.

figure,
hold on
plot(crf(:,1),range,'--r','LineWidth',2);
plot(crf(:,2),range,'-.g','LineWidth',2);
plot(crf(:,3),range,'-.b','LineWidth',2);
xlabel('Log-Exposure');
ylabel('Image Intensity');
title('Camera Response Function');
grid on
axis('tight')
legend('R-component','G-component','B-component','Location','southeast')

1 Functions — Alphabetical List

1-326

Estimate Camera Response Function from Images in Datastore

Estimate the camera response function from a set of six low dynamic range color images
stored as an ImageDatastore object. Compute the output values using exposure times.
Plot the output values as a curve.

Read the set of six spatially registered LDR images into the workspace. Create an
ImageDatastore object containing these images..

setDir = fullfile(toolboxdir('images'),'imdata','office_*');
imds = imageDatastore(setDir);

 camresponse

1-327

Specify the exposure time for each image in the ImageDatastore object.

expTimes = [0.0333 0.1000 0.3333 0.6250 1.3000 4.0000];

Specifying the exposure times, estimate the camera response function from the images in
the datastore.

crf = camresponse(imds,'ExposureTimes',expTimes);

Specify the range of intensity values in the input images.

range = 0:length(crf)-1;

Plot the estimated camera response function for each of the R, G, and B color
components. The plot shows the relationship between log-exposure and image intensity.

figure,
hold on
plot(crf(:,1),range,'--r','LineWidth',2);
plot(crf(:,2),range,'-.g','LineWidth',2);
plot(crf(:,3),range,'-.b','LineWidth',2);
xlabel('Log-Exposure');
ylabel('Image Intensity');
title('Camera Response Function');
grid on
axis('tight')
legend('R-component','G-component','B-component','Location','southeast')

1 Functions — Alphabetical List

1-328

Input Arguments
files — Set of spatially registered LDR images
string array | cell array of character vectors

Set of spatially registered LDR images, specified as a string array or a cell array of
character vectors. These images can be color or grayscale of any bit depth. However, the
preferred bit depth for LDR images is 8 or 16.
Data Types: char | string | cell

 camresponse

1-329

imds — Set of spatially registered LDR images
ImageDatastore object

Set of spatially registered LDR images, specified as an ImageDatastore object. These
images can be color or grayscale of any bit depth. However, the preferred bit depth for
LDR images is 8 or 16.

expTimes — Exposure time of input images
numeric vector of positive values

Exposure time of input images, specified as a numeric vector of positive values. The kth
element in the vector corresponds to the kth LDR image in the input set. If you specify
expTimes, the function overrides the EXIF exposure metadata.
Example: camresponse(files,'ExposureTimes',[0.1 0.3 0.4]);
Data Types: single | double

Output Arguments
crf — Estimate of camera response function
n-by-1 vector | n-by-3 matrix

Estimate of camera response function, returned as an n-by-1 vector for grayscale images
and n-by-3 matrix for color images. The camera response function maps the log-exposure
value (scene radiance) to the intensity levels in the input images. The value of n is 2bit
depth. For example, if the bit depth of the input set of images is 8, then n is 256.
Data Types: double

Note
• This function requires a minimum of two images with different exposure times. A

larger number of images yields a better estimate of crf at the expense of more
processing time.

• The input image files in files and imds must contain the Exchangeable Image File
Format (EXIF) exposure metadata. To estimate the crf values, the function reads the
exposure time in the EXIF metadata. If you specify expTimes, the function overrides
the exposure time in the EXIF metadata.

1 Functions — Alphabetical List

1-330

References
[1] Debevec, P.E., and J. Malik. "Recovering High Dynamic Range Radiance Maps from

Photographs." In ACM SIGGRAPH 2008 classes, Article No. 31. New York, NY:
ACM, 2008.

See Also
hdrread | hdrwrite | makehdr

Introduced in R2019a

 camresponse

1-331

checkerboard
Create checkerboard image

Syntax
I = checkerboard
I = checkerboard(n)
I = checkerboard(n,p,q)

Description
I = checkerboard creates an 8-by-8 square checkerboard image that has four
identifiable corners. The checkerboard pattern is made up of tiles. Each tile contains four
squares, each with a default of 10 pixels per side. The light squares on the left half of the
checkerboard are white. The light squares on the right half of the checkerboard are gray.

TILE = [DARK LIGHT; LIGHT DARK]

I = checkerboard(n) creates an 8-by-8 square checkerboard image where each
square has n pixels per side.

I = checkerboard(n,p,q) creates a rectangular checkerboard image where p
specifies the number of rows of tiles and q specifies the number of columns of tiles. If you
omit q, the number of columns defaults to p and the checkerboard is square. Each square
has n pixels per side.

Examples

Create Square Checkerboard

Create a checkerboard where the side of every square is 20 pixels in length.

1 Functions — Alphabetical List

1-332

I = checkerboard(20);

Display the checkerboard.

imshow(I)

Create Rectangular Checkerboard

Create a rectangular checkerboard that is 2 tiles high and 3 tiles wide. The side of every
square is 20 pixels in length.

J = checkerboard(20,2,3);

Display the checkerboard.

figure
imshow(J)

 checkerboard

1-333

Create Black and White Checkerboard

Create a black and white checkerboard with the default tile size and the default number
of rows and columns.

K = (checkerboard > 0.5);

Display the checkerboard.

figure
imshow(K)

1 Functions — Alphabetical List

1-334

Input Arguments
n — Side length in pixels of each square in the checkerboard pattern
10 (default) | positive integer

Side length in pixels of each square in the checkerboard pattern, specified as a positive
integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

p — Number of rows of tiles in the checkerboard pattern
8 (default) | positive integer

Number of rows of tiles in the checkerboard pattern, specified as a positive integer. Since
there are four squares per tile, there are 2*p rows of squares in the checkerboard.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

q — Number of columns of tiles in the checkerboard pattern
positive integer

Number of columns of tiles in the checkerboard pattern, specified as a positive integer. If
you omit q, the value defaults to p and the checkerboard is square. Since there are four
squares per tile, there are 2*q columns of squares in the checkerboard.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
I — Rectangular image with a checkerboard pattern
2-D numeric array

Rectangular image with a checkerboard pattern, returned as a 2-D numeric array. The
light squares on the left half of the checkerboard are white. The light squares on the right
half of the checkerboard are gray.
Data Types: double

 checkerboard

1-335

See Also
fitgeotrans | imwarp

Introduced before R2006a

1 Functions — Alphabetical List

1-336

chromadapt
Adjust color balance of RGB image with chromatic adaptation

Syntax
B = chromadapt(A,illuminant)
B = chromadapt(A,illuminant,Name,Value)

Description
B = chromadapt(A,illuminant) adjusts the color balance of sRGB image A according
to the scene illuminant. The illuminant must be in the same color space as the input
image.

B = chromadapt(A,illuminant,Name,Value) adjusts the color balance of A using
name-value pairs to control additional options.

Examples

Color Balance Image by Specifying Gray Pixel

Read an image with a strong yellow color cast. Display the image, specifying an optional
magnification to shrink the size of the displayed image.

A = imread('hallway.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

 chromadapt

1-337

Pick a pixel in the image that should look white or gray, such as a point on a pillar. Do not
pick a saturated pixel, such as a point on the ceiling light.

x = 2800;
y = 1000;
gray_val = [A(y,x,1) A(y,x,2) A(y,x,3)];

Use the selected color as reference for the scene illumination, and correct the white
balance of the image.

B = chromadapt(A,gray_val);

Display the corrected image, setting an optional initial magnification.

1 Functions — Alphabetical List

1-338

figure
imshow(B,'InitialMagnification',25)
title('White-Balanced Image')

The pillars are now white as expected, and the rest of the image has no yellow tint.

Color Balance Image in Linear RGB Color Space

Open an image file containing minimally processed linear RGB intensities.

A = imread('foosballraw.tiff');

 chromadapt

1-339

The image data is the raw sensor data after correcting the black level and scaling to 16
bits per pixel. Interpolate the intensities to reconstruct color. The color filter array
pattern is RGGB.

A = demosaic(A,'rggb');

Display the image. Because the image is in linear RGB color space, apply gamma
correction so the image appears correctly on the screen. To shrink the image so that it
appears fully on the screen, set the optional initial magnification to a value less than 100

A_sRGB = lin2rgb(A);
figure
imshow(A_sRGB,'InitialMagnification',25)
title('Original Image')

1 Functions — Alphabetical List

1-340

The image has a ColorChecker chart in the scene. To get the color of the ambient light,
pick a pixel on one of the neutral patches of the chart.

x = 1510;
y = 1250;
light_color = [A(y,x,1) A(y,x,2) A(y,x,3)]

light_color = 1x3 uint16 row vector

 7361 14968 10258

The intensity of the red channel is lower than the intensity of the other two channels,
which indicates the light is bluish green.

Balance the color channels of the image. Use the 'ColorSpace' option to specify that
the image and the illuminant are expressed in linear RGB.

B = chromadapt(A,light_color,'ColorSpace','linear-rgb');

Display the corrected image, applying gamma correction and setting the initial
magnification.

B_sRGB = lin2rgb(B);
figure
imshow(B_sRGB,'InitialMagnification',25)
title('White-Balanced Image')

 chromadapt

1-341

Confirm that the gray patch has been color balanced.

patch_color = [B(y,x,1) B(y,x,2) B(y,x,3)]

patch_color = 1x3 uint16 row vector

 13010 13010 13010

The three color channels in the color-balanced gray patch have similar intensities, as
expected.

1 Functions — Alphabetical List

1-342

Input Arguments
A — Input RGB image
real, nonsparse, m-by-n-by-3 array

Input RGB image, specified as a real, nonsparse, m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

illuminant — Scene illuminant
real, nonempty, 3-element vector

Scene illuminant, specified as a real, nonempty, 3-element vector. The illuminant must be
in the same color space as the input image, A.
Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: I2 = chromadapt(I,uint8([22 97 118]),'ColorSpace','linear-
rgb') adjusts the color balance of an image, I, in linear RGB color space.

ColorSpace — Color space
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input image and illuminant, specified as the comma-separated pair
consisting of 'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. Use
the 'linear-rgb' option to adjust the color balance of an RGB image whose intensities
are linear.
Data Types: char | string

Method — Chromatic adaptation method
'bradford' (default) | 'vonkries' | 'simple'

Chromatic adaptation method used to scale the RGB values in A, specified as the comma-
separated pair consisting of 'Method' and one of:

 chromadapt

1-343

• 'bradford'—Scale using the Bradford cone response model
• 'vonkries'—Scale using the von Kries cone response model
• 'simple'—Scale using the illuminant

Data Types: char | string

Output Arguments
B — Color-balanced RGB image
m-by-n-by-3 array

Color-balanced RGB image, returned as an m-by-n-by-3 array. B has the same data type as
A.

References
[1] Lindbloom, Bruce. Chromatic Adaptation. http://www.brucelindbloom.com/index.html?

Eqn_ChromAdapt.html.

See Also
colorangle | illumgray | illumpca | illumwhite | whitepoint

Introduced in R2017b

1 Functions — Alphabetical List

1-344

http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html

col2im
Rearrange matrix columns into blocks

Syntax
A = col2im(B,[m n],[M N])
A = col2im(B,[m n],[M N],'sliding')
A = col2im(B,[m n],[M N],'distinct')

Description
A = col2im(B,[m n],[M N]) or

A = col2im(B,[m n],[M N],'sliding') rearranges the row vector B into
neighborhoods of size m-by-n to create the matrix A of size (M-m+1)-by-(N-n+1).

The row vector B is usually the result of processing the output of
im2col(...,'sliding') using a column compression function, such as sum.

A = col2im(B,[m n],[M N],'distinct') rearranges each column of matrix B into a
distinct m-by-n block to create the matrix A of size M-by-N.

For example, if B consists of column vectors Bi(:) with length m*n, arranged as B =
[B1(:) B2(:) B3(:) B4(:)], then A = [B1 B3; B2 B4] where each block Bi has
size m-by-n.

Examples

Rearrange Matrix Values into Row-wise Orientation

Create a matrix.

B = reshape(uint8(1:25),[5 5])'

 col2im

1-345

B = 5x5 uint8 matrix

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 24 25

Rearrange the values in the matrix into a column-wise arrangement.

C = im2col(B,[1 5])

C = 5x5 uint8 matrix

 1 6 11 16 21
 2 7 12 17 22
 3 8 13 18 23
 4 9 14 19 24
 5 10 15 20 25

Rearrange the values in the matrix back into their original row-wise orientation.

A = col2im(C,[1 5],[5 5],'distinct')

A = 5x5 uint8 matrix

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 24 25

Input Arguments
B — Image blocks
matrix | row vector

Image blocks, specified as one of the following.

1 Functions — Alphabetical List

1-346

• For distinct block processing, B is a numeric or logical matrix with m*n rows. Each
column corresponds to one block.

• For sliding neighborhood processing, B is a numeric or logical row vector of size 1-by-
(M-m+1)*(N-n+1).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows
and n is the number of columns in each block. m*n must be equal to the number of rows
of B.
Data Types: double

[M N] — Image size
2-element vector of positive integers

Image size, specified as a 2-element vector of positive integers. M is the number of rows
and N is the number of columns in the image.
Data Types: double

Output Arguments
A — Reconstructed image
numeric matrix

Reconstructed image, returned as a numeric matrix of size M-by-N for distinct block
processing, or (M-m+1)-by-(N-n+1) for sliding block processing. A has the same data
type as B.

See Also
blockproc | colfilt | im2col | nlfilter | reshape

Introduced before R2006a

 col2im

1-347

colfilt
Columnwise neighborhood operations

Syntax
B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],[mblock nblock],block_type,fun)
B = colfilt(A,'indexed', ___)

Description
B = colfilt(A,[m n],block_type,fun) processes the image A by rearranging each
m-by-n block of A into a column of a temporary matrix, and then applying the function fun
to this matrix. colfilt zero-pads A, if necessary.

B = colfilt(A,[m n],[mblock nblock],block_type,fun) subdivides A into
regions of size mblock-by-nblock blocks to save memory. Note that the result of the
operation does not change when using the [mblock nblock] argument.

For example, if [mblock nblock] is [3 4] and the size of each block is 16-by-16 pixels,
then colfilt subdivides the image into regions of size 48-by-64 pixels and processes
each region separately.

B = colfilt(A,'indexed', ___) processes A as an indexed image, padding with 0s if
the class of A is uint8, uint16, or logical, and padding with 1s otherwise.

Examples

Perform Columnwise Neighborhood Filtering on Image

This example shows how to set each output pixel to the mean value of the input pixel's 5-
by-5 neighborhood using columnwise neighborhood processing.

Read a grayscale image into the workspace.

1 Functions — Alphabetical List

1-348

I = imread('tire.tif');

Perform columnwise filtering. The function mean is called on each 5-by-5 pixel
neighborhood.

I2 = uint8(colfilt(I,[5 5],'sliding',@mean));

Display the original image and the filtered image.

imshow(I)
title('Original Image')

figure
imshow(I2)
title('Filtered Image')

 colfilt

1-349

Input Arguments
A — Image
array

Image, specified as an array of any class supported by fun.

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows
and n is the number of columns in each block.

[mblock nblock] — Block group size
2-element vector of positive integers

Block group size, specified as a 2-element vector of positive integers. mblock is the
number of blocks in the group in the vertical direction, and nblock is the number of
blocks in the group in the horizontal direction.

1 Functions — Alphabetical List

1-350

block_type — Block type
'sliding' | 'distinct'

Block type, specified as 'sliding' for sliding neighborhoods or 'distinct' for distinct
blocks.
Data Types: char | string

fun — Function handle
handle

Function handle, specified as a handle. The input and output arguments to this function
depend on the value of block_type. For more information, see “Algorithms” on page 1-
351.

For more information about function handles, see “Create Function Handle” (MATLAB).

Output Arguments
B — Filtered image
numeric matrix

Filtered image, returned as a numeric matrix.

Algorithms
The algorithm that colfilt uses to process images depends on the value of
block_type.

Value Description
'distinct' • First, colfilt rearranges each m-by-n block of A into a column in a

temporary matrix by using the im2col function.
• Next, colfilt applies the function fun to this temporary matrix.

fun must return a matrix the same size as the temporary matrix.
• Finally, colfilt rearranges the columns of the matrix returned by

fun into m-by-n distinct blocks, by using the col2im function.

 colfilt

1-351

Value Description
'sliding' • First, colfilt rearranges each m-by-n neighborhood of A into a

column in a temporary matrix by using the im2col function.
• Next, colfilt applies the function fun to this temporary matrix.

fun must return a row vector containing a single value for each
column in the temporary matrix. (Column compression functions
such as sum return the appropriate type of output.)

• Finally, colfilt reshapes the vector returned by fun into a matrix
the same size as A, by using the reshape function.

To save memory, the colfilt function might divide A into subimages and process one
subimage at a time. This implies that fun may be called multiple times, and that the first
argument to fun may have a different number of columns each time.

See Also
blockproc | col2im | im2col | nlfilter | reshape

Topics
“Use Column-wise Processing to Speed Up Sliding Neighborhood or Distinct Block
Operations”
“Border Padding Behavior in Sliding Neighborhood Operations”
“Anonymous Functions” (MATLAB)
“Parameterizing Functions” (MATLAB)
“Create Function Handle” (MATLAB)

Introduced before R2006a

1 Functions — Alphabetical List

1-352

colorangle
Angle between two RGB vectors

Syntax
angle = colorangle(rgb1,rgb2)

Description
angle = colorangle(rgb1,rgb2) computes the angle in degrees between two RGB
vectors.

Examples

Compare Accuracy of Illuminant Estimation Algorithms

Open a test image. The image is the raw data captured with a Canon EOS 30D digital
camera after correcting the black level and scaling the intensities to 16 bits per pixel. No
demosaicing, white balancing, color enhancement, noise filtering, or gamma correction
has been applied.

A = imread('foosballraw.tiff');

Interpolate using the demosaic function to obtain a color image. The color filter array
pattern is RGGB.

A_demosaiced = demosaic(A,'rggb');

The image contains a ColorChecker chart. Specify the ground truth illuminant, which was
calculated in advance using the neutral patches of the chart.

illuminant_groundtruth = [0.0717 0.1472 0.0975];

To avoid skewing the estimation of the illuminant, exclude the ColorChecker chart by
creating a mask.

 colorangle

1-353

mask = true(size(A_demosaiced,1), size(A_demosaiced,2));
mask(920:1330,1360:1900) = false;

Run three different illuminant estimation algorithms: illumwhite, illumgray, and
illumpca.

illuminant_whitepatch = illumwhite(A_demosaiced,'Mask',mask);
illuminant_grayworld = illumgray(A_demosaiced,'Mask',mask);
illuminant_pca = illumpca(A_demosaiced,'Mask',mask);

Compare each estimation against the ground truth by calculating the angle between each
estimated illuminant and the ground truth using the colorangle function. The smaller
the angle, the better the estimation. The magnitude of the estimation does not matter
because only the direction of the illuminant is used to white-balance an image with
chromatic adaptation.

angle_whitepatch = colorangle(illuminant_whitepatch, illuminant_groundtruth)

angle_whitepatch = 5.0921

angle_grayworld = colorangle(illuminant_grayworld, illuminant_groundtruth)

angle_grayworld = 5.1036

angle_pca = colorangle(illuminant_pca, illuminant_groundtruth)

angle_pca = 5.0134

The value of angle_pca is smallest, indicating that the PCA illuminant estimation
algorithm is closest to the ground truth illumination for this image.

Input Arguments
rgb1 — First RGB vector
3-element numeric vector

First RGB vector, specified as a 3-element numeric vector.
Data Types: single | double | uint8 | uint16

rgb2 — Second RGB vector
3-element numeric vector

1 Functions — Alphabetical List

1-354

Second RGB vector, specified as a 3-element numeric vector.
Data Types: single | double | uint8 | uint16

Output Arguments
angle — Angle between RGB vectors
numeric scalar

Angle between RGB vectors, returned as a numeric scalar.
Data Types: double

Definitions

Angular Error
Angular error is a useful metric to evaluate the estimation of an illuminant against the
ground truth. The smaller the angle between the ground truth illuminant and the
estimated illuminant, the better the estimate.

See Also
chromadapt | illumgray | illumpca | illumwhite | whitepoint

Introduced in R2017b

 colorangle

1-355

colorcloud
Display 3-D color gamut as point cloud in specified color space

Syntax
colorcloud(rgb)
colorcloud(rgb,colorspace)
colorcloud(___ ,Name,Value)
hPanel = colorcloud(___)

Description
colorcloud(rgb) displays the full color gamut of the color image rgb as a point cloud.
By default, colorcloud uses the RGB color space.

colorcloud(rgb,colorspace) displays the full color gamut of the color image rgb as
a point cloud in the color space specified by colorspace.

colorcloud(___ ,Name,Value) displays the full color gamut using name-value pairs
to control aspects of the visualization.

hPanel = colorcloud(___) returns the uipanel object created by colorcloud.

Examples

View 3D Color Gamut of RGB Image in HSV Color Space

Read in RGB image

RGB = imread('peppers.png');

View color gamut

colorcloud(RGB,'hsv');

1 Functions — Alphabetical List

1-356

Input Arguments
rgb — Color image
m-by-n-by-3 array

Color image, specified as an m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

colorspace — Colorspace name
'rgb' (default) | 'hsv' | 'ycbcr' | 'lab'

 colorcloud

1-357

Colorspace name, specified as one of the following values:

Value Description
'hsv' Color gamut in HSV color space
'lab' Color gamut in CIE 1976 L*a*b* color space
'rgb' Color gamut in RGB color space
'ycbcr' Color gamut in YCbCr color space

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

Parent — Parent of the object created by colorcloud
new figure (default)

Parent of the object created by colorcloud, specified as a figure or uipanel object. If you
do not specify a valid object, colorcloud creates a new figure window.

BackgroundColor — Color used as background to the color cloud
[0.94 0.94 0.94] (default) | colorspec

Color used as background to the color cloud, specified as a MATLAB ColorSpec.

WireFrameColor — Color of the color space wire frame
'black' (default) | colorspec

Color of the color space wire frame, defined as MATLAB ColorSpec. If you specify the
value 'none', colorcloud deletes the wire frame.

OrientationAxesColor — Color of the orientation axes and labels
'black' (default) | colorspec

Color of the orientation axes and labels, specified as a MATLAB ColorSpec. If you
specify the value 'none', colorcloud deletes the labels.

1 Functions — Alphabetical List

1-358

Output Arguments
hPanel — Color gamut point cloud
uipanel object

Color gamut point cloud, returned as a uipanel object.

See Also
Introduced in R2016b

 colorcloud

1-359

conndef
Create connectivity array

Syntax
conn = conndef(num_dims,type)

Description
conn = conndef(num_dims,type) returns the pixel connectivity array defined by
type for num_dims dimensions. Several Image Processing Toolbox functions use
conndef to create the default connectivity input argument.

Examples

Create 2-D Connectivity Array with Minimal Connectivity

Create a 2-D connectivity array.

conn = conndef(2,'minimal')

conn = 3×3

 0 1 0
 1 1 1
 0 1 0

Create 2-D Connectivity Array with Maximal Connectivity

Create a 2-D connectivity array.

conn = conndef(2,'maximal')

1 Functions — Alphabetical List

1-360

conn = 3×3

 1 1 1
 1 1 1
 1 1 1

Create 3-D Connectivity Array with Minimal Connectivity

Create a 3-D connectivity array.

conndef(3,'minimal')

ans =
ans(:,:,1) =

 0 0 0
 0 1 0
 0 0 0

ans(:,:,2) =

 0 1 0
 1 1 1
 0 1 0

ans(:,:,3) =

 0 0 0
 0 1 0
 0 0 0

Input Arguments
num_dims — Number of dimensions
positive integer

 conndef

1-361

Number of dimensions, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Type of neighborhood connectivity
'minimal' | 'maximal'

Type of neighborhood connectivity, specified as 'minimal' or 'maximal'

Value Description
'minimal' Defines a neighborhood whose neighbors are touching the central

element on an (N-1)-dimensional surface, for the N-dimensional case.
'maximal' Defines a neighborhood including neighbors that touch the central

element in any way; it is ones(repmat(3,1,NUM_DIMS)).

Data Types: char | string

Output Arguments
conn — Pixel connectivity
3-by-3-by...-3 logical array

Pixel connectivity, returned as a 3-by-3-....-by-3 logical array. conn is symmetric about its
center element. See “Specifying Custom Connectivities” for more information.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• conndef supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

1 Functions — Alphabetical List

1-362

• When generating code, the num_dims and type arguments must be compile-time
constants.

See Also
Introduced before R2006a

 conndef

1-363

contains
Determine if image contains points in world coordinate system

Syntax
TF = contains(R,xWorld,yWorld)
TF = contains(R,xWorld,yWorld,zWorld)

Description
TF = contains(R,xWorld,yWorld) returns a logical array TF. Each element TF(k) is
true if and only if the corresponding point (xWorld(k),yWorld(k)) falls within the bounds
of an image associated with 2-D spatial referencing object R.

TF = contains(R,xWorld,yWorld,zWorld) indicates whether each point falls within
the bounds of an image associated with 3-D spatial referencing object R.

Examples

Check If Coordinates Fall Within 2-D Image Bounds

Read a 2-D image into the workspace.

I = imread('cameraman.tif');

Create an imref2d spatial referencing object associated with the image.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 256.5000]
 YWorldLimits: [0.5000 256.5000]
 ImageSize: [256 256]

1 Functions — Alphabetical List

1-364

 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 XIntrinsicLimits: [0.5000 256.5000]
 YIntrinsicLimits: [0.5000 256.5000]

Check if certain world coordinates are in the image.

res = contains(R,[5 8 8],[5 10 257])

res = 1x3 logical array

 1 1 0

This result indicates that the points (5,5) and (8,10) are within the image bounds, and that
the point (8, 257) is outside the image bounds. This conclusion is consistent with the
XWorldLimits and YWorldLimits properties of the spatial referencing object R.

Check If Coordinates Fall Within 3-D Image Bounds

Read a 3-D image into the workspace. This image consists of 27 frames of 128-by-128
pixel images.

load mri;
D = squeeze(D);

Create an imref3d spatial referencing object associated with the image.

R = imref3d(size(D))

R =
 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1

 contains

1-365

 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Check if certain 3-D world coordinates are in the image.

res = contains(R,[5 6 6 8],[5 10 10 257],[1 27.5 28 1])

res = 1x4 logical array

 1 1 0 0

This result indicates that the points (5,5,1) and (6,10,27.5) are within the image bounds.
The points (6,10,28) and (8,257,1) are outside the image bounds. This conclusion is
consistent with the XWorldLimits, YWorldLimits, and ZWorldLimits properties of
the spatial referencing object R.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object. R is associated
with an image.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, specified as a numeric
scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

1 Functions — Alphabetical List

1-366

Coordinates along the y-dimension in the world coordinate system, specified as a numeric
scalar or vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, specified as a numeric
scalar or vector. zWorld is the same length as xWorld and yWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
TF — Flag indicating whether coordinates exist within the bounds of the image
logical scalar or vector

Flag indicating whether coordinates exist within the bounds of the image, returned as a
logical scalar or vector. TF is the same length as the input coordinate vectors xWorld,
yWorld, and (when relevant) zWorld.
Data Types: logical

See Also
imref2d | imref3d

Introduced in R2013a

 contains

1-367

convmtx2
2-D convolution matrix

Syntax
T = convmtx2(H,m,n)
T = convmtx2(H,[m n])

Description
T = convmtx2(H,m,n) returns the convolution matrix T for the matrix H. If X is an m-by-
n matrix, then reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H).

T = convmtx2(H,[m n]) returns the convolution matrix, where the dimensions m and n
are a two-element vector.

Examples

Create a Convolution Matrix

Show that, for the convolution matrix T for the matrix H, if X is an m-by-n matrix, then
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H)

Description of first code block

H = ones(3,3)/9; % averaging filter 3-by-3
M = 5;
X = magic(M);
T = convmtx2(H,M,M);
Y1 = reshape(T*X(:), size(H)+[5 5]-1)

Y1 = 7×7

 1.8889 4.5556 4.6667 3.6667 2.6667 2.5556 1.6667
 4.4444 7.6667 8.5556 6.5556 6.7778 5.8889 3.4444

1 Functions — Alphabetical List

1-368

 4.8889 8.7778 11.1111 10.8889 12.8889 10.5556 5.8889
 4.1111 6.6667 11.0000 13.0000 15.0000 10.6667 4.5556
 2.7778 6.7778 13.1111 15.1111 14.8889 8.5556 3.7778
 2.3333 5.6667 10.5556 10.7778 8.7778 3.8889 1.3333
 1.2222 3.2222 6.0000 5.0000 4.0000 1.2222 1.0000

Y2 = conv2(X,H)

Y2 = 7×7

 1.8889 4.5556 4.6667 3.6667 2.6667 2.5556 1.6667
 4.4444 7.6667 8.5556 6.5556 6.7778 5.8889 3.4444
 4.8889 8.7778 11.1111 10.8889 12.8889 10.5556 5.8889
 4.1111 6.6667 11.0000 13.0000 15.0000 10.6667 4.5556
 2.7778 6.7778 13.1111 15.1111 14.8889 8.5556 3.7778
 2.3333 5.6667 10.5556 10.7778 8.7778 3.8889 1.3333
 1.2222 3.2222 6.0000 5.0000 4.0000 1.2222 1.0000

isequal(Y1,Y2) % They are the same.

ans = logical
 0

Input Arguments
H — Input matrix
numeric array

Input matrix, specified as a numeric array.
Data Types: double

m — Rows in convolution matrix
numeric scalar

Rows in convolution matrix, specified as a numeric scalar.
Data Types: double

 convmtx2

1-369

n — Columns in convolution matrix
numeric scalar

Columns in convolution matrix, specified as a numeric scalar.
Data Types: double

[m n] — Dimensions of convolution matrix
numeric scalar

Dimensions of convolution matrix, specified as a two-element vector of the form [m n],
where m is the number of rows and n is the number of columns.
Data Types: double

Output Arguments
T — Convolution matrix
numeric array

Convolution matrix, returned as a numeric array. The output matrix T is of class sparse.
The number of nonzero elements in T is no larger than prod(size(H))*m*n.

See Also
conv2 | convmtx

Introduced before R2006a

1 Functions — Alphabetical List

1-370

corner
Find corner points in image

Note corner is not recommended. Use detectHarrisFeatures or
detectMinEigenFeatures in Computer Vision Toolbox™ instead.

Syntax
C = corner(I)
C = corner(I,method)
C = corner(I,N)
C = corner(I,method,N)
C = corner(___ ,Name,Value)

Description
C = corner(I) detects corners in image I and returns their coordinates in matrix C.

C = corner(I,method) detects corners in image I using the specified method.

C = corner(I,N) detects corners in image I and returns a maximum of N corners.

C = corner(I,method,N) detects corners using the specified method and maximum
number of corners.

C = corner(___ ,Name,Value) specifies parameters and corresponding values that
control various aspects of the corner detection algorithm.

Examples

Find Corner Points in Checkerboard Image
I = checkerboard(50,2,2);
C = corner(I);

 corner

1-371

imshow(I)
hold on
plot(C(:,1),C(:,2),'r*');

Input Arguments
I — Grayscale or binary image
m-by-n numeric matrix

Grayscale or binary image, specified as an m-by-n numeric matrix.

method — Corner detection algorithm
'Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as 'Harris' for the Harris corner detector, or
'MinimumEigenvalue' for Shi & Tomasi's minimum eigenvalue method.

N — Maximum number of corners
200 (default) | positive integer

Maximum number of corners that the corner function can return, specified as a positive
integer.

1 Functions — Alphabetical List

1-372

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: corner(I,'QualityLevel',0.2) specifies the minimum quality level of
corners in image I as 0.2.

FilterCoefficients — Filter coefficients
numeric vector

Filter coefficients for the separable smoothing filter, specified as the comma-separated
pair consisting of 'FilterCoefficients' and a numeric vector. The vector, V, must
have odd length and a minimum length of 3. The outer product, V*V', gives the full filter
kernel. The default filter coefficients are given by fspecial('gaussian',[5 1],1.5).

QualityLevel — Minimum accepted quality
0.01 (default) | numeric scalar

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'QualityLevel' and a numeric scalar in the range (0, 1). For a quality level Q, the
toolbox rejects candidate corners with corner metric values less than Q * max(corner
metric). Use larger values of Q to remove erroneous corners.

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar

Sensitivity factor used in the Harris detection algorithm, specified as the comma-
separated pair consisting of 'SensitivityFactor' and a numeric scalar in the range
(0, 0.25). The smaller the sensitivity factor, the more likely the algorithm is to detect
sharp corners. Use this parameter with the 'Harris' method only.

Output Arguments
C — Coordinates of corner points
p-by-2 matrix

x and y coordinates of the corner points detected in image I, returned as a p-by-2 matrix.

 corner

1-373

Data Types: double

Tips
The corner and cornermetric functions both detect corners in images. For most
applications, use the streamlined corner function to find corners in one step. If you want
greater control over corner selection, use the cornermetric function to compute a
corner metric matrix and then write your own algorithm to find peak values.

Algorithms
The corner function performs nonmaxima suppression on candidate corners, and
corners are at least two pixels apart.

Introduced in R2010b

1 Functions — Alphabetical List

1-374

cornermetric
(Not recommended) Create corner metric matrix from image

Note cornermetric is not recommended. Use detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox™
instead. For more information, see “Compatibility Considerations”.

Syntax
C = cornermetric(I)
C = cornermetric(I,method)
C = cornermetric(___ ,Name,Value)

Description
C = cornermetric(I) creates a corner metric matrix by detecting corner features in
the input image I.

C = cornermetric(I,method) creates a corner metric matrix by detecting corner
features in the input image I. The corner detection method specified by method is used
for finding the corner features.

C = cornermetric(___ ,Name,Value)specifies options using one or more name-value
arguments in addition to the input arguments from any of the previous syntaxes.

Examples

Find Corner Features in a Binary Image

Read an input image into the workspace.

I = imread('circles.png');

 cornermetric

1-375

Generate a corner metric matrix. Specify the filter coefficients. The corner detection
method takes the default value 'Harris'.

filter = [0.25 0.5 0.25];
C = cornermetric(I,'FilterCoefficients',filter);

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.

corner_peaks = imregionalmax(C);

Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner_peaks == true);
[r,g,b] = deal(I);
r(corner_idx) = 255;
g(corner_idx) = 0;
b(corner_idx) = 0;
RGB = cat(3,r,g,b);

Adjust the corner metric matrix for viewing.

C_adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a
montage. The detected corner features are displayed as red color pixels with RGB value
as [255 0 0].

montage({I,C_adjusted,RGB},'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix | Detected Corner Features');

1 Functions — Alphabetical List

1-376

Find Corner Features in a Grayscale Image

Read an input image into the workspace.

I = imread('bag.png');

Generate a corner metric matrix. Specify the method as 'MinimumEigenvalue'.

C = cornermetric(I,'MinimumEigenvalue');

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.

corner_peaks = imregionalmax(C);

Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner_peaks == true);
[r g b] = deal(I);
r(corner_idx) = 255;
g(corner_idx) = 0;
b(corner_idx) = 0;
RGB = cat(3,r,g,b);

Adjust the corner metric matrix for viewing.

C_adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a
montage. The detected corner features are displayed as red color pixels with RGB value
as [255 255 0].

montage({I,C_adjusted,RGB},'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix | Detected Corner Features');

 cornermetric

1-377

Input Arguments
I — Input image
2-D binary image | 2-D grayscale image

Input image, specified as a 2-D binary image or 2-D grayscale image of size m-by-n. The
input must be real, finite, and nonsparse.
Data Types: single | double | uint8 | uint16 | uint32 | int8 | int16 | int32 |
logical

method — Corner detection method
'Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as either 'Harris' or 'MinimumEigenvalue'. If
the method is:

• 'Harris', the function creates corner metric matrix by using the Harris corner
detector.

• 'MinimumEigenvalue', the function creates corner metric matrix by using the Shi
and Tomasi's minimum eigenvalue approach.

1 Functions — Alphabetical List

1-378

If method is not specified, the default value set as 'Harris' and the function uses Harris
corner detector for detecting corner features.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: cornermetric(I,'SensitivityFactor',0.1)

FilterCoefficients — Coefficients of 1-D spatial filter mask
[0.1201 0.2339 0.2921 0.2339 0.1201] (default) | n-element vector

Coefficients of 1-D spatial filter mask, specified as a comma-separated pair consisting of
'FilterCoefficients' and an n-element vector. The value of n must be odd and
greater than or equal to 3. By default, the 1-D spatial filter mask is a 5-element vector and
the default filter coefficients are computed using fspecial('gaussian',[5 1],1.5).

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar in the range (0, 0.25)

Sensitivity factor, specified as a comma-separated pair consisting of
'SensitivityFactor' and a numeric scalar in the interval (0, 0.25). For smaller values
of sensitivity factor, the algorithm is more likely to detect sharper corners.

Note The name-value pair 'SensitivityFactor' is valid only if the input method is
'Harris'.

Output Arguments
C — Corner metric matrix
m-by-n matrix

Corner metric matrix, returned as a m-by-n matrix of the same size as the input image I.
Data Types: double

 cornermetric

1-379

Tips
The corner and cornermetric functions both detect corners in images. For most
applications, use the streamlined corner function to find corners in one step. If you want
greater control over corner selection, use the cornermetric function to compute a
corner metric matrix. Then, write your own algorithm to find peak values in corner metric
matrix.

Compatibility Considerations

cornermetric is not recommended
Not recommended starting in R2016a

cornermetric is not recommended. Instead, use the detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox.

Use detectHarrisFeatures to find corners in an image by using the Harris corner
detector method. Use detectMinEigenFeatures to find corners in an image by using
Shi and Tomasi's minimum eigenvalue method. The detectHarrisFeatures and
detectMinEigenFeatures functions return the cornerPoints object to which the
detected corner points are stored.

See Also
corner | edge

Introduced in R2008b

1 Functions — Alphabetical List

1-380

corr2
2-D correlation coefficient

Syntax
R = corr2(A,B)

Description
R = corr2(A,B) returns the 2-D correlation coefficient R between arrays A and B.

You optionally can compute the correlation coefficient using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Compute the correlation coefficient
Compute the correlation coefficient between an image and the same image processed
with a median filter.

I = imread('pout.tif');
J = medfilt2(I);
R = corr2(I,J)

R = 0.9959

Compute the Correlation Coefficient on a GPU
Compute the correlation coefficient on a GPU between an image and the same image
processed using standard deviation filtering.

 corr2

1-381

I = gpuArray(imread('pout.tif'));
J = stdfilt(I);
R = corr2(I,J)

R =

 0.2762

Input Arguments
A — First input array
numeric array | logical array | gpuArray

First input array, specified as a numeric or logical array.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

B — Second input array
numeric array | logical array | gpuArray

Second input array, specified as a numeric or logical array. B has the same size as the first
input array, A.

To perform the computation using a GPU, specify B as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
R — Correlation coefficient
numeric scalar | gpuArray

Correlation coefficient, returned as a numeric scalar.

1 Functions — Alphabetical List

1-382

If the correlation coefficient is computed using a GPU, then R is returned as a gpuArray
containing a numeric scalar.
Data Types: double

Algorithms
corr2 computes the correlation coefficient using

r =
∑
m
∑
n

(Amn− A)(Bmn− B)

∑
m
∑
n

Amn− A 2 ∑
m
∑
n

Bmn− B 2

where A = mean2(A), and B = mean2(B).

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
corrcoef | std2

Introduced before R2006a

 corr2

1-383

cp2tform
Infer spatial transformation from control point pairs

Note cp2tform is not recommended. Use fitgeotrans instead.

Syntax
tform = cp2tform(movingPoints,fixedPoints,transformationType)
tform = cp2tform(movingPoints,fixedPoints,'polynomial',degree)
tform = cp2tform(movingPoints,fixedPoints,'lwm',n)
tform = cp2tform(movingPoints,fixedPoints,'piecewise linear')
[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints,'piecewise linear')

tform = cp2tform(cpstruct,transformationType, ___)
[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, ___)

Description
tform = cp2tform(movingPoints,fixedPoints,transformationType) infers a
spatial transformation from control point pairs and returns this transformation as a
tform structure. Some of the transformation types have optional additional parameters,
shown in the following syntaxes.

tform = cp2tform(movingPoints,fixedPoints,'polynomial',degree) lets you
specify the order of the polynomials to use.

tform = cp2tform(movingPoints,fixedPoints,'lwm',n) creates a mapping by
inferring a polynomial at each control point using neighboring control points. The
mapping at any location depends on a weighted average of these polynomials. You can
optionally specify the number of points, n, used to infer each polynomial. The n closest
points are used to infer a polynomial of order 2 for each control point pair.

tform = cp2tform(movingPoints,fixedPoints,'piecewise linear') creates a
Delaunay triangulation of the fixed control points, and maps corresponding moving

1 Functions — Alphabetical List

1-384

control points to the fixed control points. The mapping is linear (affine) for each triangle
and continuous across the control points but not continuously differentiable as each
triangle has its own mapping.

[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints,'piecewise linear') returns in usedMP and usedFP the control
points that were used for the piecewise linear transformation. This syntax also returns in
badMP and badFP the control points that were eliminated because they were middle
vertices of degenerate fold-over triangles.

tform = cp2tform(cpstruct,transformationType, ___) uses a cpstruct
structure to store the control point coordinates of the moving and fixed images.

[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, ___)
also returns in usedMP and usedFP the control points that were used for the
transformation. Unmatched and predicted points are not used. See cpstruct2pairs.

Examples

Use Control Points to Create Nonreflective Similarity
Transformation Structure
Transform an image, use the cp2tform function to return the transformation, and
compare the angle and scale of the tform to the angle and scale of the original
transformation:

I = checkerboard;
J = imrotate(I,30);
fixedPoints = [11 11; 41 71];
movingPoints = [14 44; 70 81];
cpselect(J,I,movingPoints,fixedPoints);

t = cp2tform(movingPoints,fixedPoints,'nonreflective similarity');

Recover angle and scale by checking how a unit vector parallel to the x-axis is rotated and
stretched.

u = [0 1];
v = [0 0];
[x, y] = tformfwd(t,u,v);

 cp2tform

1-385

dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)
scale = 1 / sqrt(dx^2 + dy^2)

Input Arguments
movingPoints — Control points in the moving image
m-by-2 matrix

Control points in the moving image, specified as an m-by-2 matrix. Each row specifies the
[x y] coordinates of a control point.
Example: [11 11; 41 71]
Data Types: double

fixedPoints — Control points in the fixed image
m-by-2 matrix

Control points in the fixed image, specified as an m-by-2 matrix. Each row specifies the [x
y] coordinates of a control point.
Example: [14 44; 70 81]
Data Types: double

transformationType — Type of transformation
'nonreflectivesimilarity' | 'similarity' | 'affine' | 'projective' |
'polynomial' | 'piecewise linear' | 'lwm'

Type of transformation, specified as one of the following, listed in order of increasing
complexity. The cp2tform function requires a minimum number of control point pairs to
infer a structure of each transform type.

1 Functions — Alphabetical List

1-386

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'nonreflective
similarity'

Use this transformation when shapes in
the moving image are unchanged, but the
image is distorted by some combination of
translation, rotation, and scaling. Straight
lines remain straight, and parallel lines are
still parallel.

2

'similarity' Same as 'nonreflective similarity'
with the addition of optional reflection.

3

'affine' Use this transformation when shapes in
the moving image exhibit shearing.
Straight lines remain straight, and parallel
lines remain parallel, but rectangles
become parallelograms.

3

'projective' Use this transformation when the scene
appears tilted. Straight lines remain
straight, but parallel lines converge toward
vanishing points that might or might not
fall within the image.

4

'polynomial' Use this transformation when objects in
the image are curved. The higher the order
of the polynomial, the better the fit, but
the result can contain more curves than
the fixed image.

You can specify the degree of the
polynomial.

6 (order 2)

10 (order 3)

15 (order 4)

'piecewise linear' Use this transformation when parts of the
image appear distorted differently.

4

 cp2tform

1-387

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'lwm' Use this transformation (local weighted
mean), when the distortion varies locally
and piecewise linear is not sufficient.

You can specify the number n of points to
use in the local weighed mean calculation.

6 (12
recommended)

Data Types: char

cpstruct — Preselected control points
structure

Preselected control points, specified as a structure. cpstruct contains information about
the x- and y-coordinates of all control points in the moving and fixed images, including
unpaired and predicted control points. cpstruct2pairs eliminates unmatched and
predicted control points, and returns the set of valid control point pairs.

cpstruct is a structure produced by the Control Point Selection tool (cpselect) when
you choose the Export Points to Workspace option. For more information, see “Export
Control Points to the Workspace”.
Data Types: struct

degree — Degree of the polynomial
3 (default) | 2 | 4

Degree of the polynomial transformation, specified as the integer 2, 3, or 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Number of points to use in local weighted mean calculation
12 (default) | positive integer

Number of points to use in local weighted mean calculation, specified as a positive
integer. n can be as small as 6, but making n small risks generating ill-conditioned
polynomials

1 Functions — Alphabetical List

1-388

Output Arguments
tform — Transformation
struct

Transformation, returned as a struct.

usedMP — Used moving points
n-by-2 matrix

Moving control points that were used to infer the spatial transformation, returned as an
n-by-2 matrix. Unmatched and predicted points are not used.

usedFP — Used fixed points
n-by-2 matrix

Fixed control points that were used to infer the spatial transformation, returned as an n-
by-2 matrix. Unmatched and predicted points are not used.

badMP — Eliminated moving points
p-by-2 matrix

Moving control points that were eliminated because they were determined to be outliers,
returned as a p-by-2 matrix.

badFP — Eliminated fixed points
p-by-2 matrix

Fixed control points that were eliminated because they were determined to be outliers,
returned as a p-by-2 matrix.

Tips
• When transformtype is 'nonreflective similarity', 'similarity',

'affine', 'projective', or 'polynomial', and movingPoints and
fixedPoints (or cpstruct) have the minimum number of control points needed for
a particular transformation, cp2tform finds the coefficients exactly.

• If movingPoints and fixedPoints have more than the minimum number of control
points, a least-squares solution is found. See mldivide.

 cp2tform

1-389

• When either movingPoints or fixedPoints has a large offset with respect to their
origin (relative to range of values that it spans), cp2tform shifts the points to center
their bounding box on the origin before fitting a tform structure. This enhances
numerical stability and is handled transparently by wrapping the origin-centered
tform within a custom tform that automatically applies and undoes the coordinate
shift as needed. As a result, fields(T) can give different results for different
coordinate inputs, even for the same transformation type.

Algorithms
cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation or an inverse
mapping from output space (x,y) to input space (x,y) according to transformtype.

2 Return the tform structure containing spatial transformation.

The procedure varies depending on the transformtype.

Nonreflective Similarity
Nonreflective similarity transformations can include a rotation, a scaling, and a
translation. Shapes and angles are preserved. Parallel lines remain parallel. Straight lines
remain straight.

Let

sc = scale*cos(angle)
ss = scale*sin(angle)

[u v] = [x y 1] * [sc -ss
 ss sc
 tx ty]

Solve for sc, ss, tx, and ty.

Similarity
Similarity transformations can include rotation, scaling, translation, and reflection.
Shapes and angles are preserved. Parallel lines remain parallel. Straight lines remain
straight.

1 Functions — Alphabetical List

1-390

Let

sc = s*cos(theta)
ss = s*sin(theta)

 [sc -a*-ss
 [u v] = [x y 1] * ss a*sc
 tx ty]

Solve for sc, ss, tx, ty, and a. If a = -1, reflection is included in the transformation. If
a = 1, reflection is not included in the transformation.

Affine
In an affine transformation, the x and y dimensions can be scaled or sheared
independently and there can be a translation. Parallel lines remain parallel. Straight lines
remain straight. Nonreflective similarity transformations are a subset of affine
transformations.

For an affine transformation,

[u v] = [x y 1] * Tinv

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv:

t_affine = cp2tform(movingPoints,fixedPoints,'affine');

The coefficients of the inverse mapping are stored in t_affine.tdata.Tinv.

At least three control-point pairs are needed to solve for the six unknown coefficients.

Projective
In a projective transformation, quadrilaterals map to quadrilaterals. Straight lines remain
straight. Affine transformations are a subset of projective transformations.

For a projective transformation,

[up vp wp] = [x y w] * Tinv

where

 cp2tform

1-391

u = up/wp
v = vp/wp

Tinv is a 3-by-3 matrix.

Assuming

Tinv = [A D G;
 B E H;
 C F I];
u = (Ax + By + C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv:

t_proj = cp2tform(movingPoints,fixedPoints,'projective');

The coefficients of the inverse mapping are stored in t_proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine unknown coefficients.

Note An affine or projective transformation can also be expressed like this, for a 3-by-2
Tinv:

[u v]' = Tinv' * [x y 1]'

Or, like this, for a 3-by-3 Tinv:

[u v 1]' = Tinv' * [x y 1]'

Polynomial
In a polynomial transformation, polynomial functions of x and y determine the mapping.

1 Functions — Alphabetical List

1-392

Second-Order Polynomials
For a second-order polynomial transformation,

[u v] = [1 x y x*y x^2 y^2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order polynomial has six terms.
To specify all coefficients, Tinv has size 6-by-2.

t_poly_ord2 = cp2tform(movingPoints,fixedPoints,'polynomial');

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown coefficients.

Third-Order Polynomials
For a third-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order polynomial has 10 terms. To
specify all coefficients, Tinv has size 10-by-2.

t_poly_ord3 = cp2tform(movingPoints, fixedPoints,'polynomial',3);

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown coefficients.

 cp2tform

1-393

Fourth-Order Polynomials
For a fourth-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3 x^3*y x^2*y^2 x*y^3 x^4 y^4]
* Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order polynomial has 15 terms.
To specify all coefficients, Tinv has size 15-by-2.

t_poly_ord4 = cp2tform(movingPoints, fixedPoints,'polynomial',4);

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown coefficients.

Piecewise Linear
In a piecewise linear transformation, linear (affine) transformations are applied
separately to each triangular region of the image[1].

1 Find a Delaunay triangulation of the fixed control points.
2 Using the three vertices of each triangle, infer an affine mapping from fixed to

moving coordinates.

Note At least four control-point pairs are needed. Four pairs result in two triangles with
distinct mappings.

Local Weighted Mean
For each control point in fixedPoints:

1 Find the N closest control points.
2 Use these N points and their corresponding points in movingPoints to infer a

second-order polynomial.
3 Calculate the radius of influence of this polynomial as the distance from the center

control point to the farthest point used to infer the polynomial (using fixedPoints)
[2].

1 Functions — Alphabetical List

1-394

Note At least six control-point pairs are needed to solve for the second-order polynomial.
Ill-conditioned polynomials might result if too few pairs are used.

References
[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration,"

Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and
Vision Computing, Vol. 6, 1988, pp. 255-261.

See Also
cpcorr | cpselect | cpstruct2pairs | imtransform | tformfwd | tforminv

Introduced before R2006a

 cp2tform

1-395

cpcorr
Tune control point locations using cross-correlation

Syntax
movingPointsAdjusted = cpcorr(movingPoints,fixedPoints,moving,fixed)

Description
movingPointsAdjusted = cpcorr(movingPoints,fixedPoints,moving,fixed)
uses normalized cross-correlation to adjust each pair of control points specified in
movingPoints and fixedPoints. moving and fixed are images. cpcorr returns the
adjusted control points in movingPointsAdjusted.

Note The moving and fixed images must have the same scale for cpcorr to be
effective. If cpcorr cannot correlate a pair of control points, movingPointsAdjusted
contains the same coordinates as movingPoints for that pair.

Examples

Fine-Tune Control-Point Locations using Cross Correlation

Read two images into the workspace.

moving = imread('onion.png');
fixed = imread('peppers.png');

Define sets of control points for both images.

movingPoints = [118 42;99 87];
fixedPoints = [190 114;171 165];

Display the images, and display the control points in white.

1 Functions — Alphabetical List

1-396

figure; imshow(fixed)
hold on
plot(fixedPoints(:,1),fixedPoints(:,2),'xw')
title('fixed')

figure; imshow(moving)
hold on
plot(movingPoints(:,1),movingPoints(:,2),'xw')
title('moving')

 cpcorr

1-397

Observe the slight errors in the position of the moving points.

Adjust the moving control points using cross correlation.

movingPointsAdjusted = cpcorr(movingPoints,fixedPoints,...
 moving(:,:,1),fixed(:,:,1))

movingPointsAdjusted = 2×2

 115.9000 39.1000
 97.0000 89.9000

Display the adjusted moving points in yellow. Compared to the original moving points (in
white), the adjusted points more closely match the positions of the fixed points.

plot(movingPointsAdjusted(:,1),movingPointsAdjusted(:,2),'xy')

1 Functions — Alphabetical List

1-398

Input Arguments
movingPoints — Coordinates of control points in the image to be transformed
M-by-2 double matrix

Coordinates of control points in the image to be transformed, specified as an M-by-2
double matrix.
Example: movingPoints = [127 93; 74 59];
Data Types: double

fixedPoints — Coordinates of control points in the reference image
M-by-2 double matrix

Coordinates of control points in the reference image, specified as an M-by-2 double
matrix.
Example: fixedPoints = [323 195; 269 161];
Data Types: double

moving — Image to be registered
numeric array of finite values

 cpcorr

1-399

Image to be registered, specified as a numeric array of finite values.

fixed — Reference image in the target orientation
numeric array of finite values

Reference image in the target orientation, specified as a numeric array of finite values.

Output Arguments
movingPointsAdjusted — Adjusted coordinates of control points in the image to
be transformed
double matrix the same size as movingPoints

Adjusted coordinates of control points in the image to be transformed, returned as a
double matrix the same size as movingPoints.

Tips
cpcorr cannot adjust a point if any of the following occur:

• points are too near the edge of either image
• regions of images around points contain Inf or NaN
• region around a point in moving image has zero standard deviation
• regions of images around points are poorly correlated

Algorithms
cpcorr only moves the position of a control point by up to four pixels. Adjusted
coordinates are accurate up to one-tenth of a pixel. cpcorr is designed to get subpixel
accuracy from the image content and coarse control point selection.

See Also
cpselect | fitgeotrans | imwarp | normxcorr2

1 Functions — Alphabetical List

1-400

Introduced before R2006a

 cpcorr

1-401

cpselect
Control Point Selection tool

Syntax
cpselect(moving,fixed)
cpselect(moving,fixed,cpstruct_in)
cpselect(moving,fixed,initialMovingPoints,initialFixedPoints)
h = cpselect(___)
h = cpselect(___ ,'Wait',false)
[selectedMovingPoints,selectedFixedPoints] = cpselect(___
,'Wait',true)

Description
cpselect(moving,fixed) starts the Control Point Selection Tool, a user interface that
enables you to select control points in two related images. moving is the image to be
warped, which brings it into the coordinate system of the fixed image. moving and
fixed can be either variables that contain grayscale, truecolor, or binary images, or the
names of files containing these images. The Control Point Selection Tool returns the
control points in a cpstruct structure.

cpselect(moving,fixed,cpstruct_in) starts cpselect with an initial set of control
points that are stored in cpstruct_in. This syntax allows you to restart cpselect with
the state of control points, including unpaired and predicted control points, previously
saved in cpstruct_in.

cpselect(moving,fixed,initialMovingPoints,initialFixedPoints) starts
cpselect with an initial set of valid control point pairs. initialMovingPoints and
initialFixedPoints are m-by-2 matrices that store moving and fixed control point
coordinates, respectively. The two columns represent the x- and y-coordinates of the
control points.

h = cpselect(___) returns a handle h to the Control Point Selection tool. You can use
the close(h) syntax to close the tool from the command line.

1 Functions — Alphabetical List

1-402

h = cpselect(___ ,'Wait',false) returns a handle h to the Control Point Selection
tool. You can use the close(h) syntax to close the tool from the command line. In
contrast to setting 'Wait' as true, this syntax lets you run cpselect at the same time
as you run other programs in MATLAB.

[selectedMovingPoints,selectedFixedPoints] = cpselect(___
,'Wait',true) takes control of the MATLAB command line until you finish selecting
control points. cpselect returns valid selected pairs of points. selectedMovingPoints
and selectedFixedPoints are p-by-2 matrices that store the coordinates in the moving
and fixed images, respectively. The two columns represent the x- and y-coordinates of the
selected control points.

Examples

Start Control Point Selection Tool with Saved Images

Call cpselect , specifying the names of the image you want to register and the reference
image. This example uses the optional syntax that returns a handle to the tool that is
created so that you can close the tool programmatically.

h = cpselect('westconcordaerial.png','westconcordorthophoto.png');

 cpselect

1-403

Close the tool.

close(h)

1 Functions — Alphabetical List

1-404

Open Control Point Selection Tool with Predefined Control Points

Create a sample reference image.

I = checkerboard;

Create a copy of the sample image, rotating it to create a sample image that needs
registering.

J = imrotate(I,30);

Specify two sets of control points for the fixed and moving images.

fixedPoints = [11 11; 41 71];
movingPoints = [14 44; 70 81];

Open the Control Point Selection Tool, specifying the sample fixed and moving images and
the two sets of saved control points.

cpselect(J,I,movingPoints,fixedPoints);

When the tool opens, you are prompted to save the control points.

Register an Aerial Photo to an Orthophoto

Read an aerial photo and an orthophoto into the workspace, and display them.

aerial = imread('westconcordaerial.png');
figure, imshow(aerial)
ortho = imread('westconcordorthophoto.png');
figure, imshow(ortho)

Load some points that have already been picked.

load westconcordpoints

Open the Control Point Selection tool, specifying the two images and the preselected
points. Use the 'Wait' parameter to make cpselect wait for you to pick some more
points.

[aerial_points,ortho_points] = ...
 cpselect(aerial,'westconcordorthophoto.png',...
 movingPoints,fixedPoints,...
 'Wait',true);

 cpselect

1-405

When control returns to the command line, perform the registration.

First use fitgeotrans to estimate the geometric transformation that brings the moving
image into alignment with the fixed image. Specify the control points you selected and the
type of transformation you want.

t_concord = fitgeotrans(aerial_points,ortho_points,'projective');

Next use imwarp to perform the transformation. By defining a spatial referencing object
from ortho and specifying the object as the 'OutputView', the registered image has a
size and location matching ortho.

ortho_ref = imref2d(size(ortho)); %relate intrinsic and world coordinates
aerial_registered = imwarp(aerial,t_concord,'OutputView',ortho_ref);
figure, imshowpair(aerial_registered,ortho,'blend')

Finally, display the transformed image over the original orthophoto to see how well the
registration succeeded.

figure, imshowpair(aerial_registered,ortho,'blend')

Input Arguments
moving — Input image to be aligned
grayscale image | truecolor image | binary image | character vector | string

Input image to be aligned, specified as a grayscale, truecolor, or binary image, or a
character vector. A grayscale image can be uint8, uint16, int16, single, or double.
A truecolor image can be uint8, uint16, single, or double. A binary image is of class
logical. If moving is a character vector, it must identify files containing these same
types of images.
Data Types: single | double | int16 | uint8 | uint16 | logical | char | string

fixed — Reference image
grayscale image | truecolor image | binary image | character vector | string

Reference image, specified as a grayscale, truecolor, or binary image. A grayscale image
can be uint8, uint16, int16, single, or double. A truecolor image can be uint8,

1 Functions — Alphabetical List

1-406

uint16, single, or double. A binary image is of class logical. If fixed is a character
vector, it must identify files containing these same types of images.
Data Types: single | double | int16 | uint8 | uint16 | logical | char | string

cpstruct_in — Preselected control points
structure

Preselected control points, specified as a structure (cpstruct). cpstruct_in contains
information about x- and y-coordinates of all control points in the moving and fixed
images, including unpaired and predicted control points. cpstruct_in also contains
indexing information that allows the Control Point Selection tool to restore the state of
the control points.

Create a cpstruct by exporting points from the Control Point Selection tool, described
in “Export Control Points to the Workspace”.
Data Types: struct

initialMovingPoints — Preselected control points on the moving image
m-by-2 numeric array

Preselected control points on the moving image, specified as an m-by-2 numeric array.
The two columns represent the x- and y-coordinates of the control points.
Data Types: double

initialFixedPoints — Preselected control points on the fixed image
m-by-2 numeric array

Preselected control points on the fixed image, specified as an m-by-2 numeric array. The
two columns represent the x- and y-coordinates of the control points.
Data Types: double

Output Arguments
h — Control Point Selection tool
handle

Control Point Selection tool, returned as a handle.

 cpselect

1-407

selectedMovingPoints — Selected control points on the moving image
p-by-2 numeric array

Selected control points on the moving image, specified as a p-by-2 numeric array. The two
columns represent the x- and y-coordinates of the control points.
Data Types: double

selectedFixedPoints — Selected control points on the fixed image
p-by-2 numeric array

Selected control points on the fixed image, specified as a p-by-2 numeric array. The two
columns represent the x- and y-coordinates of the control points.
Data Types: double

Tips
• When calling cpselect in a script, specify the 'Wait' option as true. The 'Wait'

option causes cpselect to block the MATLAB command line until control points have
been selected and returned. If you do not use the 'Wait' option, cpselect returns
control immediately and your script continues without allowing time for control point
selection. Additionally, without the 'Wait' option, cpselect does not return the
control points as return values.

Algorithms
cpselect uses the following general procedure for control-point prediction.

1 Find all valid pairs of control points.
2 Infer a spatial transformation between moving and fixed control points using a

method that depends on the number of valid pairs, as follows:

2 pairs Nonreflective similarity
3 pairs Affine
4 or more pairs Projective

3 Apply the spatial transformation to the new point. This transformation generates the
predicted point.

1 Functions — Alphabetical List

1-408

4 Display the predicted point.

See Also
cpcorr | cpstruct2pairs | fitgeotrans | imtool | imwarp

Topics
“Control Point Selection Procedure”
“Export Control Points to the Workspace”

Introduced before R2006a

 cpselect

1-409

cpstruct2pairs
Extract valid control point pairs from cpstruct structure

Syntax
[movingPoints,fixedPoints] = cpstruct2pairs(cpstruct_in)

Description
[movingPoints,fixedPoints] = cpstruct2pairs(cpstruct_in) extracts the
valid control point pairs from cpstruct_in, returning two arrays movingPoints and
fixedPoints.

Examples

Convert cpstruct to Sets of Control Point Pairs

Read an aerial photograph and an orthoregistered image into the workspace.

aerial = imread('westconcordaerial.png');
ortho = imread('westconcordorthophoto.png');

Load some preselected control points for these images.

load westconcordpoints
whos

 Name Size Bytes Class Attributes

 aerial 394x369x3 436158 uint8
 fixedPoints 4x2 64 double
 movingPoints 4x2 64 double
 ortho 366x364 133224 uint8

1 Functions — Alphabetical List

1-410

Open the Control Point Selection tool, specifying the two images along with the
predefined control points.

cpselect(aerial,ortho,movingPoints,fixedPoints);

Create the cpstruct structure. Using the Control Point Selection tool, select Export
Points to Workspace from the File menu to save the points to the workspace. On the
Export Points to Workspace dialog box, check the Structure with all points check
box, and clear Moving points of valid pairs and Fixed points of valid pairs. Click OK.
Close the Control Point Selection tool.

Use cpstruct2pairs to extract the moving and fixed points from the cpstruct.

[mPoints,fPoints] = cpstruct2pairs(cpstruct);

Compare the stored set of points with the set of points you exported.

fixedPoints, fpoints

fixedPoints =

 164.5639 113.2890
 353.5325 130.0798
 143.4046 284.8935
 353.5325 311.9810

fpoints =

 164.5639 113.2890
 353.5325 130.0798
 143.4046 284.8935
 353.5325 311.9810

The two sets of points are identical, which indicates that all points in the stored set of
points belong to valid control point pairs.

Input Arguments
cpstruct_in — Preselected control points
structure

 cpstruct2pairs

1-411

Preselected control points, specified as a structure (cpstruct). cpstruct_in contains
information about the x- and y-coordinates of all control points in the moving and fixed
images, including unpaired and predicted control points. cpstruct2pairs eliminates
unmatched and predicted control points, and returns the set of valid control point pairs.

cpstruct_in is a structure produced by the Control Point Selection tool (cpselect)
when you choose the Export Points to Workspace option. For more information, see
“Export Control Points to the Workspace”.
Data Types: struct

Output Arguments
movingPoints — Control point pairs from moving image being aligned
m-by-2 numeric array

Control point pairs from image being aligned, returned as an m-by-2 numeric array.
Data Types: double

fixedPoints — Control point pairs from reference image
m-by-2 numeric array

Control point pairs from reference image, returned as an m-by-2 numeric array.
Data Types: double

See Also
cpselect | fitgeotrans

Topics
“Export Control Points to the Workspace”

Introduced before R2006a

1 Functions — Alphabetical List

1-412

dct2
2-D discrete cosine transform

Syntax
B = dct2(A)
B = dct2(A,m,n)
B = dct2(A,[m n])

Description
B = dct2(A) returns the two-dimensional discrete cosine transform of A. The matrix B
contains the discrete cosine transform coefficients B(k1,k2).

B = dct2(A,m,n) and

B = dct2(A,[m n]) pad the matrix A with 0s to size m-by-n before applying the
transformation. If m or n is smaller than the corresponding dimension of A, then dct2
crops A before the transformation.

Examples

Remove High Frequencies in Image using DCT

This example shows how to remove high frequencies from an image using the two-
dimensional discrete cosine transfer (DCT).

Read an image into the workspace, then convert the image to grayscale.

RGB = imread('autumn.tif');
I = rgb2gray(RGB);

Perform a 2-D DCT of the grayscale image using the dct2 function.

J = dct2(I);

 dct2

1-413

Display the transformed image using a logarithmic scale. Notice that most of the energy
is in the upper left corner.

figure
imshow(log(abs(J)),[])
colormap(gca,jet(64))
colorbar

Set values less than magnitude 10 in the DCT matrix to zero.

J(abs(J) < 10) = 0;

Reconstruct the image using the inverse DCT function idct2.

K = idct2(J);

Display the original grayscale image alongside the processed image.

figure
imshowpair(I,K,'montage')
title('Original Grayscale Image (Left) and Processed Image (Right)');

1 Functions — Alphabetical List

1-414

Input Arguments
A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix.

m — Number of image rows
size(A,1) (default) | positive integer

Number of image rows, specified as a positive integer. dct2 pads image A with 0s or
truncates image A so that it has m rows. By default, m is equal to size(A,1).

n — Number of image columns
size(A,2) (default) | positive integer

Number of image columns, specified as a positive integer. dct2 pads image A with 0s or
truncates image A so that it has n columns. By default, n is equal to size(A,2)

Output Arguments
B — Transformed matrix
m-by-n numeric matrix

 dct2

1-415

Transformed matrix using a two-dimensional discrete cosine transform, returned as an m-
by-n numeric matrix.
Data Types: double

Definitions
Discrete Cosine Transform
The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. It
is a separable linear transformation; that is, the two-dimensional transform is equivalent
to a one-dimensional DCT performed along a single dimension followed by a one-
dimensional DCT in the other dimension. The definition of the two-dimensional DCT for an
input image A and output image B is

Bpq = αpαq ∑
m = 0

M − 1
∑

n = 0

N − 1
Amncosπ(2m + 1)p

2M cosπ(2n + 1)q
2N ,

0 ≤ p ≤ M − 1
0 ≤ q ≤ N − 1

where

αp =

1
M , p = 0

2
M , 1 ≤ p ≤ M − 1

and

αq =

1
N , q = 0

2
N , 1 ≤ q ≤ N‐1

M and N are the row and column size of A, respectively.

Tips
• If you apply the DCT to real data, the result is also real. The DCT tends to concentrate

information, making it useful for image compression applications.

1 Functions — Alphabetical List

1-416

• To invert the DCT transformation, use idct2.

References
[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice

Hall, 1989, pp. 150–153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data Compression
Standard, Van Nostrand Reinhold, 1993.

See Also
fft2 | idct2 | ifft2

Introduced before R2006a

 dct2

1-417

dctmtx
Discrete cosine transform matrix

Syntax
D = dctmtx(n)

Description
D = dctmtx(n) returns the n-by-n discrete cosine transform (DCT) matrix, which you
can use to perform a 2-D DCT on an image.

Examples

Calculate Discrete Cosine Transform Matrix

Read an image into the workspace and cast it to class double.

A = im2double(imread('rice.png'));
imshow(A)

1 Functions — Alphabetical List

1-418

Calculate the discrete cosine transform matrix.

D = dctmtx(size(A,1));

Multiply the input image A by D to get the DCT of the columns of A, and by D' to get the
inverse DCT of the columns of A.

dct = D*A*D';
imshow(dct)

 dctmtx

1-419

Input Arguments
n — Size of DCT matrix
positive integer

Size of DCT matrix, specified as a positive integer.
Data Types: double

Output Arguments
D — DCT matrix
numeric matrix

DCT matrix, returned as a numeric matrix of size n-by-n.

1 Functions — Alphabetical List

1-420

Data Types: double

Tips
• If you have an n-by-n image, A, then D*A is the DCT of the columns of A and D'*A is

the inverse DCT of the columns of A.
• The two-dimensional DCT of A can be computed as D*A*D'. This computation is

sometimes faster than using dct2, especially if you are computing a large number of
small DCTs, because D needs to be determined only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed. To
perform this computation, use dctmtx to determine D, and then calculate each DCT
using D*A*D' (where A is each 8-by-8 block). This is faster than calling dct2 for each
individual block.

See Also
dct2

Introduced before R2006a

 dctmtx

1-421

decompose
Return sequence of decomposed structuring elements

Syntax
SEQ = decompose(SE)

Description
SEQ = decompose(SE) returns an array of structuring elements, SEQ, that are the
decomposition of the structuring element SE. SEQ is equivalent to SE, but the elements of
SEQ cannot be decomposed further.

Examples

View Decomposition of Structuring Element

Create a disk-shaped structuring element.

se = strel('square',5)

se =
strel is a square shaped structuring element with properties:

 Neighborhood: [5x5 logical]
 Dimensionality: 2

Extract the decomposition of the structuring element.

seq = decompose(se)

seq =
 2x1 strel array with properties:

1 Functions — Alphabetical List

1-422

 Neighborhood
 Dimensionality

To see that dilating sequentially with the decomposed structuring elements really does
form a 5-by-5 square, use imdilate with the full option.

imdilate(1,seq,'full')

ans = 5×5

 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

Extract Decomposition of Structuring Element

Create a ball-shaped structuring element.

se = offsetstrel('ball',5, 6.5)

se =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Obtain the decomposition of the structuring element.

seq = decompose(se)

seq =
 1x8 offsetstrel array with properties:

 Offset
 Dimensionality

 decompose

1-423

Input Arguments
SE — Structuring element
strel or offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

Output Arguments
SEQ — Sequence of structuring elements that approximate the desired shape
array of strel or offsetstrel objects

Sequence of structuring elements that approximate the desired shape, returned as an
array of strel or offsetstrel objects.

See Also
Introduced before R2006a

1 Functions — Alphabetical List

1-424

deconvblind
Deblur image using blind deconvolution

Syntax
[J,psfr] = deconvblind(I,psfi)
[J,psfr] = deconvblind(I,psfi,iter)
[J,psfr] = deconvblind(I,psfi,iter,dampar)
[J,psfr] = deconvblind(I,psfi,iter,dampar,weight)
[J,psfr] = deconvblind(I,psfi,iter,dampar,weight,readout)
[J,psfr] = deconvblind(___ ,fun)

Description
[J,psfr] = deconvblind(I,psfi) deconvolves image I using the maximum
likelihood algorithm and an initial estimate of the point-spread function (PSF), psfi. The
deconvblind function returns both the deblurred image J and a restored PSF, psfr.

To improve the restoration, deconvblind supports several optional parameters,
described below. Use [] as a placeholder if you do not specify an intermediate parameter.

[J,psfr] = deconvblind(I,psfi,iter) specifies the number of iterations, iter.

[J,psfr] = deconvblind(I,psfi,iter,dampar) controls noise amplification by
suppressing iterations for pixels that deviate a small amount compared to the noise,
specified by the damping threshold dampar. By default, no damping occurs.

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight) specifies which pixels in
the input image I are considered in the restoration. The value of an element in the
weight array determines how much the pixel at the corresponding position in the input
image is considered. For example, to exclude a pixel from consideration, assign it a value
of 0 in the weight array. You can adjust the weight value assigned to each pixel
according to the amount of flat-field correction.

 deconvblind

1-425

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight,readout) specifies the
additive noise (e.g., background, foreground noise) and variance of the read-out camera
noise, readout.

[J,psfr] = deconvblind(___ ,fun), where fun is a handle to a function that
describes additional constraints on the PSF. fun is called at the end of each iteration. For
more information about function handles, see “Create Function Handle” (MATLAB).

Examples

Deblur an Image Using Blind Deconvolution

Create a sample image with noise.

% Set the random number generator back to its default settings for
% consistency in results.
rng default;

I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);

Create a weight array to specify which pixels are included in processing.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));

Perform blind deconvolution.

[J P] = deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT);

Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[]);
title('True PSF');
subplot(223);imshow(J);
title('Deblurred Image');

1 Functions — Alphabetical List

1-426

subplot(224);imshow(P,[]);
title('Recovered PSF');

Input Arguments
I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the
image as a cell array to enable interrupted iterations. For more information, see “Tips” on
page 1-429.

 deconvblind

1-427

Data Types: single | double | int16 | uint8 | uint16

psfi — Initial estimate of PSF
numeric array

Initial estimate of PSF, specified as a numeric array. The PSF restoration is affected
strongly by the size of the initial guess psfi and less by the values it contains. For this
reason, specify an array of 1s as your psfi.

You can also specify psfi as a cell array to enable interrupted iterations. For more
information, see “Tips” on page 1-429.
Data Types: single | double | int16 | uint8 | uint16

iter — Number of iterations
10 (default) | positive integer

Number of iterations, specified as a positive integer.
Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose
deviation between iterations is less than the threshold. dampar has the same data type as
I.

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1].
weight has the same size as the input image, I. By default, all elements in weight have
the value 1, so all pixels are considered equally in the restoration.
Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds
to the additive noise (such as noise from the foreground and background) and the
variance of the read-out camera noise. readout has the same data type as I.

1 Functions — Alphabetical List

1-428

fun — Function handle
handle

Function handle, specified as a handle. fun must accept the PSF as its first argument.
The function must return one argument: a PSF that is the same size as the original PSF
and that satisfies the positivity and normalization constraints.

Output Arguments
J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is
a cell array) has the same data type as I. For more information about returning J as a cell
array for interrupted iterations, see “Tips” on page 1-429.

psfr — Restored PSF
array of positive numbers | 1-by-4 cell array

Restored PSF, returned as an array of positive numbers or a 1-by-4 cell array. psfr has
the same size as the initial estimate of the PSF, psfi, and it is normalized so the sum of
elements is 1. For more information about returning psfr as a cell array for interrupted
iterations, see “Tips” on page 1-429.
Data Types: double

Tips
• You can use deconvblind to perform a deconvolution that starts where a previous

deconvolution stopped. To use this feature, pass the input image I and the initial
guess at the PSF, psfi, as cell arrays: {I} and {psfi}. When you do, the
deconvblind function returns the output image J and the restored point-spread
function, psfr, as cell arrays, which can then be passed as the input arrays into the
next deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

 deconvblind

1-429

J{4} is an array generated by the iterative algorithm.
• The output image J could exhibit ringing introduced by the discrete Fourier transform

used in the algorithm. To reduce the ringing, use I = edgetaper(I,psfi) before
calling deconvblind.

References
[1] D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms,

Applied Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope
Images and Spectra, Deconvolution of Images and Spectra, Ed. P.A. Jansson, 2nd
ed., Academic Press, CA, 1997.

[3] Timothy J. Holmes, et al, Light Microscopic Images Reconstructed by Maximum
Likelihood Deconvolution, Handbook of Biological Confocal Microscopy, Ed. James
B. Pawley, Plenum Press, New York, 1995.

See Also
deconvlucy | deconvreg | deconvwnr | edgetaper | imnoise | otf2psf | padarray |
psf2otf

Topics
“Deblurring Images Using the Blind Deconvolution Algorithm”
“Image Deblurring”
“Deblur with the Blind Deconvolution Algorithm”

Introduced before R2006a

1 Functions — Alphabetical List

1-430

deconvlucy
Deblur image using Lucy-Richardson method

Syntax
J = deconvlucy(I,psf)
J = deconvlucy(I,psf,iter)
J = deconvlucy(I,psf,iter,dampar)
J = deconvlucy(I,psf,iter,dampar,weight)
J = deconvlucy(I,psf,iter,dampar,weight,readout)
J = deconvlucy(I,psf,iter,dampar,weight,readout,subsample)

Description
J = deconvlucy(I,psf) restores image I that was degraded by convolution with a
point-spread function (PSF), psf, and possibly by additive noise. The algorithm is based
on maximizing the likelihood that the resulting image J is an instance of the original
image I under Poisson statistics.

To improve the restoration, deconvlucy supports several optional parameters, described
below. Use [] as a placeholder if you do not specify an intermediate parameter.

J = deconvlucy(I,psf,iter) specifies the number of iterations, iter.

J = deconvlucy(I,psf,iter,dampar) controls noise amplification by suppressing
iterations for pixels that deviate a small amount compared to the noise, specified by the
damping threshold dampar. By default, no damping occurs.

J = deconvlucy(I,psf,iter,dampar,weight) specifies which pixels in the input
image I are considered in the restoration. The value of an element in the weight array
determines how much the pixel at the corresponding position in the input image is
considered. For example, to exclude a pixel from consideration, assign it a value of 0 in
the weight array. You can adjust the weight value assigned to each pixel according to the
amount of flat-field correction.

 deconvlucy

1-431

J = deconvlucy(I,psf,iter,dampar,weight,readout) specifies the additive
noise (e.g., background, foreground noise) and variance of the read-out camera noise,
readout.

J = deconvlucy(I,psf,iter,dampar,weight,readout,subsample) uses
subsampling when the PSF is given on a grid that is subsample times finer than the
image.

Examples

Remove Blur Using Several deconvlucy Optional Syntaxes

Create a sample image and blur it.

I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);

Create a weight array and call deconvlucy using several optional parameters.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');

1 Functions — Alphabetical List

1-432

Input Arguments
I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the
image as a cell array to enable interrupted iterations. For more information, see “Tips” on
page 1-435.
Data Types: single | double | int16 | uint8 | uint16

 deconvlucy

1-433

psf — PSF
numeric array

PSF, specified as a numeric array. You can also specify psf as a cell array to enable
interrupted iterations. For more information, see “Tips” on page 1-435.
Data Types: single | double | int16 | uint8 | uint16

iter — Number of iterations
10 (default) | positive integer

Number of iterations, specified as a positive integer.
Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose
deviation between iterations is less than the threshold. dampar has the same data type as
I.

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1].
weight has the same size as the input image, I. By default, all elements in weight have
the value 1, so all pixels are considered equally in the restoration.
Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds
to the additive noise (such as noise from the foreground and background) and the
variance of the read-out camera noise. readout has the same data type as I.

subsample — Subsampling
1 (default) | positive scalar

Subsampling, specified as a positive scalar.
Data Types: double

1 Functions — Alphabetical List

1-434

Output Arguments
J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is
a cell array) has the same data type as I. For more information about returning J as a cell
array for interrupted iterations, see “Tips” on page 1-435.

Tips
• You can use deconvlucy to perform a deconvolution that starts where a previous

deconvolution stopped. To use this feature, pass the input image I and the PSF, psf,
as cell arrays: {I} and {psf}. When you do, the deconvlucy function returns the
output image J as a cell array, which can then be passed as the input array into the
next deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.
• The output image J could exhibit ringing introduced by the discrete Fourier transform

used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvlucy.

• deconvlucy converts the PSF to double without normalization.

References
[1] D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms,

Applied Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope
Images and Spectra, Deconvolution of Images and Spectra, Ed. P.A. Jansson, 2nd
ed., Academic Press, CA, 1997.

 deconvlucy

1-435

See Also
deconvlucy | deconvreg | deconvwnr | edgetaper | otf2psf | padarray | psf2otf

Topics
“Deblurring Images Using the Lucy-Richardson Algorithm”
“Image Deblurring”
“Deblur with the Lucy-Richardson Algorithm”

Introduced before R2006a

1 Functions — Alphabetical List

1-436

deconvreg
Deblur image using regularized filter

Syntax
J = deconvreg(I,psf)
J = deconvreg(I,psf,np)
J = deconvreg(I,psf,np,lrange)
J = deconvreg(I,psf,np,lrange,regop)
[J,lagra] = deconvreg(___)

Description
J = deconvreg(I,psf) deconvolves image I using the regularized filter algorithm,
returning deblurred image J. The assumption is that the image I was created by
convolving a true image with a point-spread function (PSF), psf, and possibly by adding
noise. The algorithm is a constrained optimum in the sense of least square error between
the estimated and the true images under requirement of preserving image smoothness.

J = deconvreg(I,psf,np) specifies the additive noise power, np.

J = deconvreg(I,psf,np,lrange) specifies the range, lrange, where the search for
the optimal solution is performed. The algorithm finds an optimal Lagrange multiplier
lagra within the lrange range.

J = deconvreg(I,psf,np,lrange,regop) constrains the deconvolution using
regularization operator regop. The default regularization operator is the Laplacian
operator, to retain the image smoothness.

[J,lagra] = deconvreg(___) outputs the value of the Lagrange multiplier, lagra in
addition to the restored image, J.

Examples

 deconvreg

1-437

Deblur Image Using Regularized Filter

Create sample image.

I = checkerboard(8);

Create PSF and use it to create a blurred and noisy version of the input image.

PSF = fspecial('gaussian',7,10);
V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
NOISEPOWER = V*prod(size(I));

Deblur the image.

[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);

Display the various versions of the image.

subplot(221); imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222); imshow(J);
title('[J LAGRA] = deconvreg(A,PSF,NP)');
subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)');
subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)');

1 Functions — Alphabetical List

1-438

Input Arguments
I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

psf — PSF
numeric array

 deconvreg

1-439

PSF, specified as a numeric array.
Data Types: double

np — Noise power
0 (default) | numeric scalar

Noise power, specified as a numeric scalar.
Data Types: double

lrange — Search range
[1e-9 1e9] (default) | numeric scalar | 2-element numeric vector

Search range, specified as a numeric scalar or a 2-element numeric vector. If lrange is a
scalar, the algorithm assumes that lagra is equal to lrange; the np value is then
ignored.
Data Types: double

regop — Regularization operator
numeric array

Regularization operator, specified as a numeric array. The regop array dimensions must
not exceed the dimensions of the image, I. Any nonsingleton dimensions must correspond
to the nonsingleton dimensions of psf.
Data Types: double

Output Arguments
J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

lagra — Lagrange multiplier
numeric scalar

Lagrange multiplier, returned as a numeric scalar.

1 Functions — Alphabetical List

1-440

Tips
• The output image J could exhibit ringing introduced by the discrete Fourier transform

used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvreg.

See Also
deconvblind | deconvlucy | deconvwnr | edgetaper | otf2psf | padarray |
psf2otf

Topics
“Deblurring Images Using a Regularized Filter”
“Image Deblurring”
“Deblur with a Regularized Filter”

Introduced before R2006a

 deconvreg

1-441

deconvwnr
Deblur image using Wiener filter

Syntax
J = deconvwnr(I,psf,nsr)
J = deconvwnr(I,psf,ncorr,icorr)

Description
J = deconvwnr(I,psf,nsr) deconvolves image I using the Wiener filter algorithm,
returning deblurred image J. psf is the point-spread function (PSF) with which I was
convolved. nsr is the noise-to-signal power ratio of the additive noise. The algorithm is
optimal in a sense of least mean square error between the estimated and the true images.

J = deconvwnr(I,psf,ncorr,icorr) deconvolves image I, where ncorr is the
autocorrelation function of the noise and icorr is the autocorrelation function of the
original image.

Examples

Deblur Image Using Wiener Filter

Read image into the workspace and display it.

I = im2double(imread('cameraman.tif'));
imshow(I);
title('Original Image (courtesy of MIT)');

1 Functions — Alphabetical List

1-442

Simulate a motion blur.

LEN = 21;
THETA = 11;
PSF = fspecial('motion', LEN, THETA);
blurred = imfilter(I, PSF, 'conv', 'circular');
figure, imshow(blurred)

 deconvwnr

1-443

Simulate additive noise.

noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred, 'gaussian', ...
 noise_mean, noise_var);
figure, imshow(blurred_noisy)
title('Simulate Blur and Noise')

1 Functions — Alphabetical List

1-444

Try restoration assuming no noise.

estimated_nsr = 0;
wnr2 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr2)
title('Restoration of Blurred, Noisy Image Using NSR = 0')

 deconvwnr

1-445

Try restoration using a better estimate of the noise-to-signal-power ratio.

estimated_nsr = noise_var / var(I(:));
wnr3 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr3)
title('Restoration of Blurred, Noisy Image Using Estimated NSR');

1 Functions — Alphabetical List

1-446

Input Arguments
I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

psf — PSF
numeric array

PSF, specified as a numeric array.
Data Types: double

 deconvwnr

1-447

nsr — Noise-to-signal ratio
positive scalar

Noise-to-signal ratio, specified as a positive scalar or numeric array of the same size as
the image, I. If nsr is an array, then it represents the spectral domain. Specifying 0 for
the nsr is equivalent to creating an ideal inverse filter.
Data Types: double

ncorr — Autocorrelation function of the noise
numeric array

Autocorrelation function of the noise, specified as a numeric array of any size or
dimension, not exceeding the original image.

• If the dimensionality of ncorr matches the dimensionality of the image I, then the
values correspond to the autocorrelation within each dimension.

• If ncorr is a vector and psf is also a vector, then the values in ncorr represent the
autocorrelation function in the first dimension.

• If ncorr is a vector and psf is an array, then the 1-D autocorrelation function is
extrapolated by symmetry to all non-singleton dimensions of psf.

• If ncorr is a scalar, then the value represents the power of the image noise.

Data Types: double

icorr — Autocorrelation function of the image
numeric array

Autocorrelation function of the image, specified as a numeric array of any size or
dimension, not exceeding the original image.

• If the dimensionality of icorr matches the dimensionality of the image I, then the
values correspond to the autocorrelation within each dimension.

• If icorr is a vector and psf is also a vector, then the values in icorr represent the
autocorrelation function in the first dimension.

• If icorr is a vector and psf is an array, then the 1-D autocorrelation function is
extrapolated by symmetry to all non-singleton dimensions of psf.

• If icorr is a scalar, then the value represents the power of the image noise.

Data Types: double

1 Functions — Alphabetical List

1-448

Output Arguments
J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

Tips
• The output image J could exhibit ringing introduced by the discrete Fourier transform

used in the algorithm. To reduce the ringing, use I = edgetaper(I,psf) before
calling deconvwnr.

References
[1] "Digital Image Processing", R. C. Gonzalez & R. E. Woods, Addison-Wesley Publishing

Company, Inc., 1992.

See Also
deconvblind | deconvlucy | deconvreg | edgetaper | otf2psf | padarray |
psf2otf

Topics
“Deblurring Images Using a Wiener Filter”
“Image Deblurring”
“Deblur with the Wiener Filter”

Introduced before R2006a

 deconvwnr

1-449

decorrstretch
Apply decorrelation stretch to multichannel image

Syntax
S = decorrstretch(A)
S = decorrstretch(A,Name,Value)

Description
S = decorrstretch(A) applies a decorrelation stretch to RGB or multispectral image
A and returns the result in S. The mean and variance in each band of S are the same as in
A.

The primary purpose of decorrelation stretch is visual enhancement. Decorrelation
stretching is a way to enhance the color differences in an image.

S = decorrstretch(A,Name,Value) uses name-value pairs to control aspects of the
decorrelation stretch, such as the target mean and standard deviation of each band.

Examples

Highlight Color Differences in Forest Scene

This example shows how to use decorrelation stretching to highlight elements in a forest
image by exaggerating the color differences.

Read an image into the workspace.

[X, map] = imread('forest.tif');

Apply decorrelation stretching using decorrstretch.

S = decorrstretch(ind2rgb(X,map),'tol',0.01);

1 Functions — Alphabetical List

1-450

Display the original image and the enhanced image.

figure
imshow(X,map)
title('Original Image')

figure
imshow(S)
title('Enhanced Image')

 decorrstretch

1-451

Input Arguments
A — Image to be enhanced
RGB image | multispectral image

Image to be enhanced, specified as an RGB image or multispectral image of size m-by-n-
by-nBands. For an RGB image, nBands = 3.
Data Types: single | double | int16 | uint8 | uint16

1 Functions — Alphabetical List

1-452

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Mode','covariance'

Mode — Decorrelation method
'correlation' (default) | 'covariance'

Decorrelation method, specified as the comma-separated pair consisting of 'Mode' and of
the following values.

• 'correlation' — Uses the eigen decomposition of the band-to-band correlation
matrix.

• 'covariance' — Uses the eigen decomposition of the band-to-band covariance
matrix.

Data Types: char | string

TargetMean — Target mean values
real scalar | vector of length nBands

Target mean values of the output bands, specified as the comma-separated pair consisting
of 'TargetMean' and a real scalar or vector of length nBands. By default, TargetMean
is an 1-by-nBands vector containing the sample mean of each band, which preserves the
band-wise means before and after the decorrelation stretch.

TargetMean must be of class double, but uses the same values as the pixels in the input
image. For example, if A is class uint8, then 127.5 would be a reasonable value. If
values need to be clamped to the standard range of the input/output image class, it can
impact the results.
Data Types: double

TargetSigma — Target standard deviation values
positive scalar | vector of length nBands

Target standard deviation values of the output bands, specified as the comma-separated
pair consisting of 'TargetSigma' and a positive scalar or vector of length nBands. By

 decorrstretch

1-453

default, TargetSigma is an 1-by-nBands vector containing the sample standard
deviation of each band, which preserves the band-wise variance before and after the
decorrelation stretch. The target standard deviation is ignored for uniform (zero-variance)
bands.

TargetSigma must be class double, but uses the same values as the pixels in the input
image. For example, if A is of class uint8, then 50.0 would be a reasonable value.
Data Types: double

Tol — Linear contrast stretch
numeric scalar | 2-element numeric vector

Linear contrast stretch following the decorrelation stretch, specified as the comma-
separated pair consisting of 'Tol' and a numeric scalar or 2-element numeric vector of
class double. Specifying a value of Tol overrides the value of TargetMean or
TargetSigma. If you do not specify Tol, then by default decorrstretch does not
perform linear contrast stretch.

Tol has the same meaning as in stretchlim, where Tol = [LOW_FRACT
HIGH_FRACT] specifies the fraction of the image to saturate at low and high intensities. If
you specify Tol as a scalar value, then LOW_FRACT = Tol and HIGH_FRACT = 1 -
Tol, saturating equal fractions at low and high intensities.

Small adjustments to Tol can strongly affect the visual appearance of the output.
Data Types: double

SampleSubs — Subset of A used to compute the band-means, covariance, and
correlation
cell array containing two arrays of pixel subscripts {rowsubs, colsubs}

Subset of A used to compute the band-means, covariance, and correlation, specified as a
cell array containing two arrays of pixel subscripts {rowsubs, colsubs}. rowsubs and
colsubs are vectors or matrices of matching size that contain row and column
subscripts, respectively.

Use this option to reduce the amount of computation, to keep invalid or non-
representative pixels from affecting the transformation, or both. For example, you can use
rowsubs and colsubs to exclude areas of cloud cover. If not specified, decorrstretch
uses all the pixels in A.
Data Types: double

1 Functions — Alphabetical List

1-454

Output Arguments
S — Decorrelation stretched image
numeric array

Decorrelation stretched image, returned as a numeric array of the same size and class as
the input image, A.

Tips
• The results of a straight decorrelation (without the contrast stretch option) may

include values that fall outside the numerical range supported by the class uint8 or
uint16 (negative values, or values exceeding 255 or 65535, respectively). In these
cases, decorrstretch clamps its output to the supported range.

• For class double, decorrstretch clamps the output only when you provide a value
for Tol, specifying a linear contrast stretch followed by clamping to the interval [0
1].

• The optional parameters do not interact, except that a linear stretch usually alters
both the band-wise means and band-wise standard deviations. Thus, while you can
specify TargetMean and TargetSigma along with Tol, their effects will be modified.

Algorithms
A decorrelation stretch is a linear, pixel-wise operation in which the specific parameters
depend on the values of actual and desired (target) image statistics. The vector a
containing the value of a given pixel in each band of the input image A is transformed into
the corresponding pixel b in output image B as follows:

b = T * (a - m) + m_target.

a and b are nBands-by-1 vectors, T is an nBands-by-nBands matrix, and m and m_target
are nBands-by-1 vectors such that

• m contains the mean of each band in the image, or in a subset of image pixels that you
specify

• m_target contains the desired output mean in each band. The default choice is
m_target = m.

 decorrstretch

1-455

The linear transformation matrix T depends on the following:

• The band-to-band sample covariance of the image, or of a subset of the image that you
specify (the same subset as used for m), represented by matrix Cov

• A desired output standard deviation in each band. This is conveniently represented by
a diagonal matrix, SIGMA_target. The default choice is SIGMA_target = SIGMA,
where SIGMA is the diagonal matrix containing the sample standard deviation of each
band. SIGMA should be computed from the same pixels that were used for m and Cov,
which means simply that:

SIGMA(k,k) = sqrt(Cov(k,k), k = 1,..., nBands).

Cov, SIGMA, and SIGMA_target are nBands-by-nBands, as are the matrices Corr,
LAMBDA, and V, defined below.

The first step in computing T is to perform an eigen-decomposition of either the
covariance matrix Cov or the correlation matrix

Corr = inv(SIGMA) * Cov * inv(SIGMA).

• In the correlation-based method, Corr is decomposed: Corr = V LAMBDA V'.
• In the covariance-based method, Cov is decomposed: Cov = V LAMBDA V'.

LAMBDA is a diagonal matrix of eigenvalues and V is the orthogonal matrix that transforms
either Corr or Cov to LAMBDA.

The next step is to compute a stretch factor for each band, which is the inverse square
root of the corresponding eigenvalue. It is convenient to define a diagonal matrix S
containing the stretch factors, such that:

S(k,k) = 1 / sqrt(LAMBDA(k,k)).

Finally, matrix T is computed from either

T = SIGMA_target V S V' inv(SIGMA) (correlation-based method)

or

T = SIGMA_target V S V' (covariance-based method).

The two methods yield identical results if the band variances are uniform.

Substituting T into the expression for b:

1 Functions — Alphabetical List

1-456

b = m_target + SIGMA_target V S V' inv(SIGMA) * (a - m)

or

b = m_target + SIGMA_target V S V' * (a - m)

and reading from right to left, you can see that the decorrelation stretch:

1 Removes a mean from each band
2 Normalizes each band by its standard deviation (correlation-based method only)
3 Rotates the bands into the eigenspace of Corr or Cov
4 Applies a stretch S in the eigenspace, leaving the image decorrelated and normalized

in the eigenspace
5 Rotates back to the original band-space, where the bands remain decorrelated and

normalized
6 Rescales each band according to SIGMA_target
7 Restores a mean in each band.

See Also
imadjust | stretchlim

Introduced before R2006a

 decorrstretch

1-457

demosaic
Convert Bayer pattern encoded image to truecolor image

Syntax
RGB = demosaic(I,sensorAlignment)

Description
RGB = demosaic(I,sensorAlignment) converts the Bayer pattern encoded image, I,
to the truecolor image, RGB, using gradient-corrected linear interpolation.
sensorAlignment specifies the Bayer pattern.

A Bayer filter mosaic, or color filter array, refers to the arrangement of color filters that
let each sensor in a single-sensor digital camera record only red, green, or blue data. The
patterns emphasize the number of green sensors to mimic the human eye's greater
sensitivity to green light. The demosaic function uses interpolation to convert the two-
dimensional Bayer-encoded image into the truecolor image.

Examples

Convert a Bayer Pattern Encoded Image To an RGB Image

Convert a Bayer pattern encoded image that was photographed by a camera with a
sensor alignment of 'bggr' .

I = imread('mandi.tif');
J = demosaic(I,'bggr');
imshow(I);

1 Functions — Alphabetical List

1-458

figure, imshow(J);

 demosaic

1-459

Input Arguments
I — Bayer-pattern encoded image
M-by-N array of intensity values

Bayer-pattern encoded image, specified as an M-by-N array of intensity values. I must
have at least 5 rows and 5 columns.
Data Types: uint8 | uint16 | uint32

sensorAlignment — Bayer pattern
'gbrg' | 'grbg' | 'bggr' | 'rggb'

1 Functions — Alphabetical List

1-460

Bayer pattern, specified as one of the values in the following table. Each value represents
the order of the red, green, and blue sensors by describing the four pixels in the upper-
left corner of the image (left-to-right, top-to-bottom).

Pattern 2–by-2 Sensor Alignment
'gbrg'

'grbg'

'bggr'

 demosaic

1-461

Pattern 2–by-2 Sensor Alignment
'rggb'

Data Types: char | string

Output Arguments
RGB — RGB image
M-by-N-by-3 numeric array

RGB image, returned as an M-by-N-by-3 numeric array the same class as I.

References
[1] Malvar, H.S., L. He, and R. Cutler, High quality linear interpolation for demosaicing of

Bayer-patterned color images. ICASPP, Volume 34, Issue 11, pp. 2274-2282, May
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• demosaic supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

1 Functions — Alphabetical List

1-462

• sensorAlignment must be a compile-time constant.

See Also
Introduced in R2007b

 demosaic

1-463

denoiseImage
Denoise image using deep neural network

Syntax
B = denoiseImage(A,net)

Description
B = denoiseImage(A,net) estimates denoised image B from noisy image A using a
denoising deep neural network specified by net.

This function requires that you have Deep Learning Toolbox™.

Examples

Remove Image Noise Using Pretrained Neural Network

Retrieve the pretrained denoising convolutional neural network, 'DnCNN'.

net = denoisingNetwork('DnCNN');

Load a grayscale image into the workspace, then create a noisy version of the image.
Display the two images.

I = imread('cameraman.tif');
noisyI = imnoise(I,'gaussian',0,0.01);
figure
imshowpair(I,noisyI,'montage');
title('Original Image (left) and Noisy Image (right)')

1 Functions — Alphabetical List

1-464

Remove noise from the noisy image, and display the result.

denoisedI = denoiseImage(noisyI, net);
figure
imshow(denoisedI)
title('Denoised Image')

 denoiseImage

1-465

Input Arguments
A — Noisy image
2-D image | stack of 2-D images

Noisy image, specified as a single 2-D image or a stack of 2-D images. A can be:

• A 2-D grayscale image with size m-by-n.
• A 2-D multichannel image with size m-by-n-by-c, where c is the number of image

channels. For example, c is 3 for RGB images, and 4 for four-channel images such as
RGB images with an infrared channel.

• A stack of equally-sized 2-D images. In this case, A has size m-by-n-by-c-by-p, where p
is the number of images in the stack.

Data Types: single | double | uint8 | uint16

1 Functions — Alphabetical List

1-466

net — Denoising deep neural network
SeriesNetwork object

Denoising deep neural network, specified as a SeriesNetwork object. The network
should be trained to handle images with the same channel format as A.

Output Arguments
B — Denoised image
2-D image | stack of 2-D images

Denoised image, returned as a single 2-D image or a stack of 2-D images. B has the same
size and data type as A.

See Also
denoisingImageDatastore | denoisingNetwork | dnCNNLayers

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

 denoiseImage

1-467

denoisingImageDatastore
Denoising image datastore

Description
Use a denoisingImageDatastore object to generate batches of noisy image patches
and corresponding noise patches from images in an ImageDatastore. The patches are
used to train a denoising deep neural network.

This object requires that you have Deep Learning Toolbox.

Note When you use a denoising image datastore as a source of training data, the
datastore adds random noise to the image patches for each epoch, so that each epoch
uses a slightly different data set. The actual number of training images at each epoch is
increased by a factor of PatchesPerImage. The noisy image patches and corresponding
noise patches are not stored in memory.

Creation

Syntax
dnimds = denoisingImageDatastore(imds)
dnimds = denoisingImageDatastore(imds,Name,Value)

Description
dnimds = denoisingImageDatastore(imds) creates a denoising image datastore,
dnimds using images from image datastore imds. To generate noisy image patches, the
denoising image datastore randomly crops pristine images from imds then adds zero-
mean Gaussian white noise with a standard deviation of 0.1 to the image patches.

dnimds = denoisingImageDatastore(imds,Name,Value) uses name-value pairs to
specify the two-dimensional image patch size or to set the PatchesPerImage,

1 Functions — Alphabetical List

1-468

GaussianNoiseLevel, ChannelFormat, and DispatchInBackground properties. You
can specify multiple name-value pairs. Enclose each argument or property name in
quotes.

For example, denoisingImageDatastore(imds,'PatchesPerImage',40) creates a
denoising image datastore and randomly generates 40 noisy patches from each image in
the image datastore, imds.

Input Arguments
imds — Images with labels for classification problems
ImageDatastore object

Images, specified as an ImageDatastore object with categorical labels. You can store
data in ImageDatastore for only classification problems.

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If
you use a custom function for reading the images, prefetching does not happen.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: denoisingImageDatastore(imds,'patchSize',48) creates a denoising
image datastore that has a square patch size of 48 pixels.

patchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a
scalar or 2-element vector with positive integer values. This argument sets the first two
elements of the PatchSize property.

• If 'patchSize' is a scalar, then the patches are square.
• If 'patchSize' is a 2-element vector of the form [r c], then the first element specifies

the number of rows in the patch, and the second element specifies the number of
columns.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 denoisingImageDatastore

1-469

Properties
ChannelFormat — Channel format
'grayscale' (default) | 'rgb'

Channel format, specified as 'grayscale' or 'rgb'.
Data Types: char

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, and classification,
specified as false or true. To use background dispatching, you must have Parallel
Computing Toolbox. If DispatchInBackground is true and you have Parallel
Computing Toolbox, then denoisingImageDatastore asynchronously reads patches,
adds noise, and queues patch pairs.

GaussianNoiseLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as
a scalar or 2-element vector with values in the range [0, 1].

• If GaussianNoiseLevel is a scalar, then the standard deviation of the added zero-
mean Gaussian white noise is identical for all image patches.

• If GaussianNoiseLevel is a 2-element vector, then it specifies a range of standard
deviations [stdmin stdmax]. The standard deviation of the added zero-mean Gaussian
white noise is unique for each image patch, and is randomly sampled from a uniform
distribution with the range [stdmin stdmax].

Data Types: single | double

MiniBatchSize — Number of observations in each batch
positive integer

This property is read-only.

Number of observations that are returned in each batch. For training, prediction, or
classification, the MiniBatchSize property is set to the mini-batch size defined in
trainingOptions.

1 Functions — Alphabetical List

1-470

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the denoising image datastore. The number of
observations is the length of one training epoch.

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

PatchSize — Patch size
[50 50 1] (default) | 3-element vector of positive integers

This property is read-only.

Patch size, specified as a 3-element vector of positive integers. If you create a denoising
image datastore by specifying a 'patchSize' name-value pair argument, then the first
two elements of the PatchSize property are set according to the value of the
patchSize argument.

The ChannelFormat property determines the third element of the PatchSize property.

• If ChannelFormat is 'Grayscale', then all color images are converted to grayscale
and the third element of PatchSize is 1.

• If ChannelFormat is 'RGB', then grayscale images are replicated to simulate an RGB
image and the third element of PatchSize is 3.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Object Functions
hasdata Determine if data is available to read
partitionByIndex Partition denoisingImageDatastore according to indices
preview Subset of data in datastore
read Read data from denoisingImageDatastore
readall Read all data in datastore

 denoisingImageDatastore

1-471

readByIndex Read data specified by index from denoisingImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in denoisingImageDatastore

Examples

Create Denoising Image Datastore

Get an image datastore. The datastore in this example contains color images.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create a denoisingImageDatastore object that creates many patches from each
image in the image datastore, and adds Gaussian noise to the patches. Set the optional
PatchesPerImage, PatchSize, GaussianNoiseLevel, and ChannelFormat
properties of the denoisingImageDatastore using name-value pairs. When you set the
ChannelFormat property to 'grayscale', the denoisingImageDatastore converts all
color images to grayscale.

dnds = denoisingImageDatastore(imds,...
 'PatchesPerImage',512,...
 'PatchSize',50,...
 'GaussianNoiseLevel',[0.01 0.1],...
 'ChannelFormat','grayscale')

dnds =
 denoisingImageDatastore with properties:

 PatchesPerImage: 512
 PatchSize: [50 50 1]
 GaussianNoiseLevel: [0.0100 0.1000]
 ChannelFormat: 'grayscale'
 MiniBatchSize: 128
 NumObservations: 18944
 DispatchInBackground: 0

1 Functions — Alphabetical List

1-472

Tips
• Training a deep neural network for a range of Gaussian noise standard deviations is a

much more difficult problem than training a network for a single Gaussian noise
standard deviation. You should create more patches compared to a single noise level
case, and training might take more time.

• To visualize the data in a denoising image datastore, you can use the preview
function, which returns a subset of data in a table. The input variable contains the
noisy image patches and the response variable contains the corresponding noise
patches. Visualize all of the noisy image patches or noise patches in the same figure by
using the montage function. For example, this code displays data in a denoising image
datastore called dnimds.

minibatch = preview(dnimds);
montage(minibatch.input)
figure
montage(minibatch.response)

• Each time images are read from the denoising image datastore, a different random
amount of Gaussian noise is added to each image.

See Also
denoiseImage | denoisingNetwork | dnCNNLayers | trainNetwork

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2018a

 denoisingImageDatastore

1-473

partitionByIndex
Partition denoisingImageDatastore according to indices

Syntax
dnimds2 = partitionByIndex(dnimds,ind)

Description
dnimds2 = partitionByIndex(dnimds,ind) partitions a subset of observations in a
denoising image datastore, dnimds, into a new datastore, dnimds2. The desired
observations are specified by indices, ind.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
dnimds2 — Output datastore
denoisingImageDatastore object

Output datastore, returned as a denoisingImageDatastore object containing a subset
of files from dnimds.

1 Functions — Alphabetical List

1-474

See Also
denoisingImageDatastore | read | readByIndex | readall

Introduced in R2018a

 partitionByIndex

1-475

read
Read data from denoisingImageDatastore

Syntax
data = read(dnimds)
[data,info] = read(dnimds)

Description
data = read(dnimds) returns a batch of data from a denoising image datastore,
dnimds. Subsequent calls to the read function continue reading from the endpoint of the
previous call.

[data,info] = read(dnimds) also returns information about the extracted data,
including metadata, in info.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object. The
datastore specifies a MiniBatchSize number of observations in each batch, and a
numObservations total number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.

1 Functions — Alphabetical List

1-476

For the last batch of data in the datastore dnimds, if numObservations is not cleanly
divisible by MiniBatchSize, then read returns a partial batch containing all the
remaining observations in the datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
CurrentFileIndices Current read index of the denoising image

datastore.

See Also
denoisingImageDatastore | matlab.io.datastore.read | readByIndex |
readall

Introduced in R2018a

 read

1-477

readByIndex
Read data specified by index from denoisingImageDatastore

Syntax
data = readByIndex(dnimds,ind)
[data,info] = readByIndex(dnimds,ind)

Description
data = readByIndex(dnimds,ind) returns a subset of observations from a denoising
image datastore, dnimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(dnimds,ind) also returns information about the
observations, including metadata, in info.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

1 Functions — Alphabetical List

1-478

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
CurrentFileIndices Numeric vector containing the indices of all

read files of the denoising image datastore.

See Also
denoisingImageDatastore | partitionByIndex | read | readall

Introduced in R2018a

 readByIndex

1-479

shuffle
Shuffle data in denoisingImageDatastore

Syntax
dnimds2 = shuffle(dnimds)

Description
dnimds2 = shuffle(dnimds) returns a denoisingImageDatastore object
containing a random ordering of the data from denoising image datastore dnimds.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

Output Arguments
dnimds2 — Output datastore
denoisingImageDatastore object

Output datastore, returned as a denoisingImageDatastore object containing
randomly ordered files from dnimds.

See Also
denoisingImageDatastore | read | readByIndex | readall

1 Functions — Alphabetical List

1-480

Introduced in R2018a

 shuffle

1-481

denoisingImageSource
(To be removed) Create denoising image datastore

Note denoisingImageSource will be removed in a future release. Use
denoisingImageDatastore instead. For more information, see Compatibility
Considerations.

Syntax
dnimds = denoisingImageSource(imds)
dnimds = denoisingImageSource(imds,Name,Value)

Description
dnimds = denoisingImageSource(imds) creates a denoising image datastore,
dnimds, that generates pairs of randomly cropped pristine and noisy image patches from
images in image datastore imds.

dnimds = denoisingImageSource(imds,Name,Value) sets properties on page 1-
470 of the denoising image datastore using name-value pairs. You can specify multiple
name-value pairs. Enclose each argument name in quotes.

Examples
Create Denoising Image Datastore Using
denoisingImageSource
Get an image datastore. This datastore contains RGB images.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create a denoisingImageSource object. The image source creates many patches from
each image in the datastore, and adds Gaussian noise to the patches. Set the optional

1 Functions — Alphabetical List

1-482

PatchesPerImage, PatchSize, GaussianNoiseLevel, and ChannelFormat
properties of the denoisingImageSource using name-value pairs.

dnimds = denoisingImageSource(imds,...
 'PatchesPerImage',512,...
 'PatchSize',50,...
 'GaussianNoiseLevel',[0.01 0.1],...
 'ChannelFormat','RGB')

dnimds =
 denoisingImageDatastore with properties:

 PatchesPerImage: 512
 PatchSize: [50 50 3]
 GaussianNoiseLevel: [0.0100 0.1000]
 ChannelFormat: 'rgb'
 MiniBatchSize: 128
 NumObservations: 18944
 DispatchInBackground: 0

Input Arguments
imds — Images with labels for classification problems
ImageDatastore object

Images, specified as an ImageDatastore object with categorical labels. You can store
data in ImageDatastore for only classification problems.

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If
you use a custom function for reading the images, prefetching does not happen.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: denoisingImageSource(imds,'patchSize',48) creates a denoising
image datastore that has a square patch size of 48 pixels.

 denoisingImageSource

1-483

patchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a
scalar or 2-element vector with positive integer values. This argument sets the first two
elements of the PatchSize on page 1-0 property of the returned denoising image
datastore, dnimds.

• When 'patchSize' is a scalar, the patches are square
• When 'patchSize' is a 2-element vector of the form [r c], the first element specifies

the number of rows in the patch, and the second element specifies the number of
columns

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as the comma-separated pair consisting
of 'PatchesPerImage' and a positive integer. This argument sets the
PatchesPerImage on page 1-0 property of the returned denoising image
datastore, dnimds.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

GaussianNoiseLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as
the comma-separated pair consisting of 'GaussianNoiseLevel' and a scalar or 2-
element vector with values in the range [0, 1]. This argument sets the
GaussianNoiseLevel on page 1-0 property of the returned denoising image
datastore, dnimds.

• If GaussianNoiseLevel is a scalar, then the standard deviation of the added zero-
mean Gaussian white noise is identical for all image patches.

• If GaussianNoiseLevel is a 2-element vector, then it specifies a range of standard
deviations [stdmin stdmax]. The standard deviation of the added zero-mean Gaussian
white noise is unique for each image patch, and is randomly sampled from a uniform
distribution with the range [stdmin stdmax].

Data Types: single | double

1 Functions — Alphabetical List

1-484

ChannelFormat — Channel format
'Grayscale' (default) | 'RGB'

Channel format, specified as the comma-separated pair consisting of 'ChannelFormat'
and 'Grayscale' or 'RGB'. This argument sets the ChannelFormat on page 1-0
property of the returned denoising image datastore, dnimds.
Data Types: char

BackgroundExecution — Preprocess training patches in parallel
false (default) | true

Preprocess training patches in parallel, specified as the comma-separated pair consisting
of 'BackgroundExecution' and true or false. This argument sets the
DispatchInBackground on page 1-0 property of the returned denoising image
datastore, dnimds. If BackgroundExecution is true and you have Parallel Computing
Toolbox, then the denoising image datastore asynchronously reads patches, adds noise,
and queues patch pairs.
Data Types: char

Output Arguments
dnimds — Denoising image datastore
denoisingImageDatastore object

Denoising image datastore, returned as an denoisingImageDatastore object.

Compatibility Considerations

denoisingImageSource object is removed

In R2017b, you could create a denoisingImageSource object for training deep learning
networks. Starting in R2018a, the denoisingImageSource object has been removed.
Use a denoisingImageDatastore object instead.

 denoisingImageSource

1-485

A denoisingImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike denoisingImageSource, which could be used for training only,
you can use a denoisingImageDatastore for both training and prediction.

To create a denoisingImageDatastore object, you can use either the
denoisingImageDatastore function (recommended) or the denoisingImageSource
function.

denoisingImageSource function will be removed
Not recommended starting in R2018a

The denoisingImageSource function will be removed in a future release. Create a
denoisingImageDatastore using the denoisingImageDatastore function instead.

To update your code, change instances of the function name denoisingImageSource to
denoisingImageDatastore. You do not need to change the input arguments.

See Also
denoisingImageDatastore

Introduced in R2017b

1 Functions — Alphabetical List

1-486

denoisingNetwork
Get image denoising network

Syntax
net = denoisingNetwork(modelName)

Description
net = denoisingNetwork(modelName) returns a pretrained image denoising deep
neural network specified by modelName.

This function requires that you have Deep Learning Toolbox.

Examples

Get Pretrained Image Denoising Network

Get the pretrained image denoising convolutional neural network, 'DnCNN'.

net = denoisingNetwork('DnCNN')

net =
 SeriesNetwork with properties:

 Layers: [59x1 nnet.cnn.layer.Layer]

See denoiseImage for an example of how to denoise an image using the pretrained
network.

 denoisingNetwork

1-487

Input Arguments
modelName — Name of neural network
'DnCnn'

Name of pretrained denoising deep neural network, specified as the character vector
'DnCnn'. This is the only pretrained denoising network currently available, and it is
trained for grayscale images only.
Data Types: char | string

Output Arguments
net — Denoising deep neural network
SeriesNetwork object

Pretrained denoising deep neural network, returned as a SeriesNetwork object.

References
[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser:

Residual Learning of Deep CNN for Image Denoising." IEEE Transactions on
Image Processing. Vol. 26, Number 7, Feb. 2017, pp. 3142-3155.

See Also
denoiseImage | denoisingImageDatastore | dnCNNLayers

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

1 Functions — Alphabetical List

1-488

dice
Sørensen-Dice similarity coefficient for image segmentation

Syntax
similarity = dice(BW1,BW2)
similarity = dice(L1,L2)
similarity = dice(C1,C2)

Description
similarity = dice(BW1,BW2) computes the Sørensen-Dice similarity coefficient
between binary images BW1 and BW2.

similarity = dice(L1,L2) computes the Dice index for each label in label images L1
and L2.

similarity = dice(C1,C2) computes the Dice index for each category in categorical
images C1 and C2.

Examples

Compute Dice Similarity Coefficient for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the
result.

A = imread('hands1.jpg');
I = rgb2gray(A);
figure
imshow(I)
title('Original Image')

 dice

1-489

Use active contours (snakes) to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read in the ground truth segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the Dice index of the active contours segmentation against the ground truth.

similarity = dice(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW_groundTruth)
title(['Dice Index = ' num2str(similarity)])

1 Functions — Alphabetical List

1-490

Compute Dice Similarity Coefficient for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then
computes the Dice similarity coefficient for each region.

Read an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The
first region classifies the yellow flower. The second region classifies the green stem and
leaves. The last region classifies the brown dirt in two separate patches of the image.
Regions are specified by a 4-element vector, whose elements indicate the x- and y-
coordinate of the upper left corner of the ROI, the width of the ROI, and the height of the
ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));

 dice

1-491

BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

figure
imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed Regions')

1 Functions — Alphabetical List

1-492

 dice

1-493

Segment the image into three regions using geodesic distance-based color segmentation.

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth),'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the Dice similarity index for each segmented region.

similarity = dice(L, L_groundTruth)

1 Functions — Alphabetical List

1-494

similarity = 3×1

 0.9396
 0.7247
 0.9139

The Dice similarity index is noticeably smaller for the second region. This result is
consistent with the visual comparison of the segmentation results, which erroneously
classifies the dirt in the lower right corner of the image as leaves.

Input Arguments
BW1 — First binary image
logical array

First binary image, specified as a logical array of any dimension.
Data Types: logical

BW2 — Second binary image
logical array

Second binary image, specified as a logical array of the same size as BW1.
Data Types: logical

L1 — First label image
array of nonnegative integers

First label image, specified as an array of nonnegative integers, of any dimension.
Data Types: double

L2 — Second label image
array of nonnegative integers

Second label image, specified as an array of nonnegative integers, of the same size as L1.
Data Types: double

C1 — First categorical image
categorical array

 dice

1-495

First categorical image, specified as a categorical array of any dimension.
Data Types: category

C2 — Second categorical image
categorical array

Second categorical image, specified as a categorical array of the same size as C1.
Data Types: category

Output Arguments
similarity — Dice similarity coefficient
numeric scalar | numeric vector

Dice similarity coefficient, returned as a numeric scalar or numeric vector with values in
the range [0, 1]. A similarity of 1 means that the segmentations in the two images are
a perfect match. If the input arrays are:

• binary images, similarity is a scalar.
• label images, similarity is a vector, where the first coefficient is the Dice index for

label 1, the second coefficient is the Dice index for label 2, and so on.
• categorical images, similarity is a vector, where the first coefficient is the Dice

index for the first category, the second coefficient is the Dice index for the second
category, and so on.

Data Types: double

Definitions

Dice Similarity Coefficient
The Dice similarity coefficient of two sets A and B is expressed as:

dice(A,B) = 2 * | intersection(A,B) | / (| A | + | B |)
where |A| represents the cardinal of set A. The Dice index can also be expressed in terms
of true positives (TP), false positives (FP) and false negatives (FN) as:

1 Functions — Alphabetical List

1-496

dice(A,B) = 2 * TP / (2 * TP + FP + FN)

The Dice index is related to the Jaccard index according to:
dice(A,B) = 2 * jaccard(A,B) / (1 + jaccard(A,B))

See Also
bfscore | jaccard

Introduced in R2017b

 dice

1-497

dicomanon
Anonymize DICOM file

Syntax
dicomanon(file_in,file_out)
dicomanon(___ ,'keep',fields)
dicomanon(___ ,'update',attributes)
dicomanon(___ ,Name,Value)

Description
dicomanon(file_in,file_out) removes confidential medical information from the
DICOM file file_in and creates a new file file_out with the modified values. Image
data and other attributes are unmodified.

dicomanon(___ ,'keep',fields) modifies all of the confidential data except for those
listed in fields. This syntax is useful for keeping metadata that does not uniquely
identify the patient but is useful for diagnostic purposes (such as PatientAge and
PatientSex).

Note Keeping certain fields might compromise patient confidentiality.

dicomanon(___ ,'update',attributes) modifies the confidential data and updates
particular confidential data listed in attributes. Use this syntax to preserve the Study/
Series/Image hierarchy or to replace a specific value with a more generic property (such
as removing PatientBirthDate but keeping a computed PatientAge).

dicomanon(___ ,Name,Value) uses name-value pairs to provide additional options to
the parser.

Examples

1 Functions — Alphabetical List

1-498

Remove All Confidential Metadata from DICOM File

Create a version of a DICOM file with all the personal information removed.

dicomanon('US-PAL-8-10x-echo.dcm','US-PAL-anonymized.dcm');

Create a version of a DICOM file with personal information removed, keeping certain
fields that could be useful for training.

dicomanon('US-PAL-8-10x-echo.dcm','US-PAL-anonymized.dcm','keep',...
 {'PatientAge','PatientSex','StudyDescription'})

Anonymize a series of images, keeping the hierarchy.

values.StudyInstanceUID = dicomuid;
values.SeriesInstanceUID = dicomuid;

d = dir('*.dcm');
for p = 1:numel(d)
 dicomanon(d(p).name, sprintf('anon%d.dcm', p), ...
 'update', values)
end

Input Arguments
file_in — Name of DICOM file to read
character vector | string scalar

Name of DICOM file to read, specified as a character vector or string scalar.
Data Types: char | string

file_out — Name of anonymized DICOM file to write
character vector | string scalar

Name of anonymized DICOM file to write, specified as a character vector or string scalar.
Data Types: char | string

fields — Names of fields to preserve
cell array

Names of the fields to preserve, specified as a cell array of field names.

 dicomanon

1-499

attributes — Names of the attributes to preserve
structure

Names of the attributes to preserve, specified as a structure whose fields are attribute
names. The structure values are the attribute values to preserve.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dicomanon('CT-MONO2-16-ankle.dcm','CT-MONO2-16-
ankle_anon.dcm','UseVRHeuristic',false)

WritePrivate — Write nonstandard attributes to the anonymized file
false (default) | true

Write nonstandard attributes to the anonymized file, specified as the comma-separated
pair consisting of 'WritePrivate' and false or true.

When set to true, then dicomanon includes private extensions in the file, which could
compromise patient confidentiality.
Data Types: logical

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When 'UseVRHeuristic' is true (the default), then dicomanon instructs the parser to
use a heuristic to help read certain noncompliant files which switch value representation
(VR) modes incorrectly. A small number of compliant files will not be read correctly.
dicomanon displays a warning if the heuristic is employed. Set 'UseVRHeuristic' to
false to read these compliant files. Compliant files are always written.
Data Types: logical

1 Functions — Alphabetical List

1-500

Tips
• For information about the fields that will be modified or removed, see DICOM

Supplement 55 from https://www.dicomstandard.org/.

See Also
dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Introduced before R2006a

 dicomanon

1-501

https://www.dicomstandard.org/

dicomCollection
Gather details about related series of DICOM files

Syntax
collection = dicomCollection(directory)
collection = dicomCollection(directory,'IncludeSubfolders',TF)
collection = dicomCollection(DICOMDIR)

Description
collection = dicomCollection(directory) gathers details about the DICOM files
contained in directory and returns them in the table collection. The
dicomCollection function aggregates details by DICOM series, using the value of the
SeriesInstanceUID metadata field in each file to determine series membership. A
DICOM series is a logically related set of images from an imaging operation.

collection = dicomCollection(directory,'IncludeSubfolders',TF)
recursively searches for DICOM files below directory when TF is true (the default).
When TF is false, dicomCollection only within directory.

collection = dicomCollection(DICOMDIR) gathers details about the DICOM files
referenced in the DICOM directory file DICOMDIR. A DICOM directory file (DICOMDIR) is
a special DICOM file that serves as a directory to a collection of DICOM files stored on
removable media, such as CD/DVD ROMs.

Examples

Gather Details from DICOM Files in Sample Image Folder

Gather information about the DICOM files in the Image Processing Toolbox sample image
folder.
details = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata'))

1 Functions — Alphabetical List

1-502

details =

 5×14 table

 StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Columns Channels Frames StudyDescription SeriesDescription StudyInstanceUID SeriesInstanceUID Filenames
 ____________________ ______________________ _______________ __________ ________ ____ _______ ________ ______ ________________ _________________ __ __ __

 s1 30-Apr-1993 11:27:24 [30-Apr-1993 11:27:24] "Anonymized" "" "CT" 512 512 1 1 "RT ANKLE" "" "1.2.840.113619.2.1.1.322987881.621.736170080.681" "1.2.840.113619.2.1.2411.1031152382.365.736169244" ["C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm"]
 s2 14-Dec-2013 15:47:31 [14-Dec-2013 15:54:33] "GORBERG MITZI" "F" "MR" 512 512 1 22 "CSP" "AX T2" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.214" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.217" [22×1 string]
 s3 03-Oct-2011 19:18:11 [03-Oct-2011 18:59:02] "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320418845013189618318250681693358291211" "1.3.6.1.4.1.9590.100.1.2.287740981712351622214874344032214809569" ["C:\Temp\matlab\toolbox\images\imdata\knee1.dcm"]
 s4 03-Oct-2011 19:18:11 [03-Oct-2011 19:05:04] "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320498134711034521212730362051554545799" "1.3.6.1.4.1.9590.100.1.2.316302984111738034326701385064023497963" ["C:\Temp\matlab\toolbox\images\imdata\knee2.dcm"]
 s5 30-Jan-1994 11:25:01 [] "Anonymized" "" "US" 430 600 1 10 "Echocardiogram" "PS LAX MR & AI" "999.999.3859744" "999.999.94827453" ["C:\Temp\matlab\toolbox\images\imdata\US-PAL-8-10x-echo.dcm"]

Gather Details about DICOM Files from DICOMDIR File

Gather information about DICOM files in a folder from a DICOMDIR file.
details = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata/DICOMDIR'))

details =

 4×14 table

 StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Columns Channels Frames StudyDescription SeriesDescription StudyInstanceUID SeriesInstanceUID Filenames
 ____________________ ______________ ____________ __________ ________ ____ _______ ________ ______ ________________ _________________ ________________ __

 s1 30-Apr-1993 11:27:24 '' "Anonymized" "" "CT" 512 512 1 1 "RT ANKLE" "" "" "1.2.840.113619.2.1.2411.1031152382.365.736169244" "C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm"
 s2 30-Jan-1994 11:25:01 '' "Anonymized" "" "US" 430 600 1 10 "Echocardiogram" "" "" "999.999.94827453" "C:\Temp\matlab\toolbox\images\imdata\US-PAL-8-10x-echo.dcm"
 s3 03-Oct-2011 19:18:11 '' "" "" "MR" 512 512 1 1 "RIGHT KNEE" "" "" "1.3.6.1.4.1.9590.100.1.2.287740981712351622214874344032214809569" "C:\Temp\matlab\toolbox\images\imdata\knee1.dcm"
 s4 03-Oct-2011 19:18:11 '' "" "" "MR" 512 512 1 1 "RIGHT KNEE" "" "" "1.3.6.1.4.1.9590.100.1.2.316302984111738034326701385064023497963" "C:\Temp\matlab\toolbox\images\imdata\knee2.dcm"

Input Arguments
directory — Folder containing DICOM files
string scalar | character vector

Name of a folder containing DICOM files, specified as a string scalar or character vector.
Example: details = dicomCollection(fullfile(matlabroot,'toolbox/
images/imdata'))

Data Types: char | string

DICOMDIR — DICOM directory file
character vector | string scalar

DICOM directory file, specified as a string scalar or character vector.

 dicomCollection

1-503

A DICOM directory file (DICOMDIR) is a special DICOM file that serves as a directory to a
collection of DICOM files stored on removable media, such as CD/DVD ROMs. When
devices write DICOM files to removable media, they typically write a DICOMDIR file on
the disk to serve as a list of the disk contents.
Example: details = dicomCollection(fullfile(matlabroot,'toolbox/
images/imdata/DICOMDIR'))

Data Types: char | string

Output Arguments
collection — Metadata from DICOM files
table

Metadata from DICOM files, returned as a table. The dicomCollection function
aggregates the information by DICOM series.

See Also
DICOM Browser | dicominfo | dicomread | dicomreadVolume

Introduced in R2017b

1 Functions — Alphabetical List

1-504

dicomdict
Get or set active DICOM data dictionary

Syntax
dictionaryOut = dicomdict('get')
dicomdict('set',dictionaryIn)
dicomdict('factory')

Description
dictionaryOut = dicomdict('get') returns the name of the active Digital Imaging
and Communications in Medicine (DICOM) data dictionary file.

dicomdict('set',dictionaryIn) sets the file specified by input dictionaryIn as
the active DICOM data dictionary. If the file is not found in the specified path, the function
returns an error.

dicomdict('factory') restores the active DICOM data dictionary to its default value.
The default value is a file in the MATLAB path:

fullfile(matlabroot,'toolbox','images','iptformats','dicom-
dict.txt')

Examples

Get and Set Active DICOM Data Dictionary

Find the default active DICOM data dictionary.

dictionaryOut = dicomdict('get')

dictionaryOut =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt'

 dicomdict

1-505

Specify the path to a new file to set as the active DICOM data dictionary.

dictionaryIn = 'dicomdictnew.txt';
dicomdict('set',dictionaryIn)

Check if the active DICOM data dictionary is updated to 'dicomdictnew'.

dictionaryOut1 = dicomdict('get')

dictionaryOut1 =
'C:\TEMP\Bdoc19a_1067994_6688\ib99EA80\25\tp3409b1ca\images-ex49312738\dicomdictnew.txt'

Reset the active DICOM data dictionary to the default value and verify the same.

dicomdict('factory')
dictionaryOut2 = dicomdict('get')

dictionaryOut2 =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt'

Input Arguments
dictionaryIn — DICOM data dictionary file
character vector | string scalar

DICOM data dictionary file of type .txt to be set as active, specified as a character
vector or string scalar.
Data Types: char | string

Output Arguments
dictionaryOut — Active DICOM data dictionary file
fullfile(matlabroot,'toolbox','images','iptformats','dicom-
dict.txt') (default) | character vector | string scalar

Active DICOM data dictionary file of type .txt, returned as a character vector or string
scalar. The default value is:

fullfile(matlabroot,'toolbox','images','iptformats','dicom-
dict.txt')

1 Functions — Alphabetical List

1-506

See Also
dicomanon | dicomdisp | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Introduced before R2006a

 dicomdict

1-507

dicomdisp
Display DICOM file structure

Syntax
dicomdisp(filename)
dicomdisp(___ ,Name,Value)

Description
dicomdisp(filename) reads the metadata from the compliant DICOM file specified in
the string scalar or character vector filename and displays the metadata at the
command prompt. dicomdisp can be helpful when debugging issues with DICOM files.

dicomdisp(___ ,Name,Value) reads the metadata using name-value pairs to control
aspects of the operation.

Examples

Display Metadata from DICOM File

Display the metadata in a DICOM file.

dicomdisp('CT-MONO2-16-ankle.dcm')

File: C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm (525436 bytes)
Read on an IEEE little-endian machine.
File begins with group 0002 metadata at byte 132.
Transfer syntax: 1.2.840.10008.1.2 (Implicit VR Little Endian).
DICOM Information object: 1.2.840.10008.5.1.4.1.1.7 (Secondary Capture Image Storage).

Location Level Tag VR Size Name Data
--
0000132 0 (0002,0000) UL 4 bytes - FileMetaInformationGroupLength *Binary*
0000144 0 (0002,0001) OB 2 bytes - FileMetaInformationVersion *Binary*
0000158 0 (0002,0002) UI 26 bytes - MediaStorageSOPClassUID [1.2.840.10008.5.1.4.1.1.7]
0000192 0 (0002,0003) UI 50 bytes - MediaStorageSOPInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.1.736169244]

1 Functions — Alphabetical List

1-508

0000250 0 (0002,0010) UI 18 bytes - TransferSyntaxUID [1.2.840.10008.1.2]
0000276 0 (0002,0012) UI 18 bytes - ImplementationClassUID [1.2.840.113619.6.5]
0000302 0 (0002,0013) SH 6 bytes - ImplementationVersionName [1_2_5]
0000316 0 (0002,0016) AE 12 bytes - SourceApplicationEntityTitle [CTN_STORAGE]
0000336 0 (0008,0000) UL 4 bytes - IdentifyingGroupLength *Binary*
0000348 0 (0008,0008) CS 20 bytes - ImageType [DERIVED\SECONDARY\3D]
0000376 0 (0008,0016) UI 26 bytes - SOPClassUID [1.2.840.10008.5.1.4.1.1.7]
0000410 0 (0008,0018) UI 50 bytes - SOPInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.1.736169244]
0000468 0 (0008,0020) DA 10 bytes - StudyDate [1993.04.30]
0000486 0 (0008,0021) DA 10 bytes - SeriesDate [1993.04.30]
0000504 0 (0008,0023) DA 10 bytes - ContentDate [1993.04.30]
0000522 0 (0008,0030) TM 8 bytes - StudyTime [11:27:24]
0000538 0 (0008,0031) TM 8 bytes - SeriesTime [11:27:24]
0000554 0 (0008,0033) TM 8 bytes - ContentTime [11:27:24]
0000570 0 (0008,0060) CS 2 bytes - Modality [CT]
0000580 0 (0008,0064) CS 4 bytes - ConversionType [WSD]
0000592 0 (0008,0070) LO 18 bytes - Manufacturer [GE MEDICAL SYSTEMS]
0000618 0 (0008,0080) LO 18 bytes - InstitutionName [JFK IMAGING CENTER]
0000644 0 (0008,0090) PN 10 bytes - ReferringPhysicianName [Anonymized]
0000662 0 (0008,1010) SH 8 bytes - StationName [CT01OC0]
0000678 0 (0008,1030) LO 8 bytes - StudyDescription [RT ANKLE]
0000694 0 (0008,1060) PN 10 bytes - PhysicianReadingStudy [Anonymized]
0000712 0 (0008,1070) PN 10 bytes - OperatorName [Anonymized]
0000730 0 (0008,1090) LO 12 bytes - ManufacturerModelName [GENESIS_ZEUS]
0000750 0 (0010,0000) UL 4 bytes - PatientGroupLength *Binary*
0000762 0 (0010,0010) PN 10 bytes - PatientName [Anonymized]
0000780 0 (0018,0000) UL 4 bytes - AcquisitionGroupLength *Binary*
0000792 0 (0018,1020) LO 2 bytes - SoftwareVersion [03]
0000802 0 (0020,0000) UL 4 bytes - RelationshipGroupLength *Binary*
0000814 0 (0020,000D) UI 48 bytes - StudyInstanceUID [1.2.840.113619.2.1.1.322987881.621.736170080.681]
0000870 0 (0020,000E) UI 48 bytes - SeriesInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.736169244]
0000926 0 (0020,0011) IS 4 bytes - SeriesNumber [365]
0000938 0 (0020,0013) IS 2 bytes - InstanceNumber [1]
0000948 0 (0028,0000) UL 4 bytes - ImagePresentationGroupLength *Binary*
0000960 0 (0028,0002) US 2 bytes - SamplesPerPixel *Binary*
0000970 0 (0028,0004) CS 12 bytes - PhotometricInterpretation [MONOCHROME2]
0000990 0 (0028,0010) US 2 bytes - Rows *Binary*
0001000 0 (0028,0011) US 2 bytes - Columns *Binary*
0001010 0 (0028,0100) US 2 bytes - BitsAllocated *Binary*
0001020 0 (0028,0101) US 2 bytes - BitsStored *Binary*
0001030 0 (0028,0102) US 2 bytes - HighBit *Binary*
0001040 0 (0028,0103) US 2 bytes - PixelRepresentation *Binary*
0001050 0 (0028,0106) US 2 bytes - SmallestImagePixelValue *Binary*
0001060 0 (0028,0120) US 2 bytes - PixelPaddingValue *Binary*
0001070 0 (0028,1050) DS 4 bytes - WindowCenter [1024]
0001082 0 (0028,1051) DS 4 bytes - WindowWidth [4095]
0001094 0 (0028,1052) DS 6 bytes - RescaleIntercept [-1024]
0001108 0 (0028,1053) DS 2 bytes - RescaleSlope [1]
0001118 0 (0028,1054) LO 2 bytes - RescaleType [US]

 dicomdisp

1-509

0001128 0 (7FE0,0000) UL 4 bytes - PixelDataGroupLength *Binary*
0001140 0 (7FE0,0010) OW 524288 bytes - PixelData []

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a string scalar or character vector .
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dicomdisp('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

dictionary — Name of DICOM data dictionary
dicom-dict.txt (default) | string scalar | character vector

Name of DICOM data dictionary, specified as a string scalar or character vector. When
specified, dicomdisp uses the data dictionary to read the DICOM file. The file must be on
the MATLAB search path.
Data Types: char | string

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the Boolean value true or false. When set to true, dicomdisp uses a
heuristic to help read certain noncompliant DICOM files which switch value
representation (VR) modes incorrectly. When dicomdisp uses this heuristic, it displays a
warning. When set to true (the default), dicomdisp might not read some compliant
DICOM files correctly. To read these compliant files, set UseVRHeuristic to false.
Data Types: logical

1 Functions — Alphabetical List

1-510

See Also
dicomanon | dicomdict | dicominfo | dicomlookup | dicomread | dicomuid |
dicomwrite

Topics
“Explicit Versus Implicit VR Attributes”

Introduced in R2015a

 dicomdisp

1-511

dicominfo
Read metadata from DICOM message

Syntax
info = dicominfo(filename)
info = dicominfo(filename,'dictionary',D)
info = dicominfo(___ ,Name,Value)

Description
info = dicominfo(filename) reads the metadata from the compliant Digital Imaging
and Communications in Medicine (DICOM) file, filename.

info = dicominfo(filename,'dictionary',D) reads the DICOM message by using
the data dictionary file, D.

info = dicominfo(___ ,Name,Value) provides additional options to the parser using
Name,Value pairs. You can specify multiple name-value pairs.

Examples

Read Metadata from DICOM Message

Read metadata from a DICOM message.

info = dicominfo('CT-MONO2-16-ankle.dcm')

info =

 struct with fields:

 Filename: 'C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm'
 FileModDate: '18-Dec-2000 12:06:43'

1 Functions — Alphabetical List

1-512

 FileSize: 525436
 Format: 'DICOM'
 FormatVersion: 3
 Width: 512
 Height: 512
 BitDepth: 16
 ColorType: 'grayscale'
 FileMetaInformationGroupLength: 192
 FileMetaInformationVersion: [2×1 uint8]
 MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
 MediaStorageSOPInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.1.736169244'
 TransferSyntaxUID: '1.2.840.10008.1.2'
 ImplementationClassUID: '1.2.840.113619.6.5'
 ImplementationVersionName: '1_2_5'
 SourceApplicationEntityTitle: 'CTN_STORAGE'
 IdentifyingGroupLength: 414
 ImageType: 'DERIVED\SECONDARY\3D'
 SOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
 SOPInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.1.736169244'
 StudyDate: '1993.04.30'
 SeriesDate: '1993.04.30'
 ContentDate: '1993.04.30'
 StudyTime: '11:27:24'
 SeriesTime: '11:27:24'
 ContentTime: '11:27:24'
 Modality: 'CT'
 ConversionType: 'WSD'
 Manufacturer: 'GE MEDICAL SYSTEMS'
 InstitutionName: 'JFK IMAGING CENTER'
 ReferringPhysicianName: [1×1 struct]
 StationName: 'CT01OC0'
 StudyDescription: 'RT ANKLE'
 PhysicianReadingStudy: [1×1 struct]
 OperatorName: [1×1 struct]
 ManufacturerModelName: 'GENESIS_ZEUS'
 PatientGroupLength: 18
 PatientName: [1×1 struct]
 AcquisitionGroupLength: 10
 SoftwareVersion: '03'
 RelationshipGroupLength: 134
 StudyInstanceUID: '1.2.840.113619.2.1.1.322987881.621.736170080.681'
 SeriesInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.736169244'
 SeriesNumber: 365
 InstanceNumber: 1

 dicominfo

1-513

 ImagePresentationGroupLength: 168
 SamplesPerPixel: 1
 PhotometricInterpretation: 'MONOCHROME2'
 Rows: 512
 Columns: 512
 BitsAllocated: 16
 BitsStored: 16
 HighBit: 15
 PixelRepresentation: 1
 SmallestImagePixelValue: 0
 PixelPaddingValue: 0
 WindowCenter: 1024
 WindowWidth: 4095
 RescaleIntercept: -1024
 RescaleSlope: 1
 RescaleType: 'US'
 PixelDataGroupLength: 524296

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a character vector or string scalar.
Data Types: char | string

D — Data dictionary file
'dicom-dict.mat' | character vector | string scalar

Data dictionary file, specified as a character vector or string scalar. The file in D must be
on the MATLAB search path. The default file is dicom-dict.mat.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Functions — Alphabetical List

1-514

Example: dicominfo('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When set to true (the default), dicomread uses a heuristic to help read certain
noncompliant DICOM files that switch VR modes incorrectly. dicomread displays a
warning if the heuristic is used. A small number of compliant files will not be read
correctly. Set UseVRHeuristic to false to read these compliant files.
Data Types: logical

UseDictionaryVR — Conform data types to data dictionary
false (default) | true

Conform data types in info to the data dictionary, regardless of what information is
present in the file. The default value is false, which uses the file's VR codes even if they
differ from the data dictionary. Most of the time it is unnecessary to set this field, since
file contents and the data dictionary almost always agree. When UseDictionaryVR is
false (the default), dicominfo issues a warning when they do not agree. Specify
UseDictionaryVR as true when the warning is issued and providing info to
dicomwrite causes errors.
Data Types: logical

Output Arguments
info — DICOM metadata
struct

DICOM metadata, returned as a struct.

See Also
dicomanon | dicomdict | dicomdisp | dicomlookup | dicomread | dicomuid |
dicomwrite

 dicominfo

1-515

Introduced before R2006a

1 Functions — Alphabetical List

1-516

dicomlookup
Find attribute in DICOM data dictionary

Syntax
nameOut = dicomlookup(group,element)
[groupOut,elementOut] = dicomlookup(name)

Description
nameOut = dicomlookup(group,element) looks into the current DICOM data
dictionary for the attribute with the specified group and element tags. dicomlookup
returns the name of the attribute.

[groupOut,elementOut] = dicomlookup(name) looks into the current DICOM data
dictionary for the attribute specified by name and returns the group and element tags
associated with the attribute.

Examples

Find Names of DICOM attributes Using Their Tags

Find the names of DICOM attributes using their tags.

name1 = dicomlookup('7FE0', '0010')

name1 =
'PixelData'

name2 = dicomlookup(40, 4)

name2 =
'PhotometricInterpretation'

Look up a DICOM attribute's tag (GROUP and ELEMENT) using its name.

 dicomlookup

1-517

[group, element] = dicomlookup('TransferSyntaxUID')

group = 2

element = 16

Examine the metadata of a DICOM file. This returns the same value even if the data
dictionary changes.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
metadata.(dicomlookup('0028', '0004'))

ans =
'MONOCHROME2'

Input Arguments
group — DICOM group tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or
string scalar that contains a hexadecimal value.
Example: 40
Example: '7FE0' or "7FE0"
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

element — DICOM element tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or
string scalar that contains a hexadecimal value. element and group must represent the
same type of value:

• If group is a positive integer, then element is also a positive integer.

If group is a character vector or string scalar that contains a hexadecimal value, then
element is either a character vector or a string scalar that contains a hexadecimal
value.

1 Functions — Alphabetical List

1-518

Example: 4
Example: '0010' or "0010"
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

name — DICOM attribute name
character vector | string scalar

DICOM attribute name, specified as a character vector or string scalar.
Example: 'PhotometricInterpretation' or "PhotometricInterpretation"
Data Types: char | string

Output Arguments
groupOut — Returned DICOM group tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.
Data Types: double

elementOut — Returned DICOM element tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.
Data Types: double

nameOut — Returned DICOM attribute name
character vector

Returned DICOM attribute name, returned as a character vector.
Data Types: char

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomread | dicomuid |
dicomwrite

 dicomlookup

1-519

Introduced in R2006b

1 Functions — Alphabetical List

1-520

dicomread
Read DICOM image

Syntax
X = dicomread(filename)
X = dicomread(info)
X = dicomread(___ ,'frames',f)
X = dicomread(___ ,Name,Value)

[X,cmap] = dicomread(___)
[X,cmap,alpha] = dicomread(___)
[X,cmap,alpha,overlays] = dicomread(___)

Description
X = dicomread(filename) reads the image data from the compliant Digital Imaging
and Communications in Medicine (DICOM) file filename. To read a group of DICOM files
that contain a series of images that comprise a volume, use dicomreadVolume.

X = dicomread(info) reads DICOM image data from the message referenced in the
DICOM metadata structure info.

X = dicomread(___ ,'frames',f) reads only the frames specified by f from the
image.

X = dicomread(___ ,Name,Value) reads DICOM image data using Name,Value
pairs to configure the parser.

[X,cmap] = dicomread(___) also returns the colormap, cmap.

[X,cmap,alpha] = dicomread(___) also returns alpha, an alpha channel matrix for
X.

[X,cmap,alpha,overlays] = dicomread(___) also returns any overlays from the
DICOM file.

 dicomread

1-521

Examples

Read DICOM Files

Read indexed image from DICOM file and display it using montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map, 'Size', [2 5]);

Read image from DICOM file and display it using imshow.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
figure
imshow(Y,[]);

1 Functions — Alphabetical List

1-522

 dicomread

1-523

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a character vector or string scalar.
Data Types: char | string

info — DICOM metadata
struct

DICOM metadata, specified as a structure. The info structure is produced by the
dicominfo function.

f — Frames to read
'all' (default) | integer | vector of integers

Frames to read, specified as an integer scalar, a vector of integers, or 'all'. When f is
numeric, dicomread reads only the specified frame numbers from the image. By default,
dicomread reads all frames of the DICOM image.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: dicomread('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes
incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly,
specified as the comma-separated pair consisting of 'UseVRHeuristic' and true or
false.

When set to true (the default), dicomread uses a heuristic to help read certain
noncompliant DICOM files that switch VR modes incorrectly. dicomread displays a

1 Functions — Alphabetical List

1-524

warning if the heuristic is used. A small number of compliant files will not be read
correctly. Set UseVRHeuristic to false to read these compliant files.
Data Types: logical

Output Arguments
X — DICOM image
m-byn matrix | m-byn-by-3 array | 4-D array

DICOM image, returned as one of the following.

• An m-by-n matrix representing a single-frame grayscale image or an indexed image
• An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
• A 4-D array representing a multiframe image.

Data Types: int8 | int16 | uint8 | uint16

cmap — Color map
c-by-3 matrix | []

Color map associated with image X.

• If X is an indexed image, then cmap is returned as c-by-3 matrix. There are c colors in
the color map, each represented by a red, green, and blue pixel value.

• If X is a grayscale or true-color image, then cmap is empty ([]).

Data Types: double

alpha — Alpha channel matrix
m-byn matrix of nonnegative integers | 4-D array of nonnegative integers

Alpha channel matrix for image X, returned as an array of nonnegative integers. The
values of alpha are 0 if the pixel is opaque; otherwise they are row indices into cmap.
The RGB value in cmap should be substituted for the value in X to use alpha. alpha has
the same height and width as X and is 4-D for a multiframe image. alpha has the same
data type as X.
Data Types: int8 | int16 | uint8 | uint16

 dicomread

1-525

overlays — Overlays
binary m-byn matrix | binary 4-D array | []

Overlays from the DICOM file. Each overlay is a 1-bit black and white image with the
same height and width as X. If multiple overlays are present in the file, then overlays is
a 4-D multiframe image. If no overlays are in the file, then overlays is empty ([]).
Data Types: logical

Tips
• This function reads imagery from files with one of these pixel formats:

• Little-endian, implicit VR, uncompressed
• Little-endian, explicit VR, uncompressed
• Big-endian, explicit VR, uncompressed
• JPEG (lossy or lossless)
• JPEG2000 (lossy or lossless)
• Run-length Encoding (RLE)
• GE implicit VR, LE with uncompressed BE pixels (1.2.840.113619.5.2)

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup |
dicomreadVolume | dicomuid | dicomwrite

Introduced before R2006a

1 Functions — Alphabetical List

1-526

dicomreadVolume
Construct volume from directory of DICOM images

Syntax
[V,spatial,dim] = dicomreadVolume(source)
[V,spatial,dim] = dicomreadVolume(sourcetable)
[V,spatial,dim] = dicomreadVolume(sourcetable,rowname)

Description
[V,spatial,dim] = dicomreadVolume(source) loads the 4-D DICOM volume V
from source, which can be one of the following:

• Name of a folder containing DICOM files
• String array of filenames comprising the volume
• Cell array of character vectors containing filenames

spatial is a structure describing the location, resolution, and orientation of slices in the
volume. dim specifies which real-world dimension (X = 1, Y = 2, Z = 3) has the largest
amount of offset from the previous slice.

dicomreadVolume is useful when working with DICOM volumes because it reads the
volumetric image data from each DICOM files, identifies the correct ordering of the
images, and constructs 4-D volume from the data.

[V,spatial,dim] = dicomreadVolume(sourcetable) loads the volume from the
sourcetable, which is a table returned by dicomCollection. The sourcetable
argument must contain only one row.

[V,spatial,dim] = dicomreadVolume(sourcetable,rowname) loads the volume
with the specified rowname from the multirow table sourcetable returned by
dicomCollection. Use this syntax when sourcetable contains multiple rows.

 dicomreadVolume

1-527

Examples

Read Volume Data from DICOM Files

Read volume data from a sample folder of DICOM files.

[V,s,d] = dicomreadVolume(fullfile(matlabroot,'toolbox/images/imdata/dog'));

Input Arguments
source — Volume data folder or files
string | character vector | string array | cell array of character vectors

Volume data folder or files, specified as a string scalar, string array, character vector, or
cell array of character vectors.
Data Types: char | string | cell

sourcetable — Collection of DICOM file metadata
table

Collection of DICOM file metadata, specified as a table returned by dicomCollection.
Data Types: table

rowname — Name of table row to load
string | character vector

Name of table row to load, specified as a string scalar or character vector. The row is one
of the rows in the multirow table returned by dicomCollection.
Data Types: char | string

Output Arguments
V — 4-D DICOM volume
numeric array

4-D DICOM volume, returned as a numeric array.

1 Functions — Alphabetical List

1-528

The dimensions of V are [rows,columns,samples,slices] where samples is the
number of color channels per voxel. For example, grayscale volumes have one sample,
and RGB volumes have three samples. Use the squeeze function to remove any singleton
dimensions, such as when samples is 1.

spatial — Location, resolution, and orientation
structure

Location, resolution, and orientation of slices in the volume, specified as a structure with
the following fields. For more information, see part 3 of the DICOM standard, section
C.7.6.2.

Spatial Structure

Fields Description
PatientPositions (x,y,z) triplet of the first pixel in each slice,

measured in millimeters from the origin of
the scanner’s coordinate system

PixelSpacings Distance between neighboring rows and
columns within each slice, in millimeters

PatientOrientations Pair of direction cosine triplets of the rows
and columns for each slice of the image

 dicomreadVolume

1-529

dim — Dimension with largest offset from the previous slice
1 | 2 | 3

Dimension with largest offset from the previous slice, returned as a numeric scalar 1, 2,
or 3, where X = 1, Y = 2, and Z = 3.

See Also
DICOM Browser | dicomCollection | dicominfo | dicomread

Introduced in R2017b

1 Functions — Alphabetical List

1-530

dicomuid
Generate DICOM globally unique identifier

Syntax
uid = dicomuid

Description
uid = dicomuid returns a new DICOM globally unique identifieruid. The function
generates a new value each time it is called. Therefore, two calls to dicomuid always
return different values.

Examples

Generate DICOM Globally Unique Identifier

uid = dicomuid;

uid =

 '1.3.6.1.4.1.9590.100.1.2.175741451111074450825785263691655840705'

Output Arguments
uid — DICOM globally unique identifier
character vector

DICOM globally unique identifier, returned as a character vector.
Data Types: char

 dicomuid

1-531

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread |
dicomwrite

Introduced before R2006a

1 Functions — Alphabetical List

1-532

dicomwrite
Write images as DICOM files

Syntax
dicomwrite(X,filename)
dicomwrite(X,cmap,filename)
dicomwrite(___ ,meta_struct)
dicomwrite(___ ,info)
dicomwrite(___ ,'ObjectType',IOD)
dicomwrite(___ ,'SOPClassUID',UID)
dicomwrite(___ ,Name,Value)
status = dicomwrite(___)

Description
dicomwrite(X,filename) writes the binary, grayscale, or truecolor image X to the file
filename, where filename specifies the name of the Digital Imaging and
Communications in Medicine (DICOM) file to create.

dicomwrite(X,cmap,filename) writes the indexed image X with colormap cmap.

dicomwrite(___ ,meta_struct) specifies optional metadata or file options in
structure meta_struct. The names of fields in meta_struct must be the names of
DICOM file attributes or options. The value of a field is the value you want to assign to the
attribute or option.

dicomwrite(___ ,info) specifies metadata in the metadata structure info, which is
produced by the dicominfo function.

dicomwrite(___ ,'ObjectType',IOD) writes a file containing the necessary
metadata for a particular type of DICOM Information Object (IOD). For the supported
IODs, dicomwrite verifies that all required metadata attributes are present, creates
missing attributes if necessary, and specifies default values where possible. Using these
supported IODs is the best way to ensure that the files you create conform to the DICOM
specification. For more information, see Tips on page 1-539.

 dicomwrite

1-533

dicomwrite(___ ,'SOPClassUID',UID) writes a file containing the necessary
metadata for a particular type IOD, specified using a DICOM Unique Identifier (UID).

dicomwrite(___ ,Name,Value) writes to a DICOM file using Name,Value pairs to
affect how the file is written. You can specify multiple name-value pairs.

You can also use Name,Value pairs to specify optional metadata to write to the DICOM
file. To find a list of the DICOM attributes that you can specify, see the data dictionary file,
dicom-dict.txt, included with the Image Processing Toolbox software. Enclose each
attribute name in quotes.

status = dicomwrite(___) returns information about the metadata and the
descriptions used to generate the DICOM file. This syntax can be useful when you specify
an info structure to the dicomwrite function.

Examples

Write Data to DICOM File

Read a CT image from the sample DICOM file included with the toolbox.

X = dicomread('CT-MONO2-16-ankle.dcm');

Write the CT image to a file, creating a secondary capture image.

dicomwrite(X, 'sc_file.dcm');

Write the CT image, X, to a DICOM file along with its metadata. Use the dicominfo
function to retrieve metadata from a DICOM file.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
dicomwrite(X, 'ct_file.dcm', metadata);

Copy all metadata from one file to another. When you set the 'CreateMode' parameter to
'copy', dicomwrite does not verify the metadata written to the file.

dicomwrite(X, 'ct_copy.dcm', metadata, 'CreateMode', 'copy');

1 Functions — Alphabetical List

1-534

Input Arguments
X — DICOM image
m-byn matrix | m-byn-by-3 array | 4-D array

DICOM image, specified as one of the following.

• An m-by-n matrix representing a single-frame grayscale image or an indexed image
• An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
• A 4-D array representing a multiframe image.

Data Types: int8 | int16 | uint8 | uint16

cmap — Color map
c-by-3 matrix | []

Color map associated with indexed image X, specified as c-by-3 matrix. There are c colors
in the color map, each represented by a red, green, and blue pixel value.
Data Types: double

filename — Name of DICOM file
character vector | string scalar

Name of DICOM file to write to, specified as a specified as a character vector or string
scalar.
Data Types: char | string

meta_struct — Optional metadata or file options
struct

Optional metadata or file options, specified as a struct. The names of fields in
meta_struct must be the names of DICOM file attributes or options. The value of a field
is the value you want to assign to the attribute or option.

info — Metadata produced by dicominfo function
struct

Metadata produced by dicominfo function, specified as a structure.

 dicomwrite

1-535

IOD — DICOM Information Object
'Secondary Capture Image Storage' (default) | 'CT Image Storage' | 'MR
Image Storage'

DICOM Information Object, specified as 'Secondary Capture Image Storage', 'CT
Image Storage', or 'MR Image Storage'.
Data Types: char | string

UID — DICOM Unique Identifier
character vector | string scalar

DICOM Unique Identifier corresponding to an IOD, specified as a character vector or
string scalar.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'CompressionMode','JPEG lossless'

CompressionMode — Compression mode
'None' (default) | 'JPEG lossless' | 'JPEG lossy' | ...

Compression mode to use when storing the image, specified as the comma-separated pair
consisting of 'CompressionMode' and one of the following.

• 'None'
• 'JPEG lossless'
• 'JPEG lossy'
• 'JPEG2000 lossy'
• 'JPEG2000 lossless'
• 'RLE'

CreateMode — Method used for creating data
'Create' (default) | 'Copy'

1 Functions — Alphabetical List

1-536

Method used for creating data to put in the new file, specified as the comma-separated
pair consisting of 'CreateMode' and one of the following.

• 'Create' — Verify input values and generate missing data values.
• 'Copy' — Copy all values from the input and do not generate missing values.

For help selecting a creation method, see Tips on page 1-539.

Dictionary — Name of DICOM data dictionary
character vector | string scalar

Name of DICOM data dictionary, specified as the comma-separated pair consisting of
'Dictionary' and a character vector or string scalar. The default file is dicom-
dict.mat.

Endian — Byte ordering
'Little' (default) | 'Big'

Byte ordering of the file, specified as the comma-separated pair consisting of 'Endian'
and 'Little' or 'Big'.

Note If VR is set to 'Explicit', then Endian must be 'Big'. dicomwrite ignores this
value if CompressionMode or TransferSyntax is set.

MultiframeSingleFile — Write multiframe image to one file
true (default) | false

Write multiframe image to one file, specified as the comma-separated pair consisting of
'MultiframeSingleFile' and true or false. When true, one file is created
regardless of how many frames X contains. When false, one file is written for each
frame in the image.
Data Types: logical

TransferSyntax — Transfer syntax
character vector | string scalar

Transfer syntax, specified as the comma-separated pair consisting of 'TransferSyntax'
and a character vector or string scalar. TransferSyntax is a UID that encodes values
for the Endian, VR, and CompressionMode options.

 dicomwrite

1-537

Note If you specify a transfer syntax, then dicomwrite ignores any values specified for
the Endian, VR, and CompressionMode options.

UseMetadataBitDepths — Preserve metadata values
false (default) | true

Preserve the metadata values 'BitStored', 'BitsAllocated', and'HighBit',
specified as the comma-separated pair consisting of 'UseMetadataBitDepths' and
false or true. When true, dicomwrite preserves existing values. When false
(default), dicomwrite computes these values based on the datatype of the pixel data.
When CreateMode is 'Create', dicomwrite ignores this field.
Data Types: logical

VR — Write two-letter value representation (VR) code to file
'implicit' (default) | 'explicit'

Write two-letter value representation (VR) code to file, specified as the comma-separated
pair consisting of 'VR' and one of the following.

• 'implicit' — Infer from data dictionary.
• 'explicit' — Write VR to file.

Note If you specify the Endian value as 'Big', then you must specify VR as
'explicit'.

WritePrivate — Write private data to file
false (default) | true

Write private data to file, specified as the comma-separated pair consisting of
'WritePrivate' and false or true.
Data Types: logical

Output Arguments
status — Status of attributes
struct | []

1 Functions — Alphabetical List

1-538

Status of attributes, returned as a structure. status contains information about the
metadata and the descriptions used to generate the DICOM file. If no metadata was
specified, dicomwrite returns an empty matrix ([]).

The status structure contains these fields.

Field Description
'BadAttribute' The attribute's internal description is bad. It might be

missing from the data dictionary or have incorrect data in
its description.

'MissingCondition' The attribute is conditional but no condition has been
provided for when to use it.

'MissingData' No data was provided for an attribute that must appear in
the file.

'SuspectAttribute' Data in the attribute does not match a list of enumerated
values in the DICOM specification.

Tips
• The DICOM format specification lists several Information Object Definitions (IODs)

that can be created. These IODs correspond to images and metadata produced by
different real-world modalities (for example, MR, X-ray, Ultrasound, etc.). For each
type of IOD, the DICOM specification defines the set of metadata that must be present
and possible values for other metadata.

• dicomwrite fully implements a limited number of IODs. For these IODs,
dicomwrite verifies that all required metadata attributes are present, creates
missing attributes if necessary, and specifies default values where possible. Using
these supported IODs is the best way to ensure that the files you create conform to
the DICOM specification. This is dicomwrite default behavior and corresponds to
the CreateMode option value of 'Create'.

• To write DICOM files for IODs that dicomwrite doesn't implement, use the
'Copy' value for the CreateMode option. In this mode, dicomwrite writes the
image data to a file including the metadata that you specify as a parameter, shown
above in the info syntax. The purpose of this option is to take metadata from an
existing file of the same modality or IOD and use it to create a new DICOM file with
different image pixel data.

 dicomwrite

1-539

Note Because dicomwrite copies metadata to the file without verification in
'Copy' mode, it is possible to create a DICOM file that does not conform to the
DICOM standard. For example, the file may be missing required metadata, contain
superfluous metadata, or the metadata may no longer correspond to the modality
settings used to generate the original image. When using 'Copy' mode, make sure
that the metadata you use is from the same modality and IOD. If the copy you make
is unrelated to the original image, use dicomuid to create new unique identifiers
for series and study metadata. See the IOD descriptions in Part 3 of the DICOM
specification for more information on appropriate IOD values.

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread |
dicomuid

Introduced before R2006a

1 Functions — Alphabetical List

1-540

displayChart
Display Imatest® eSFR chart with overlaid regions of interest

Syntax
displayChart(chart)
displayChart(chart,Name,Value)

Description
displayChart(chart) displays an Imatest® eSFR chart with overlaid rectangles
indicating the slanted edge, gray patch, and color patch ROIs.

displayChart(chart,Name,Value) displays an eSFR chart with additional
parameters controlling aspects of the chart display.

Examples

Display Color Patch ROIs on an eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object that stores information about the test chart.

chart = esfrChart(I);

Display only the color patch ROIs. To accomplish this, turn off the display of slanted edge
ROIs, gray patch ROIs, and registration points.

displayChart(chart,'displayEdgeROIs',false,'displayGrayROIs',false,'displayRegistrationPoints',false);

 displayChart

1-541

https://www.imatest.com/mathworks/esfr/

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Functions — Alphabetical List

1-542

Example: displayChart(myChart,'displayEdgeROIs',false) turns off the overlay
of slanted edge ROIs.

displayEdgeROIs — Display slanted edge ROIs
true (default) | false

Display slanted edge ROIs, specified as the comma-separated pair consisting of
'displayEdgeROIs' and true or false. When displayEdgeROIs is true, the 60
slanted-edge bounding boxes are overlaid on the image in pale yellow.
Data Types: logical

displayGrayROIs — Display gray patch ROIs
true (default) | false

Display gray patch ROIs, specified as the comma-separated pair consisting of
'displayGrayROIs' and true or false. When displayGrayROIs is true, the 20
gray patch bounding boxes are overlaid on the image in blue.
Data Types: logical

displayColorROIs — Display color patch ROIs
true (default) | false

Display color patch ROIs, specified as the comma-separated pair consisting of
'displayColorROIs' and true or false. When displayColorROIs is true, the 16
color patch bounding boxes are overlaid on the image in dark yellow.
Data Types: logical

displayRegistrationPoints — Display registration points
true (default) | false

Display registration points, specified as the comma-separated pair consisting of
'displayRegistrationPoints' and true or false. When
displayRegistrationPoints is true, the four registration points are indicated with a
red diamond overlay.
Data Types: logical

Parent — Axes handle of displayed image object
axes handle

 displayChart

1-543

Axes handle of the displayed image object, specified as the comma-separated pair
consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by displayChart.

See Also
Functions
measureChromaticAberration | measureColor | measureIlluminant |
measureNoise | measureSharpness

Objects
esfrChart

Introduced in R2017b

1 Functions — Alphabetical List

1-544

displayColorPatch
Display visual color reproduction as color patches

Syntax
displayColorPatch(colorTable)
displayColorPatch(colorTable,Name,Value)

Description
displayColorPatch(colorTable) displays measured and reference colors,
colorTable, for color patch regions of interest (ROIs) in a test chart. The measured
color values are displayed as squares surrounded by a thick boundary of the
corresponding reference color.

displayColorPatch(colorTable,Name,Value) displays measured color values with
additional parameters to control aspects of the display.

Examples

Display Color Patch Diagram from Color Accuracy Measurements

This example shows how to display the color patch diagram from measurements of color
accuracy on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 16 color patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

 displayColorPatch

1-545

http://www.imatest.com/mathworks/esfr

Measure the color in all color patch ROIs.

colorTable = measureColor(chart);

Display the color accuracy measurements without the ROI index overlay. Each square
color patch is the measured color, and the thick surrounding border is the reference color
for that ROI. The color accuracy measurement is displayed as Delta_E, the Euclidean
distance between measured and reference colors in CIE 1976 L*a*b* color space. More
accurate colors have a smaller Delta_E.

displayColorPatch(colorTable,'displayROIIndex',false)

1 Functions — Alphabetical List

1-546

 displayColorPatch

1-547

Input Arguments
colorTable — Color values
color table

Color values in each color patch, specified as an m-by-8 color table, where m is the
number of patches. The eight columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 16]. The indices match the ROI numbers displayed by
displayChart.

Measured_R Mean value of red channel pixels in an ROI. Measured_R is a
scalar of the same data type as chart.Image, which can be of
type single, double, uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a
scalar of the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a
scalar of the same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a
scalar of type double.

Reference_a Reference a* value corresponding to the ROI. Reference_a is a
scalar of type double.

Reference_b Reference b* value corresponding to the ROI. Reference_b is a
scalar of type double.

Delta_E Euclidean color distance between the measured and reference
color values, as outlined in CIE 1976.

To obtain a color table, use the measureColor function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Functions — Alphabetical List

1-548

Example: displayColorPatch(myColorTable,'displayROIIndex',false) turns
off the display of the ROI indices.

displayROIIndex — Display ROI index labels
true (default) | false

Display ROI index labels, specified as the comma-separated pair consisting of
'displayROIIndex' and true or false. When displayROIIndex is true, then
displayColorPatch overlays color patch ROI index labels on the displayed color
patches. The indices match the ROI numbers displayed by displayChart.
Data Types: logical

displayDeltaE — Display Delta_E values
true (default) | false

Display Delta_E values, specified as the comma-separated pair consisting of
'displayDeltaE' and true or false. When displayDeltaE is true,
displayColorPatch overlays the values of Delta_E on the displayed color patches.
Data Types: logical

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair
consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by displayColorPatch.

See Also
Functions
displayChart | measureColor | plotChromaticity

Objects
esfrChart

Introduced in R2017b

 displayColorPatch

1-549

dnCNNLayers
Get denoising convolutional neural network layers

Syntax
layers = dnCNNLayers
layers = dnCNNLayers(Name,Value)

Description
layers = dnCNNLayers returns layers of the denoising convolutional neural network
(DnCNN) for grayscale images.

This function requires that you have Deep Learning Toolbox.

layers = dnCNNLayers(Name,Value) returns layers of the denoising convolutional
neural network with additional name-value parameters specifying network architecture.

Examples

Get Layers of Image Denoising Network

Get layers of the image denoising convolutional neural network, 'DnCNN'. Request the
default number of layers, which returns 20 convolution layers.

layers = dnCNNLayers

layers =
 1x59 Layer array with layers:

 1 'InputLayer' Image Input 50x50x1 images
 2 'Conv1' Convolution 64 3x3x1 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'ReLU1' ReLU ReLU
 4 'Conv2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 5 'BNorm2' Batch Normalization Batch normalization with 64 channels

1 Functions — Alphabetical List

1-550

 6 'ReLU2' ReLU ReLU
 7 'Conv3' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 8 'BNorm3' Batch Normalization Batch normalization with 64 channels
 9 'ReLU3' ReLU ReLU
 10 'Conv4' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 11 'BNorm4' Batch Normalization Batch normalization with 64 channels
 12 'ReLU4' ReLU ReLU
 13 'Conv5' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 14 'BNorm5' Batch Normalization Batch normalization with 64 channels
 15 'ReLU5' ReLU ReLU
 16 'Conv6' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 17 'BNorm6' Batch Normalization Batch normalization with 64 channels
 18 'ReLU6' ReLU ReLU
 19 'Conv7' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 20 'BNorm7' Batch Normalization Batch normalization with 64 channels
 21 'ReLU7' ReLU ReLU
 22 'Conv8' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 23 'BNorm8' Batch Normalization Batch normalization with 64 channels
 24 'ReLU8' ReLU ReLU
 25 'Conv9' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 26 'BNorm9' Batch Normalization Batch normalization with 64 channels
 27 'ReLU9' ReLU ReLU
 28 'Conv10' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 29 'BNorm10' Batch Normalization Batch normalization with 64 channels
 30 'ReLU10' ReLU ReLU
 31 'Conv11' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 32 'BNorm11' Batch Normalization Batch normalization with 64 channels
 33 'ReLU11' ReLU ReLU
 34 'Conv12' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 35 'BNorm12' Batch Normalization Batch normalization with 64 channels
 36 'ReLU12' ReLU ReLU
 37 'Conv13' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 38 'BNorm13' Batch Normalization Batch normalization with 64 channels
 39 'ReLU13' ReLU ReLU
 40 'Conv14' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 41 'BNorm14' Batch Normalization Batch normalization with 64 channels
 42 'ReLU14' ReLU ReLU
 43 'Conv15' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 44 'BNorm15' Batch Normalization Batch normalization with 64 channels
 45 'ReLU15' ReLU ReLU
 46 'Conv16' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 47 'BNorm16' Batch Normalization Batch normalization with 64 channels
 48 'ReLU16' ReLU ReLU
 49 'Conv17' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

 dnCNNLayers

1-551

 50 'BNorm17' Batch Normalization Batch normalization with 64 channels
 51 'ReLU17' ReLU ReLU
 52 'Conv18' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 53 'BNorm18' Batch Normalization Batch normalization with 64 channels
 54 'ReLU18' ReLU ReLU
 55 'Conv19' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 56 'BNorm19' Batch Normalization Batch normalization with 64 channels
 57 'ReLU19' ReLU ReLU
 58 'Conv20' Convolution 1 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 59 'FinalRegressionLayer' Regression Output mean-squared-error

You can train a custom image denoising network by providing these layers and a
denoisingImageDatastore to trainNetwork.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NetworkDepth',15

NetworkDepth — Number of convolution layers
20 (default) | positive integer

Number of convolution layers, specified as a positive integer with value greater than or
equal to 3.
Example: 15
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
layers — Network layers
vector of Layer objects

1 Functions — Alphabetical List

1-552

Denoising convolutional neural network layers, returned as a vector of Layer objects.

Tips
• The DnCNN network can detect noise and other high-frequency image artifacts. For

example, you can train the DnCNN network to increase image resolution or remove
JPEG compression artifacts. The example “JPEG Image Deblocking Using Deep
Learning” shows how to train a DnCNN to reduce JPEG compression artifacts in an
image.

References
[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser:

Residual Learning of Deep CNN for Image Denoising." IEEE Transactions on
Image Processing. Vol. 26, Issue 7, 2017, pp. 3142–3155.

See Also
denoiseImage | denoisingImageDatastore | denoisingNetwork | trainNetwork

Topics
“JPEG Image Deblocking Using Deep Learning”
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

 dnCNNLayers

1-553

dpxinfo
Read metadata from DPX file

Syntax
metadata = dpxinfo(filename)

Description
metadata = dpxinfo(filename) reads information about the image contained in the
DPX file specified by filename. metadata is a structure containing the file details.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-
frame storage in digital intermediate post-production facilities and film labs.

Examples

Read Metadata from DPX File

Read metadata from DPX file into the workspace.

m = dpxinfo('peppers.dpx')

m = struct with fields:
 Filename: 'B:\matlab\toolbox\images\imdata\peppers.dpx'
 FileModDate: '16-Mar-2015 09:57:26'
 FileSize: 892828
 Format: 'DPX'
 FormatVersion: '2.0'
 Width: 512
 Height: 384
 BitDepth: 36
 ColorType: 'R,G,B'
 FormatSignature: [88 80 68 83]
 ByteOrder: 'Little-endian'

1 Functions — Alphabetical List

1-554

 Orientation: 'Left-to-right, Top-to-bottom'
 NumberOfImageElements: 1
 DataSign: {'Unsigned'}
 AmplitudeTransferFunction: {'ITU-R 709-4'}
 Colorimetry: {'ITU-R 709-4'}
 ChannelBitDepths: 12
 PackingMethod: 0
 Encoding: {'None'}

Input Arguments
filename — Name of the DPX file
character vector | string scalar

Name of a DPX file, specified as a string scalar or character vector. filename can contain
the absolute path to the file, the name of a file on the MATLAB path, or a relative path.
Data Types: char | string

Output Arguments
metadata — Information about the DPX image data
structure

Information about the DPX image data, returned as a structure.

See Also
dpxread

Introduced in R2015b

 dpxinfo

1-555

dpxread
Read DPX image

Syntax
X = dpxread(filename)

Description
X = dpxread(filename) reads image data from the DPX file specified by filename,
returning the image X.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-
frame storage in digital intermediate post-production facilities and film labs.

Examples

Read and Visualize 12-bit RGB Image

Read image from DPX file into the workspace.

RGB = dpxread('peppers.dpx');

Create a scale factor based on the data range of the image data. The image needs to be
scaled to span the 16-bit data range expected by imshow.

maxOfDataRange = 2^12 - 1;
scaleFactor = intmax('uint16') / maxOfDataRange;

Display the image.

figure
imshow(RGB * scaleFactor)

1 Functions — Alphabetical List

1-556

Input Arguments
filename — Name of the DPX file
character vector | string scalar

Name of a DPX file, specified as a string scalar or character vector. filename can contain
the absolute path to the file, the name of a file on the MATLAB path, or a relative path.
Example: RGB = dpxread('peppers.dpx');
Data Types: char | string

 dpxread

1-557

Output Arguments
X — Image data from DPX file
real, nonsparse numeric array

Image data from DPX file, returned as a real, nonsparse numeric array of class uint8 or
uint16, depending on the bit depth of the pixels in filename.

See Also
dpxinfo

Introduced in R2015b

1 Functions — Alphabetical List

1-558

drawassisted
Create freehand ROI on image with assistance from image edges

Syntax
h = drawassisted
h = drawassisted(hImage)
h = drawassisted(___ ,Name,Value)

Description
h = drawassisted begins interactive placement of a freehand region-of-interest (ROI)
on the current axes. The drawassisted function uses the edges in the underlying image
to "assist" the drawing process. The function returns h, a handle to an
images.roi.AssistedFreehand object. You can modify the ROI interactively using
your mouse. The ROI also supports a right-click context menu that controls aspects of its
appearance and behavior.

h = drawassisted(hImage) begins interactive placement of a freehand ROI on the
image specified by hImage.

h = drawassisted(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to default
values.

To create an ROI interactively, position the pointer on the image, click and release to
place the first vertex (waypoint), and then move the pointer to draw a line. The line snaps
to nearby edges in the image automatically as you draw. Click to place vertices along the
line as you draw. To finish the ROI and close the shape, double-click. To delete an ROI,
position the pointer on the ROI (not on a vertex), right-click, and select Delete Freehand
from the context menu. For more information about keyboard shortcuts, see “Tips” on
page 1-568.

Examples

 drawassisted

1-559

Alpha Blend Source ROI into Target Image

Read an image into the workspace and display it.

im = imread('peppers.png');
imshow(im)

Draw an assisted freehand ROI.

h = drawassisted;

Create a mask of the ROI.

bw = createMask(h);

1 Functions — Alphabetical List

1-560

Create an alpha matrix that specifies the transparency of the source image at each pixel.

alphamat = imguidedfilter(single(bw),im,'DegreeOfSmoothing',2);

Display a target image.

target = imread('fabric.png');
imshow(target)

Resize the source image and the alpha matrix to the same size as the target image.

alphamat = imresize(alphamat,[size(target,1),size(target,2)]);
im = imresize(im,[size(target,1),size(target,2)]);

 drawassisted

1-561

Alpha blend the source ROI into the target image.

fused = single(im).*alphamat + (1-alphamat).*single(target);
fused = uint8(fused);
imshow(fused)

Input Arguments
hImage — Image object on which to draw ROI
image object

1 Functions — Alphabetical List

1-562

Image object on which to draw ROI, specified as an image object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawassisted('LineWidth',5);

Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified the comma-separated pair consisting of 'Closed' and
the logical value true or false. If true (default), drawassisted closes the ROI by
connecting the last waypoint drawn to the first waypoint drawn.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

 drawassisted

1-563

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

Image — Image on which to draw ROI
handle to Image object

Image on which to draw ROI, specified as the comma-separated pair consisting of
'Image' and a handle to an Image object.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

1 Functions — Alphabetical List

1-564

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
n-by-2 array

Position of the ROI, specified as the comma-separated pair consisting of 'Position' and
an n-by-2 array of the form [x1 y1; …; xn yn] where n is the number of vertices in
the ROI. Each row specifies the position of a vertex in the ROI.

 drawassisted

1-565

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Smoothing — Smooth edge of freehand ROI
1 (default) | nonnegative scalar

Smooth the edge of the freehand ROI using the standard deviation of the Gaussian
smoothing kernel, specified as the comma-separated pair consisting of 'Smoothing' and
a nonnegative scalar. The function uses this 'Smoothing' value to filter the x and y
coordinates of the freehand ROI. The function defines the filter size as
2*ceil(2*Smoothing) + 1.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

1 Functions — Alphabetical List

1-566

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Waypoints — Control points to reshape the ROI
1 (default) | n-by-1 logical vector

Control points to reshape the ROI, specified as the comma-separated pair consisting of
'Waypoints' and an n-by-1 logical vector, the same length as Position. Each element
of the Waypoints vector indicates if the corresponding point in the Position array is a

 drawassisted

1-567

waypoint. Positions that are waypoints are set to true in Waypoints. Dragging a
waypoint modifies the ROI between the specified waypoint and its immediate neighboring
waypoints. If empty, drawfreehand automatically generates Waypoints at locations of
increased curvature.

Output Arguments
h — Assisted Freehand ROI
images.roi.AssistedFreehand object

Assisted Freehand ROI, returned as an images.roi.AssistedFreehand object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Finish drawing (close) the ROI. Double-click, which adds a vertex at the
pointer position and draws a line to the
first vertex to close the ROI.

Right-click, which draws a line from the
last vertex to the first vertex.

Position pointer over the first vertex and
click.

Press Enter, which draws a line from
the last vertex to the first vertex.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. No assistance (snapping
to edges) is available in this mode.

1 Functions — Alphabetical List

1-568

Behavior Keyboard shortcut
Add a vertex (waypoint). Position the pointer on an edge of the

ROI and double-click.

Position the pointer on an edge of the
ROI, right-click, and select Add
Waypoint.

Remove a vertex (waypoint). Position the pointer on a vertex, right-
click, and select Remove Waypoint.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag to move the ROI.

See Also
drawcircle | drawcuboid | drawellipse | drawline | drawpoint | drawpolygon |
drawpolyline | drawrectangle | images.roi.AssistedFreehand

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawassisted

1-569

drawcircle
Create customizable circular ROI

Syntax
h = drawcircle
h = drawcircle(ax)
h = drawcircle(___ ,Name,Value)

Description
h = drawcircle begins interactive placement of a circular region-of-interest (ROI) on
the current axes. The function returns a handle to an images.roi.Circle object. You
can modify the ROI interactively using your mouse. The ROI also supports a right-click
context menu that controls aspects of its appearance and behavior.

h = drawcircle(ax) begins interactive placement of a circular ROI on the axes
specified by ax.

h = drawcircle(___ ,Name,Value) modifies the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default
values.

To draw the ROI interactively, move the pointer over the axes, click and drag the pointer
to draw the circle. To finish drawing, release the pointer. To delete the ROI, position the
pointer over the circle, right-click, and select Delete Circle from the context menu. For
more information about interactive behaviors including keyboard shortcuts, see “Tips” on
page 1-582.

Examples

Create Black Circular ROI

Read an image into the workspace and display it.

1 Functions — Alphabetical List

1-570

imshow(imread('peacock.jpg'))

Interactively draw a partially-opaque black circular ROI.

h = drawcircle('Color','k','FaceAlpha',0.4);

 drawcircle

1-571

Change the stripe color of the ROI to magenta, then increase the opacity of the ROI.

h.StripeColor = 'magenta';
h.FaceAlpha = 0.8;

1 Functions — Alphabetical List

1-572

Create Circular ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawcircle

1-573

1 Functions — Alphabetical List

1-574

Draw a circular ROI on the image, Use the 'Center' name-value pair to specify the
location of the circle and the 'Radius' name-value pair to specify its size. Set the edge
of the circle to be striped by specifying the 'StripeColor' name-value pair.

h = drawcircle('Center',[1000,1000],'Radius',500,'StripeColor','red');

 drawcircle

1-575

Input Arguments
ax — Parent axes of ROI
axes object

1 Functions — Alphabetical List

1-576

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawcircle('Color','k','Label','My Circle');

Center — Center of ROI
[x y]

Center of the ROI, specified as the comma-separated pair consisting of 'Center' and a
1-by-2 array of the form [x y]. The values x and y are the coordinates of the center point of
the ROI. The value of this property changes automatically when you draw or move the
ROI.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

 drawcircle

1-577

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.

1 Functions — Alphabetical List

1-578

Value Description
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

 drawcircle

1-579

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Radius — Radius of circle
nonnegative numeric scalar

Radius of the circle, specified as the comma-separated pair consisting of 'Radius' and a
nonnegative numeric scalar. The value of this property changes automatically when you
draw or move the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'

1 Functions — Alphabetical List

1-580

Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of points on the edge of ROI
n-by-2 array

Locations of points on the edge of the ROI, returned as the comma-separated pair
consisting of 'Vertices' and an n-by-2 array.

This parameter is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

 drawcircle

1-581

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Circular ROI
images.roi.Circle object

Circular ROI, returned as an images.roi.Circle object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Resize the ROI. Position the pointer over one of the
vertices on the circle and then click and
drag. The aspect ratio of the ROI
remains constant (1:1).

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

See Also
drawassisted | drawcuboid | drawellipse | drawfreehand | drawline |
drawpoint | drawpolygon | drawpolyline | drawrectangle | images.roi.Circle

1 Functions — Alphabetical List

1-582

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawcircle

1-583

drawcuboid
Create customizable cuboidal ROI

Syntax
H = drawcuboid
H = drawcuboid(ax)
H = drawcuboid(S)
H = drawcuboid(___ ,Name,Value)

Description
H = drawcuboid begins interactive placement of a cuboidal region of interest (ROI) on
the current axes. The function returns an images.roi.Cuboid object, H. You can modify
an ROI interactively using the mouse. The ROI also supports a context menu that controls
aspects of its appearance and behavior.

H = drawcuboid(ax) creates the ROI on the axes specified by ax instead of the current
axes (gca).

H = drawcuboid(S) creates the ROI on the Scatter object specified by S. During
interactive placement, the cuboid snaps to the nearest point defined by the Scatter
object.

H = drawcuboid(___ ,Name,Value) modifies the appearance of the ROI using one or
more name-value pairs.

To create an ROI interactively, position the pointer over the ROI, move it to any location in
the figure, and click. To delete the cuboid, position the pointer over the ROI, right-click,
and select Delete Cuboid from the context menu. For more information about interactive
behaviors including keyboard shortcuts, see “Tips” on page 1-594.

Examples

1 Functions — Alphabetical List

1-584

Create Cuboid ROI on Scatter Plot

Create a 3-D scatter plot and interactively define a cuboid ROI over the data.

Define vectors for 3-D scatter data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot. Use view to the change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

Begin placing a cuboid ROI on the axes. The ROI snaps to the nearest point defined by the
scatter plot. Adjust the size of the cuboid during interactive placement by using the scroll
wheel.

drawcuboid(hScatter);

 drawcuboid

1-585

Input Arguments
ax — Parent axes of ROI
Axes object (default)

1 Functions — Alphabetical List

1-586

Parent axes of ROI, specified as an Axes object. If you do not specify the axes, the
function uses the current axes.

S — Scatter plot
Scatter object

Scatter plot, specified as a Scatter object. The parent of the Scatter object becomes
the parent of the ROI.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawcuboid('Color','k','Label','My Cuboid');

Color — ROI color
[0 0.4470 0.7410] (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | 1-by-6 numeric array

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

 drawcuboid

1-587

Value Description
'auto' The drawing area is a superset of the

current axes limits and a bounding box that
surrounds the ROI (default).

'unlimited' The drawing area has no boundary and
ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,z,w,h,d] The drawing area is restricted to a region
beginning at (x,y,z), with width w, height h,
and depth d.

EdgeAlpha — Transparency of ROI edge
1 (default) | numeric scalar

Transparency of ROI edge, specified as the comma-separated pair consisting of
'EdgeAlpha' and a scalar in the range [0 1]. When set to 1, the ROI edge is fully
opaque. When set to 0, the ROI edge is completely transparent.
Example: drawcuboid('EdgeAlpha',0.2)

FaceAlpha — Transparency of ROI faces
0.2 (default) | numeric scalar

Transparency of the ROI faces, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI faces are fully opaque. When the value is 0, the ROI faces
are completely transparent.

FaceAlphaOnHover — Transparency of ROI face directly underneath mouse
pointer
0.4 (default) | nonnegative numeric scalar | 'none'

Transparency of ROI face directly underneath the mouse pointer, specified as the comma-
separated pair consisting of 'FaceAlphaOnHover' and a scalar value in the range [0
1] or 'none' to indicate no change to face transparency. When set to 1, the face under
the mouse pointer is fully opaque. When set to 0, the face is completely transparent.
Example: drawcuboid('FaceAlphaOnHover',1)

FaceColorOnHover — Color of ROI face directly underneath mouse pointer
'none' (default) | MATLABColorSpec

1 Functions — Alphabetical List

1-588

Color of the ROI face directly underneath the mouse pointer, specified as the comma-
separated pair consisting of 'FaceColorOnHover' and a MATLABColorSpec (Color
Specification) or 'none'. By default, the face color does not change on hover. (Hover
means positioning the pointer over the surface of the cuboidal ROI.) When you are not
hovering over a face of the ROI, the value of the ROI Color property determines the face
color. The intensities must be in the range [0,1].
Example: drawcuboid('FaceColorOnHover','g')

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' ROI is fully interactable (default).
'none' ROI is not interactable, and no drag points

are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped.

 drawcuboid

1-589

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LabelVisible — Visibility of ROI label
'on' (default) | 'off' | 'hover'

Visibility of the ROI label, specified as the comma-separated pair consisting of
'LabelVisible' and one of these values:

Value Description
'on' Label is visible when the ROI is visible and

'Label' is nonempty (default).
'hover' Label is visible only when the mouse is

hovering over the ROI.
'off' Label is not visible.

Example: drawcuboid('LabelVisible','hover')

LineWidth — Width of ROI edge
1 (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of cuboid
1-by-6 numeric array

Position of the cuboid, specified as the comma-separated pair consisting of 'Position'
and a 1-by-6 array of the form [xmin, ymin, zmin, width, height, depth]. This property
updates automatically when you draw or move the cuboid.

1 Functions — Alphabetical List

1-590

Rotatable — Ability of cuboid to be rotated
'none' (default) | 'x' | 'y' | 'z' | 'all'

Ability of the cuboid to be rotated, specified as the comma-separated pair consisting of
'Rotatable' and one of the values in this table.

Value Description
'all' ROI is fully rotatable.
'x' ROI can only be rotated about the x axis
'y' ROI can only be rotated about the y axis.
'z' ROI can only be rotated about the z axis.
'none' ROI is not rotatable.

RotationAngle — Angle of ROI rotation
[0 0 0] (default) | 1-by-3 numeric array of rotation angles

Angle of ROI rotation, specified as the comma-separated pair consisting of
'RotationAngle' and a 1-by-3 numeric array of rotation angles, measured in degrees.
The rotation angles array is of the form [x_angle y_angle z_angle], measured about
the x-, y-, and z-axis, respectively. Rotation is applied about the ROI centroid in this order:
z, y, x.

The value of RotationAngle does not impact the values in Position. Position
represents the cuboid before any rotation. When you rotate the cuboid, use Vertices to
determine the location of the rotated ROI.

ScrollWheelDuringDraw — Ability of scroll wheel to adjust size
'allresize' (default) | 'xresize' | 'yresize' | 'zresize' | 'none'

Ability of the scroll wheel to adjust the size of the ROI, specified as the comma-separated
pair consisting of 'ScrollWheelDuringDraw' and one of the values in this table.

Value Description
'allresize' Scroll wheel impacts all ROI dimensions.
'xresize' Scroll wheel impacts only the x dimension.
'yresize' Scroll wheel impacts only the y dimension.
'zresize' Scroll wheel impacts only the z dimension.

 drawcuboid

1-591

Value Description
'none' Scroll wheel has no effect.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

1 Functions — Alphabetical List

1-592

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of corners of cuboidal ROI
8-by-3 numeric array

This property is read-only.

Locations of the corners of cuboidal ROI, specified as an 8-by-3 array. Each row is the x-,
y-, and z-coordinate of a corner of the cuboidal ROI.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

 drawcuboid

1-593

Output Arguments
H — Cuboidal ROI
images.roi.Cuboid object

Cuboidal ROI, returned as an images.roi.Cuboid object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Fine-tune ROI size while drawing. Use the scroll wheel to make small

changes to the size of the ROI while
drawing.

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Resize (reshape) the ROI. Position the pointer on one of the visible
faces of the cuboid and click and drag
the surface. You might have to rotate the
cuboid to select a surface.

If you press the Shift, dragging the
mouse moves the ROI but does not
change any of the dimensions.

Move the ROI. Position the pointer on any of the visible
surfaces of the ROI and click and drag
while pressing Shift.

Position the pointer on any visible
surface of the ROI, right-click, and
select Lock Dimensions. Click and
drag to move the ROI.

1 Functions — Alphabetical List

1-594

See Also
drawassisted | drawellipse | drawfreehand | drawline | drawpoint |
drawpolygon | drawpolyline | drawrectangle | images.roi.Cuboid

Topics
“Use Wait Function After Drawing ROI”

Introduced in R2019a

 drawcuboid

1-595

drawellipse
Create customizable elliptical ROI

Syntax
h = drawellipse
h = drawellipse(ax)
h = drawellipse(___ ,Name,Value)

Description
h = drawellipse begins interactive placement of an elliptical region-of-interest (ROI)
on the current axes. The function returns a handle to an images.roi.Ellipse object.
You can modify the ROI interactively using your mouse. The ROI supports a context menu
that controls aspects of its appearance and behavior.

h = drawellipse(ax) begins interactive placement of an ROI on the axes specified by
ax.

h = drawellipse(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to the
default value.

To draw the ROI interactively, position the pointer over the axes and click and drag to
draw the ellipse. To finish drawing the ROI, release the pointer. To delete the ROI,
position the pointer on the ellipse, right-click, and select Delete Ellipse from the context
menu. For more information about interactive behaviors including keyboard shortcuts,
see “Tips” on page 1-609.

Examples

Create Red Elliptical ROI

Read an image into the workspace and display it.

1 Functions — Alphabetical List

1-596

imshow(imread('llama.jpg'))

Interactively draw a red elliptical ROI.

h = drawellipse('Color','r');

 drawellipse

1-597

Change the stripe color of the ROI to black, then increase the opacity of the ROI.

h.StripeColor = 'k';
h.FaceAlpha = 0.4;

1 Functions — Alphabetical List

1-598

Create Elliptical ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawellipse

1-599

1 Functions — Alphabetical List

1-600

Draw an elliptical ROI on the image. Use the 'Center' name-value pair to specify the
location of the ellipse and the 'SemiAxes' name-value pair to specify the shape of the
ellipse. Set the edge of the ellipse to be a striped red line by specifying the
'StripeColor' name-value pair.

h = drawellipse('Center',[1000,1000],'SemiAxes',[500,250],'StripeColor','r');

 drawellipse

1-601

1 Functions — Alphabetical List

1-602

Input Arguments
ax — Parent axes of ROI
axes object

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawellipse('Color','k','Label','My Ellipse');

AspectRatio — Aspect ratio of ellipse
nonnegative numeric scalar

Aspect ratio of the ellipse, specified as the comma-separated pair consisting of
'AspectRatio' and a nonnegative numeric scalar, calculated as SemiAxes(1)/
SemiAxes(2). This value changes automatically when you draw or resize the ROI, or
change the value of the SemiAxes property.

Center — Center of ROI
[x y]

Center of the ROI, specified as the comma-separated pair consisting of 'Center' and a
1-by-2 array of the form [x y]. The values x and y are the coordinates of the center point of
the ROI. The value of this property changes automatically when you draw or move the
ROI.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'

 drawellipse

1-603

Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

1 Functions — Alphabetical List

1-604

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as the comma-separated pair
consisting of 'FixedAspectRatio' and the logical values true or false. When this
value is true, the ROI maintains the aspect ratio when you draw or resize the ellipse.
When this value is false (default), you can change the aspect ratio when drawing or
resizing the ellipse. You can change this value by using the default context menu.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.

 drawellipse

1-605

Value Description
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

RotationAngle — Angle around center of ellipse
0 (default) | nonnegative numeric scalar

Angle around the center of the ellipse, specified as the comma-separated pair consisting
of 'RotationAngle' and as a nonnegative numeric scalar. The angle is measured in
degrees in a clockwise direction. This value changes automatically when you draw or
move the ROI.

Selected — Selection state of ROI
false (default) | true

1 Functions — Alphabetical List

1-606

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

SemiAxes — Lengths of semiaxes of ellipse
[semiaxis1 semiaxis2]

Lengths of the semiaxis of the ellipse, specified as the comma-separated pair consisting of
'SemiAxes' and a 1-by-2 array of the form [semiaxis1 semiaxis2]. The
drawellipse function assigns the length of the semiaxis that is closest to the x direction
to semiaxis1. Note however that the shape and orientation of the ellipse can change
through interaction. The value of this property changes automatically when you draw or
reshape the ROI.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

 drawellipse

1-607

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of points on edge of ROI
N-by-2 array

Locations of points on the edge of the ROI, returned as the comma-separated pair
consisting of 'Vertices' and an n-by-2 array.

This property is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

1 Functions — Alphabetical List

1-608

Output Arguments
h — Elliptical ROI
images.roi.Ellipse object

Elliptical ROI, returned as an images.roi.Ellipse object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Fine-tune width of ellipse as you are
drawing.

As you draw the ellipse, use the scroll
wheel to make small changes to the
width of the ellipse.

Rotate the ROI. Position the pointer near a vertex. The
pointer changes to the rotate pointer.
Click and rotate the ROI on its center.

To make the rotation snap at 15 degree
angles, press Shift as you rotate.

Maintain aspect ratio while drawing. Hold the Shift key as you draw. Creates
a circular ROI.

To lock the aspect ratio, position the
pointer on the ROI, right-click, and
select Fix Aspect Ratio from the
context menu

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. To main the aspect ratio
as you resize, Hold the Shift key.

 drawellipse

1-609

Behavior Keyboard shortcut
Move the ROI. Position the pointer over the ROI. The

pointer changes to the fleur shape. Click
and drag to move the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawfreehand | drawline | drawpoint
| drawpolygon | drawpolyline | drawrectangle | images.roi.Ellipse

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions — Alphabetical List

1-610

drawfreehand
Create customizable freehand ROI

Syntax
h = drawfreehand
h = drawfreehand(ax)
h = drawfreehand(___ ,Name,Value)

Description
h = drawfreehand begins interactive placement of a freehand region-of-interest (ROI)
on the current axes. The function returns a handle to an images.roi.Freehand object.
You can modify the ROI interactively using your mouse. The ROI object also supports a
context menu that controls aspects of its appearance and behavior.

h = drawfreehand(ax) begins interactive placement of an ROI in the axes specified by
ax.

h = drawfreehand(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to the
default value.

To create a freehand ROI interactively, position the pointer on the axes and click and drag
to draw the ROI shape. Release the pointer to close the shape. To delete a freehand ROI,
position the pointer over the ROI, right-click, and select Delete Freehand from the
context menu. For more information about interactive behaviors including keyboard
shortcuts, see “Tips” on page 1-624.

Examples

Create Freehand ROI That Is Not Selectable

Read an image into the workspace and display it.

 drawfreehand

1-611

imshow(imread('yellowlily.jpg'))

1 Functions — Alphabetical List

1-612

 drawfreehand

1-613

Draw a freehand ROI.

h = drawfreehand;

1 Functions — Alphabetical List

1-614

 drawfreehand

1-615

Fill in the face of the freehand ROI and disable the ability to select the ROI. The ROI does
not move when you click and drag the mouse.

h.FaceAlpha = 1;
h.FaceSelectable = false;

1 Functions — Alphabetical List

1-616

 drawfreehand

1-617

Input Arguments
ax — Parent axes of ROI
axes object

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawfreehand('LineWidth',5);

Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified as the comma-separated pair consisting of 'Closed'
and the logical value true or false. If true (default), drawfreehand closes the ROI by
connecting the last waypoint drawn to the first waypoint drawn.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu

1 Functions — Alphabetical List

1-618

item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

 drawfreehand

1-619

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

1 Functions — Alphabetical List

1-620

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Multiclick — Control freehand drawing style during interactive placement
true (default) | false

Control the freehand drawing style during interactive placement, specified as the comma-
separated pair consisting of 'Multiclick' and the logical scalar true or false. When
the value is false (default), a single click and drag gesture completes the freehand.
When true, multiple click and drag gestures can be combined with straight edges to
make a more complex freehand shape.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of the freehand ROI
[] (default) | n-by-2 array

Position of the freehand ROI, specified as an n-by-2 array, [x1 y1; …; xn yn] where
each row specifies the position of a vertex of the freehand ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'

 drawfreehand

1-621

Example: 'g'
Example: [0 1 0]

Smoothing — Smooth edge of freehand ROI
1 (default) | nonnegative scalar

Smooth the edge of the freehand ROI using the standard deviation of the Gaussian
smoothing kernel, specified as the comma-separated pair consisting of 'Smoothing' and
a nonnegative scalar. The function uses this 'Smoothing' value to filter the x and y
coordinates of the freehand ROI. The function defines the filter size as
2*ceil(2*Smoothing) + 1.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

1 Functions — Alphabetical List

1-622

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Waypoints — Control points to reshape the ROI
1 (default) | n-by-1 logical vector

Control points to reshape the ROI, specified as the comma-separated pair consisting of
'Waypoints' and an n-by-1 logical vector, the same length as Position. Each element
of the Waypoints vector indicates if the corresponding point in the Position array is a
waypoint. Positions that are waypoints are set to true in Waypoints. Dragging a
waypoint modifies the ROI between the specified waypoint and its immediate neighboring
waypoints. If empty, drawfreehand automatically generates Waypoints at locations of
increased curvature.

Output Arguments
h — Freehand ROI
images.roi.Freehand object

Freehand ROI, returned as an images.roi.Freehand object.

 drawfreehand

1-623

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Finish drawing (close) the ROI. Right-click.

Position pointer over the first vertex and
click.

Press Enter.
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Add a new vertex (waypoint) to the ROI. Position the pointer on the edge of the
ROI and double-click.

Position the pointer on the edge of the
ROI, right-click, choose Add Waypoint
from the context menu.

Remove a vertex (waypoint) from the
ROI.

Position the pointer on a vertex, right-
click, choose Remove Waypoint from
the context menu.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag.

Add a new vertex to the polygon and
then click and drag.

Move the ROI. Position the pointer on the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawline | drawpoint |
drawpolygon | drawpolyline | drawrectangle | images.roi.Freehand

1 Functions — Alphabetical List

1-624

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawfreehand

1-625

drawline
Create customizable linear ROI

Syntax
h = drawline
h = drawline(ax)
h = drawline(___ ,Name,Value)

Description
h = drawline begins interactive placement of a linear region-of-interest (ROI) on the
current axes. The function returns a handle to an images.roi.Line object. You can
modify the ROI interactively using your mouse. The ROI object also supports a context
menu that controls aspects of its appearance and behavior.

h = drawline(ax) creates an instance of the ROI in the axes specified by ax.

h = drawline(___ ,Name,Value) modifies the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default
value.

To create a linear ROI interactively, position the pointer where you want to start drawing
and then click and drag to draw the line. Release the pointer to finish the line. To delete
the line, position the pointer over the line, right-click, and select Delete Line from the
context menu. For more information about interactive behaviors including keyboard
shortcuts, see “Tips” on page 1-637.

Examples

Create Linear ROIs That Change Color When Selected

Read an image into the workspace and display it.

1 Functions — Alphabetical List

1-626

imshow(imread('car1.jpg'))

Draw two linear ROIs on the image. Use the 'SelectedColor' name-value pair to specify
the color of the ROI when selected.

h1 = drawline('SelectedColor','yellow');
h2 = drawline('SelectedColor','magenta');

 drawline

1-627

To turn the first line yellow, select the ROI programatically. You can also select an ROI by
clicking it with the mouse. Click the second ROI to turn it magenta.

h1.Selected = true;

1 Functions — Alphabetical List

1-628

Create Linear ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawline

1-629

1 Functions — Alphabetical List

1-630

Draw a linear ROI over the image. Use the 'Position' name-value pair to specify the
location and length of the linear ROI. Set the line to be striped red by specifying the
'StripeColor' name-value pair.

h = drawline('Position',[500 500;500 1500],'StripeColor','r');

 drawline

1-631

Input Arguments
ax — Parent axes of ROI
axes object

1 Functions — Alphabetical List

1-632

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawline('LineWidth',4);

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

 drawline

1-633

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.

1 Functions — Alphabetical List

1-634

Value Description
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
2-by-2 array

Position of the ROI, specified as a 2-by-2 array of the form [x1 y1; x2 y2]. Each row
specifies the respective end-point of the linear ROI. This value changes automatically
when you draw or move the line.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,

 drawline

1-635

clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

1 Functions — Alphabetical List

1-636

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Linear ROI
images.roi.Line object

Linear ROI, returned as an images.roi.Line object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap to 15 degree
angles.

Hold the Shift key while drawing.

 drawline

1-637

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Resize the ROI. Position pointer over either endpoint
and then click and drag to resize the
ROI. Hold the Shift key while resizing to
snap the line drawn at 15 degree angles.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Then
click and drag the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawpoint | drawpolygon | drawpolyline | drawrectangle | images.roi.Line

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions — Alphabetical List

1-638

drawpoint
Create customizable point ROI

Syntax
h = drawpoint
h = drawpoint(ax, ___)
h = drawpoint(___ ,Name,Value)

Description
h = drawpoint begins interactive placement of a point region-of-interest (ROI) on the
current axes. The function returns a handle to an images.roi.Point object. You can
modify the ROI interactively using your mouse. The ROI object also supports a context
menu that controls aspects of its appearance and behavior.

h = drawpoint(ax, ___) begins interactive placement of an ROI in the axes specified
by ax.

h = drawpoint(___ ,Name,Value) modifies the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default
value.

To create a point ROI interactively, position the pointer where you want the ROI and then
click and release to draw it. To delete the ROI, position the pointer over the point, right-
click, and then choose Delete Point from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-650.

Examples

Create Point ROI Interactively

Read an image into the workspace and display it.

 drawpoint

1-639

imshow(imread('parkavenue.jpg'))

Draw a point ROI on the image.

h = drawpoint;

1 Functions — Alphabetical List

1-640

Add a label to the ROI.

h.Label = '42 m';

 drawpoint

1-641

Create Point ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions — Alphabetical List

1-642

 drawpoint

1-643

Draw a point ROI on the image, using named parameters to specify the location.

h = drawpoint('Position',[500 500]);

1 Functions — Alphabetical List

1-644

Input Arguments
ax — Parent axes of ROI
axes object

 drawpoint

1-645

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawpoint('Position',[1000 1000]);

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

1 Functions — Alphabetical List

1-646

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.

 drawpoint

1-647

Value Description
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
1-by-2 array

Position of the ROI, specified as the comma-separated pair consisting of 'Position' and
a 1-by-2 array of the form [x y]. The values x and y specify the x- and y-coordinates of
the ROI. This value changes automatically when you draw or move the point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,

1 Functions — Alphabetical List

1-648

clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

 drawpoint

1-649

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Point ROI
images.roi.Point object

Point ROI, returned as an images.roi.Point object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing. Press Esc. The function returns a valid

ROI object with an empty Position
field.

1 Functions — Alphabetical List

1-650

Behavior Keyboard shortcut
Move the ROI. Position the pointer over the ROI. The

pointer changes to a circle. Click and
drag to move the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpolygon | drawpolyline | drawrectangle | images.roi.Point

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpoint

1-651

drawpolygon
Create customizable polygonal ROI

Syntax
h = drawpolygon
h = drawpolygon(ax)
h = drawpolygon(___ ,Name,Value)

Description
h = drawpolygon begins interactive placement of a polygonal region-of-interest (ROI)
on the current axes. The function returns a handle to an images.roi.Polygon object.
You can modify the ROI interactively using your mouse. The ROI object also supports a
context menu that controls aspects of its appearance and behavior.

h = drawpolygon(ax) begins interactive placement of an ROI on the axes specified by
ax.

h = drawpolygon(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to the
default value.

To draw the ROI interactively, position the pointer over the axes, click and drag the
pointer to draw the ROI. As you draw the line, click to create a vertex. Double-click to
finish drawing and close the polygon. The ROI supports a right-click context menu that
lets you add a vertex, delete a vertex, or delete the entire ROI, depending on where you
right-click. To delete the ROI, position the pointer on the ROI, right-click, and choose
Delete Polygon from the context menu. For more information about interactive
behaviors including keyboard shortcuts, see “Tips” on page 1-664.

Examples

1 Functions — Alphabetical List

1-652

Create Polygonal ROI Interactively

Read an image into the workspace and display it.

imshow(imread('strawberries.jpg'))

Draw a polygonal ROI on the image. Use the 'FaceAlpha' name-value pair to make the
face of the ROI transparent.

h = drawpolygon('FaceAlpha',0);

 drawpolygon

1-653

Change the color of the polygon outline by setting the 'Color' property of the ROI.

h.Color = 'yellow';

1 Functions — Alphabetical List

1-654

Create Polygonal ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawpolygon

1-655

1 Functions — Alphabetical List

1-656

Draw a polygonal ROI over the image, using the Position parameter to specify the
location of vertices.

my_vertices = [500 500;400 600;400 700;500 800;600 800;700 700; 700 600];
h = drawpolygon('Position',my_vertices);

 drawpolygon

1-657

Input Arguments
ax — Parent axes of ROI
axes object

1 Functions — Alphabetical List

1-658

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawpolygon('FaceAlpha',0,'FaceSelectable',1);

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

 drawpolygon

1-659

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

1 Functions — Alphabetical List

1-660

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

 drawpolygon

1-661

Position — Position of ROI
n-by-2 array

Position of the ROI, specified as the comma-separated pair consisting of 'Position' and
an n-by-2 array, of the form [x1 y1; …; xn yn]. Each row specifies the position of a
vertex of the polygonal ROI. This value changes automatically when you draw or move the
ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

1 Functions — Alphabetical List

1-662

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Polygonal ROI
images.roi.Polygon object

 drawpolygon

1-663

Polygonal ROI, returned as an images.roi.Polygon object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree
angles.

Hold the Shift key while drawing.

Finish drawing (close) the ROI. Double-click, which adds a new vertex at
the pointer position and draws a line to
the first vertex to close the polygon.

Press Enter, which adds a new vertex at
the pointer position and draws a line to
the first vertex to close the polygon.

Right-click, which does not add a new
vertex but closes the polygon from the
previous vertex.

Position pointer over the first vertex and
click.

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Add a new vertex to the ROI. Position the pointer over the edge of the
ROI and double-click.

Position the pointer over the edge of the
ROI, right-click, and select Add Vertex
from the context menu.

Remove the most recently added vertex
but keep drawing.

Press Backspace. The function redraws
the line from the previous vertex to the
current position of the pointer. You can
only back up to the first vertex you drew.

1 Functions — Alphabetical List

1-664

Behavior Keyboard shortcut
Resize (reshape) the ROI Position pointer over a vertex and then

click and drag.

Add a new vertex to the ROI and then
click and drag.

Remove a vertex. The ROI redraws the
line connecting the two neighboring
vertices.

Move the ROI. Position the pointer over the ROI (not on
a vertex). The pointer changes to a fleur
shape. Click and drag to move the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpoint | drawpolyline | drawrectangle | images.roi.Polygon

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpolygon

1-665

drawpolyline
Create customizable polyline ROI

Syntax
h = drawpolyline
h = drawpolyline(ax, ___)
h = drawpolyline(___ ,Name,Value)

Description
h = drawpolyline begins interactive placement of a polyline region-of-interest (ROI)
on the current axes. The function returns a handle to a images.roi.Polyline object.
You can modify the ROI interactively using your mouse. The ROI object also supports a
context menu that controls aspects of its appearance and behavior.

h = drawpolyline(ax, ___) begins interactive placement of an instance of the ROI in
the axes specified by ax.

h = drawpolyline(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to the
default value.

To create a polyline ROI interactively, position the pointer over the axes and click and
drag to draw the line. As you draw, click to place vertices along the line. Double-click to
finish drawing the polyline. To delete the ROI, position the pointer over the line, right-
click, and select Delete Polyline from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-677.

Examples

Create Polyline ROI Interactively

Read an image into the workspace and display it.

1 Functions — Alphabetical List

1-666

imshow(imread('westconcordaerial.png'))

Draw the polyline ROI on the image. Use the 'Color' name-value pair to specify the color
of the line.

h = drawpolyline('Color','green');

 drawpolyline

1-667

Decrease the width of the edge of the ROI by setting the 'LineWidth' property.

h.LineWidth = 1;

1 Functions — Alphabetical List

1-668

Create Polygonal ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawpolyline

1-669

1 Functions — Alphabetical List

1-670

Draw a polygonal ROI over the image, using named parameters to specify the location
and shape. The example also specifies that the edge of the polygon is a striped.

h = drawpolyline('Position',[500 500;400 600;400 700;500 800;600 800;700 700; 700 600]);

 drawpolyline

1-671

Input Arguments
ax — Parent axes of ROI
axes object

1 Functions — Alphabetical List

1-672

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h = drawpolyline('LineWidth',1);

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu
item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

 drawpolyline

1-673

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.

1 Functions — Alphabetical List

1-674

Value Description
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of the polyline ROI
n-by-2 array

Position of the polyline ROI, specified as the comma-separated pair consisting of
'Position' and an n-by-2 array, of the form [x1 y1; …; xn yn], where n represents
the number of vertices. Each row specifies the position of a vertex of the polyline ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,

 drawpolyline

1-675

clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

1 Functions — Alphabetical List

1-676

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Polyline ROI
images.roi.Polyline object

Polyline ROI, returned as an images.roi.Polyline object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree
angles.

Hold the Shift key while drawing.

 drawpolyline

1-677

Behavior Keyboard shortcut
Finish drawing the ROI. Double-click, which adds a final new

vertex at the pointer position.

Right-click, which adds a final new
vertex at the pointer position.

Press Enter, which adds a final new
vertex at the pointer position..

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Add a new vertex to the ROI. Position the pointer over the polygon
and double-click. You can also position
the pointer over the ROI, right-click, and
choose Add Vertex.

Remove a vertex from the ROI. Position the pointer over the ROI, right-
click, and choose Delete Vertex.

Remove the most recently added vertex
but keep drawing.

Press Backspace. The function redraws
the line from the previous vertex to the
current position of the pointer. You can
only back up to the first vertex you drew.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag.

Add a new vertex and then click and
drag.

Remove a vertex and the shape of the
ROI adjusts.

Move the ROI. Position the pointer over the line, not on
a vertex. The pointer changes to the
fleur shape. Click and drag the ROI.

1 Functions — Alphabetical List

1-678

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpoint | drawpolygon | drawrectangle | images.roi.Polyline

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpolyline

1-679

drawrectangle
Create customizable rectangular ROI

Syntax
h = drawrectangle
h = drawrectangle(ax)
h = drawrectangle(___ ,Name,Value)

Description
h = drawrectangle begins interactive placement of a rectangular region-of-interest
(ROI) on the current axes. The function returns a handle to an images.roi.Rectangle
object. You can modify the ROI interactively using your mouse. The ROI object also
supports a context menu that controls aspects of its appearance and behavior.

h = drawrectangle(ax) begins interactive placement of the ROI in the axes specified
by ax.

h = drawrectangle(___ ,Name,Value) modifies the appearance and behavior of the
ROI using one or more name-value pairs. Unspecified name-value pairs are set to the
default value.

To draw the ROI interactively, position the pointer and then click and drag. Release the
pointer to finish the ROI. To delete the ROI, position the pointer on the rectangle, right-
click, and choose Delete Rectangle from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-693.

Examples

Draw Nested Rectangular ROIs

Read an image into the workspace and display it.

1 Functions — Alphabetical List

1-680

imshow(imread('baby.jpg'))

Draw a red rectangular ROI with the label 'OuterRectangle'.

r1 = drawrectangle('Label','OuterRectangle','Color',[1 0 0]);

Draw another rectangular ROI, restricting the drawing area to the area inside the first
rectangle.

r2 = drawrectangle('Label','InnerRectangle','DrawingArea',r1.Position);

 drawrectangle

1-681

1 Functions — Alphabetical List

1-682

Create Rectangular ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawrectangle

1-683

1 Functions — Alphabetical List

1-684

Draw a rectangular ROI over the image, using named parameters to specify the location
and size of the rectangle. The example also specifies that the edge of the rectangle is a
striped line.

h = drawrectangle('Position',[500,500,1000,1000],'StripeColor','r');

 drawrectangle

1-685

1 Functions — Alphabetical List

1-686

Input Arguments
ax — Parent axes of ROI
axes object

Parent axes of the ROI, specified as an axes object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: h1 = drawrectangle('LineWidth',5);

AspectRatio — Aspect ratio of rectangle
nonnegative numeric scalar

Aspect ratio of the rectangle, specified as the comma-separated pair consisting of
'AspectRatio' and a nonnegative numeric scalar, calculated as height/width. This
value changes automatically when you draw or resize the ROI.

Color — ROI color
blue (default) | ColorSpec value

ROI color, specified as the comma-separated pair consisting of 'Color' and a MATLAB
ColorSpec (Color Specification) value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as the comma-separated
pair consisting of 'Deletable' and a logical value of true or false. When the value is
true (default), you can delete the ROI via the context menu. To disable this context menu

 drawrectangle

1-687

item, set 'Deletable' to false. When the value is set to false, you can still delete the
ROI by calling the delete function, specifying the handle to the ROI as the input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as the comma-
separated pair consisting of 'DrawingArea' and one of the values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangle beginning at (x,y), with width w
and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | scalar

Transparency of ROI face, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar value in the range [0,1]. When the value is 1, the ROI face is
fully opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as the comma-separated pair consisting of
'FaceSelectable' and the value true or false. When true (default), the ROI face
can capture clicks. When false, the ROI face cannot capture clicks.

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as the comma-separated pair
consisting of 'FixedAspectRatio' and the logical values true or false. When true,
the ROI maintains the aspect ratio when you draw or resize the rectangle. When false
(default), you can change the aspect ratio when drawing or resizing the rectangle. You
can change the state of this property using the default context menu.

1 Functions — Alphabetical List

1-688

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as the
comma-separated pair consisting of 'HandleVisibility' and one of the values in this
table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate' | 'reshape'

Interactivity of the ROI, specified as the comma-separated pair consisting of
'InteractionsAllowed' and one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' ROI can be translated (moved) within the

drawing area but not reshaped. This value
is not available with the drawPoint
function.

'reshape' ROI can be reshaped within the drawing
area but not translated. This value is not
available with the drawPoint function and
the drawRectangle function.

Label — ROI label
'' (default) | character vector | string

 drawrectangle

1-689

ROI label, specified as the comma-separated pair consisting of 'Label' and a character
vector or string. By default, this property is set to an empty array ('') and the ROI has no
label.

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as the comma-separated pair consisting of 'LineWidth'
and a positive numeric scalar in points. The default value is three times the number of
points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as the comma-separated pair consisting of 'Parent' and an Axes
object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
1-by-4 array

Position of the ROI, specified as the comma-separated pair consisting of 'Position' and
a 1-by-4 array of the form [xmin, ymin, width, height]. xmin and ymin specify the
location of the upper left corner of the rectangle. width and height specify the extend
to the rectangle in two dimensions. This value changes automatically when you draw or
move the ROI.

Rotatable — Ability of ROI to be rotated
false (default) | true

Ability of the ROI to be rotated, specified as the comma-separated pair consisting of
'Rotatable' and the logical value true or false. When the value is false (default),
the rectangle cannot be rotated. When the value is true, you can rotate the rectangle by
clicking near the markers at the corners.

RotationAngle — Angle around center of rectangle
0 (default) | nonnegative numeric scalar

Angle around the center of the rectangle, specified as the comma-separated pair
consisting of 'RotationAngle' and a nonnegative numeric scalar. The angle is
measured in degrees in a clockwise direction. The value of this property changes
automatically when you draw or move the ROI. The value of RotationAngle does not
impact the values in Position. The Position property represents the rectangle prior to

1 Functions — Alphabetical List

1-690

any rotation. When the rectangle is rotated, use the Vertices property to determine the
location of the rotated rectangle.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the comma-separated pair consisting of
'Selected' and true or false. You can also set this value interactively. For example,
clicking the ROI selects it and sets this value to true. Similarly, if you Ctrl-click the ROI,
deselects it and sets this value to false.

SelectedColor — Color of ROI when selected
'none' (default) | colorspec

Color of the ROI when selected, specified as the comma-separated pair consisting of
'SelectedColor' and a MATLAB ColorSpec (Color Specification). If
'SelectedColor' is set to 'none', then the value of Color defines the color of the ROI
for all states, selected or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as the comma-separated pair consisting of
'StripeColor' and a MATLAB ColorSpec (Color Specification) value. If you
specify 'StripeColor', the ROI edge is striped. The striping consists of a combination
of the value specified by 'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with ROI
character vector | string scalar

Tag to associate with the ROI, specified as the comma-separated pair consisting of 'Tag'
and a character vector or string scalar. Use the tag value to find the ROI object in a
hierarchy of objects using the findobj function.

 drawrectangle

1-691

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as the comma-separated pair consisting of 'UIContextMenu'
and a uicontextmenu object. Specify this name-value pair to display a custom context
menu when you right-click on the ROI. You can create a custom context menu by using
the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as the comma-separated pair consisting of
'UserData' and any MATLAB data. For example, you can specify a scalar, vector, matrix,
cell array, string, character array, table, or structure. MATLAB does not use this data.

Vertices — Locations of points on edge of ROI
n-by-2 array

Locations of points on edge of the ROI, returned as the comma-separated pair consisting
of 'Vertices' and an n-by-2 array.

This property is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as the comma-separated pair consisting of 'Visible' and one of
the values in this table.

Value Description
'on' Specify this value to display the ROI

(default).
'off' Specify this value to hide the ROI without

deleting it. You still can access the
properties of an invisible ROI.

Output Arguments
h — Rectangular ROI
images.roi.Rectangle object

1 Functions — Alphabetical List

1-692

Rectangular ROI, returned as an images.roi.Rectangle object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. The rectangle has
vertices at each corner and at the
midpoint of each side. To preserve the
aspect ratio while resizing, press the
Shift key. To lock the aspect ratio, use
the Fix Aspect Ratio in the right-click
context menu.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

See Also
drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpoint | drawpolygon | drawpolyline | images.roi.Rectangle

Topics
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawrectangle

1-693

edge
Find edges in intensity image

Syntax
BW = edge(I)
BW = edge(I,method)
BW = edge(I,method,threshold)
BW = edge(I,method,threshold,direction)
BW = edge(___ ,'nothinning')
BW = edge(I,method,threshold,sigma)
BW = edge(I,method,threshold,h)

[BW,threshOut] = edge(___)
[BW,threshOut,Gv,Gh] = edge(___)

Description
BW = edge(I) returns a binary image BW containing 1s where the function finds edges
in the input image I and 0s elsewhere. By default, edge uses the Sobel edge detection
method.

You optionally can find edges using a GPU (requires Parallel Computing Toolbox). For
more information, see “Image Processing on a GPU”.

BW = edge(I,method) detects edges in image I using the edge-detection algorithm
specified by method.

BW = edge(I,method,threshold) returns all edges that are stronger than
threshold.

BW = edge(I,method,threshold,direction) specifies the orientation of edges to
detect. The Sobel and Prewitt methods can detect edges in the vertical direction,
horizontal direction, or both. The Roberts method can detect edges at angles of 45° from
horizontal, 135° from horizontal, or both. This syntax is valid only when method is
'Sobel', 'Prewitt', or 'Roberts'.

1 Functions — Alphabetical List

1-694

BW = edge(___ ,'nothinning') skips the edge-thinning stage, which can improve
performance. This syntax is valid only when method is 'Sobel', 'Prewitt', or
'Roberts'.

BW = edge(I,method,threshold,sigma) specifies sigma, the standard deviation of
the filter. This syntax is valid only when method is 'log' or 'Canny'.

BW = edge(I,method,threshold,h) detects edges using the 'zerocross' method
with a filter, h, that you specify. This syntax is valid only when method is 'zerocross'.

[BW,threshOut] = edge(___) also returns the threshold value.

[BW,threshOut,Gv,Gh] = edge(___) also returns the directional gradient
magnitudes. For the Sobel and Prewitt methods, Gv and Gh correspond to the vertical and
horizontal gradients. For the Roberts methods, Gv and Gh correspond to the gradient at
angles of 45° and 135° from horizontal, respectively. This syntax is valid only when
method is 'Sobel', 'Prewitt', or 'Roberts'.

Examples

Compare Edge Detection Using Canny and Prewitt Methods

Read a grayscale image into the workspace and display it.

I = imread('circuit.tif');
imshow(I)

 edge

1-695

Find edges using the Canny method.

BW1 = edge(I,'Canny');

Find edges using the Prewitt method.

BW2 = edge(I,'Prewitt');

Display both results side-by-side.

imshowpair(BW1,BW2,'montage')

1 Functions — Alphabetical List

1-696

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

Input image, specified as a 2-D grayscale image or 2-D binary image.

For the 'approxcanny' method, images of data type single or double must be
normalized in the range [0 1].
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Edge detection method
'Sobel' (default) | 'Prewitt' | 'Roberts' | 'log' | 'zerocross' | 'Canny' |
'approxcanny'

Edge detection method, specified as one of the following.

 edge

1-697

Method Description
'Sobel' Finds edges at those points where the gradient of the image I is

maximum, using the Sobel approximation to the derivative.
'Prewitt' Finds edges at those points where the gradient of I is maximum,

using the Prewitt approximation to the derivative.
'Roberts' Finds edges at those points where the gradient of I is maximum,

using the Roberts approximation to the derivative.
'log' Finds edges by looking for zero-crossings after filtering I with a

Laplacian of Gaussian (LoG) filter.
'zerocross' Finds edges by looking for zero-crossings after filtering I with a

filter that you specify, h
'Canny' Finds edges by looking for local maxima of the gradient of I. The

edge function calculates the gradient using the derivative of a
Gaussian filter. This method uses two thresholds to detect strong
and weak edges, including weak edges in the output if they are
connected to strong edges. By using two thresholds, the Canny
method is less likely than the other methods to be fooled by noise,
and more likely to detect true weak edges.

'approxcanny' Finds edges using an approximate version of the Canny edge
detection algorithm that provides faster execution time at the
expense of less precise detection. Floating point images are
expected to be normalized in the range [0 1].

Note The 'Canny' and 'approxcanny' methods are not supported on a GPU.

threshold — Sensitivity threshold
numeric scalar | 2-element vector | []

Sensitivity threshold, specified as a numeric scalar for any method, or a 2-element vector
for the 'Canny' and 'approxcanny' methods. edge ignores all edges that are not
stronger than threshold. For more information about this parameter, see “Algorithm” on
page 1-701.

• If you do not specify threshold, or if you specify an empty array ([]), then edge
chooses the value or values automatically.

1 Functions — Alphabetical List

1-698

• For the 'log' and 'zerocross' methods, if you specify the threshold value 0, then
the output image has closed contours because it includes all the zero-crossings in the
input image.

• The 'Canny' and 'approxcanny' methods use two thresholds. edge disregards all
edges with edge strength below the lower threshold, and preserves all edges with
edge strength above the higher threshold. You can specify threshold as a 2-element
vector of the form [low high] with low and high values in the range [0 1]. You can
also specify threshold as a numeric scalar, which edge assigns to the higher
threshold. In this case, edge uses threshold*0.4 as the lower threshold.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

direction — Direction of edges to detect
'both' (default) | 'horizontal' | 'vertical'

Direction of edges to detect, specified as 'horizontal', 'vertical', or 'both'. The
direction argument is only valid when the method is 'Sobel', 'Prewitt', or
'Roberts'.

Note If you select the Roberts method, then the 'horizontal' direction actually
detects edges at an angle of 135° from horizontal, and the 'vertical' direction detects
edges at an angle of 45° from horizontal.

Data Types: char | string

h — Filter
matrix

Filter, specified as a matrix. The h argument is supported by the 'zerocross' method
only.
Data Types: double

sigma — Standard deviation of the filter
scalar

Standard deviation of the filter, specified as a scalar. The sigma argument is supported by
the 'Canny' and 'log' methods only.

 edge

1-699

Method Description
'Canny' Scalar value that specifies the standard deviation of the

Gaussian filter. The default is sqrt(2). edge chooses the size
of the filter automatically, based on sigma.

'log' (Laplacian of
Gaussian)

Scalar value that specifies the standard deviation of the
Laplacian of Gaussian filter. The default is 2. The size of the
filter is n-by-n, where n=ceil(sigma*3)*2+1.

Data Types: double

Output Arguments
BW — Output binary image
logical array

Output binary image, returned as a logical array of the same size as I, with 1s where the
function finds edges in I and 0s elsewhere.

threshOut — Threshold value used in the computation
numeric scalar | 2-element vector | []

Threshold value used in the computation, returned as a 2-element vector for the 'Canny'
method, an empty vector ([]) for the 'approxcanny' method, or a numeric scalar for
all other edge detection methods.

Gv — Vertical gradient
numeric array | gpuArray

Vertical gradient, returned as a numeric array of the same size as I.

Note If you select the Roberts method, then edge returns the gradient calculated at an
angle of 45° from horizontal.

Gh — Horizontal gradient
numeric array | gpuArray

Horizontal gradient, returned as a numeric array of the same size as I.

1 Functions — Alphabetical List

1-700

Note If you select the Roberts method, then edge returns the gradient calculated at an
angle of 135° from horizontal.

Algorithms
• For the gradient-magnitude edge detection methods (Sobel, Prewitt, Roberts), edge

uses threshold to threshold the calculated gradient magnitude.
• For the zero-crossing methods, including Laplacian of Gaussian, edge uses

threshold as a threshold for the zero-crossings. In other words, a large jump across
zero is an edge, while a small jump is not.

• The Canny method applies two thresholds to the gradient: a high threshold for low
edge sensitivity and a low threshold for high edge sensitivity. edge starts with the low
sensitivity result and then grows it to include connected edge pixels from the high
sensitivity result. This helps fill in gaps in the detected edges.

• In all cases, edge chooses the default threshold heuristically, depending on the input
data. The best way to vary the threshold is to run edge once, capturing the calculated
threshold as the second output argument. Then, starting from the value calculated by
edge, adjust the threshold higher to detect fewer edge pixels, or lower to detect more
edge pixels.

Compatibility Considerations

edge Uses New Algorithm for Canny Method
Behavior changed in R2011a

The function edge changed in Version 7.2 (R2011a). Previous versions of the Image
Processing Toolbox used a different algorithm for the Canny method. If you need the same
results produced by the previous implementation, use the following syntax: BW =
edge(I,'canny_old',___)

References
[1] Canny, John, "A Computational Approach to Edge Detection," IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, 1986, pp. 679-698.

 edge

1-701

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,
Prentice Hall, 1990, pp. 478-488.

[3] Parker, James R., Algorithms for Image Processing and Computer Vision, New York,
John Wiley & Sons, Inc., 1997, pp. 23-29.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• edge supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, edge generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• The method, direction, and sigma arguments must be compile-time constants.
• Nonprogrammatic syntaxes are not supported. For example, if you do not specify a

return value, then edge displays an image. This syntax is not supported with code
generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'Canny' and 'approxcanny' methods are not supported on a GPU.

For more information, see “Image Processing on a GPU”.

1 Functions — Alphabetical List

1-702

See Also
fspecial | imgradient | imgradientxy

Introduced before R2006a

 edge

1-703

edge3
Find edges in 3-D intensity volume

Syntax
BW = edge3(V,'approxcanny',thresh)
BW = edge3(V,'approxcanny',thresh,sigma)
BW = edge3(V,'Sobel',thresh)
BW = edge3(V,'Sobel',thresh,'nothinning')

Description
BW = edge3(V,'approxcanny',thresh) returns the edges found in the intensity or a
binary volume V using the approximate Canny method. The approximate Canny method
finds edges by looking for local maxima of the gradient of V. edge3 calculates the
gradient using the derivative of a Gaussian smoothed volume.

For the approximate Canny method, thresh is a two-element vector in which the first
element is the low threshold, and the second element is the high threshold, [lowthresh
highthresh]. If you specify a scalar for thresh, edge3 uses this value for the high
threshold and 0.4*thresh for the low threshold.

The approximate Canny method uses two thresholds to detect strong and weak edges,
and includes the weak edges in the output only if they are connected to strong edges.
This method is more likely than the Sobel method to detect true weak edges.

BW = edge3(V,'approxcanny',thresh,sigma) returns the edges found in the
intensity or binary volume V, where sigma is a scalar that specifies the standard
deviation of the Gaussian smoothing filter. sigma can also be a 1-by-3 vector,
[SigmaX,SigmaY,SigmaZ], specifying different standard deviations in each direction.
For anisotropic volumes that have different scales in each direction, use multiple sigma
values. By default, sigma is sqrt(2) and is isotropic. edge3 chooses the size of the filter
automatically, based on sigma.

1 Functions — Alphabetical List

1-704

BW = edge3(V,'Sobel',thresh) accepts an intensity or a binary volume V and
returns a binary volume BW, that is the same size as V, with 1s where the function finds
edges in V and 0s elsewhere.

The Sobel method finds edges using the Sobel approximation to the derivative. It returns
edges at those points where the gradient of V is maximum.

thresh is a scalar that specifies the sensitivity threshold for the Sobel method. edge3
ignores all edges that are not stronger than thresh.

BW = edge3(V,'Sobel',thresh,'nothinning') speeds up the operation of the
algorithm by skipping the additional edge-thinning stage. By default, or when
'thinning' is specified, the algorithm applies edge thinning.

Examples

Detect Edges of MRI Volume Using Approximate Canny Method

Load volumetric data and remove any singleton dimensions.

load mri
V = squeeze(D);

View the volume using volshow.

volshow(V);

 edge3

1-705

Detect edges in the volume using edge3 with the approximate Canny method.

BW = edge3(V,'approxcanny',0.6);

View the detected edges using volshow.

volshow(BW);

1 Functions — Alphabetical List

1-706

Input Arguments
V — Input volume
nonsparse 3-D numeric array

Input volume, specified as a nonsparse 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

thresh — Sensitivity threshold
scalar | 1-by-2 numeric vector

 edge3

1-707

Sensitivity threshold, specified as a scalar or, for approximate Canny, a 1-by-2 numeric
vector of the form [lowthresh highthresh]. If you specify a scalar, edge3 uses this
value for the high threshold and 0.4*thresh for the low threshold.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

sigma — Standard deviation of the Gaussian filter
scalar | 1-by-3 numeric vector

Standard deviation of the Gaussian filter, specified as a scalar or a 1-by-3 numeric vector
of the form [SigmaX SigmaY SigmaZ].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
BW — Binary volume containing 1s indicating edges and 0s elsewhere
3-D numeric array

Binary volume containing 1s indicating edges and 0s elsewhere, returned as a 3-D
numeric array, the same size as V.

See Also
edge

Introduced in R2017b

1 Functions — Alphabetical List

1-708

edgetaper
Taper discontinuities along image edges

Syntax
J = edgetaper(I,PSF)

Description
J = edgetaper(I,PSF) blurs the edges of the input image I using the point spread
function PSF.

The output image J is the weighted sum of the original image I and its blurred version.
The weighting array, determined by the autocorrelation function of PSF, makes J equal to
I in its central region, and equal to the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring methods that use
the discrete Fourier transform, such as deconvwnr, deconvreg, and deconvlucy.

Examples

Blur the Edges of an Image

original = imread('cameraman.tif');
PSF = fspecial('gaussian',60,10);
edgesTapered = edgetaper(original,PSF);
figure, imshow(original,[]);

 edgetaper

1-709

figure, imshow(edgesTapered,[]);

1 Functions — Alphabetical List

1-710

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array.
Data Types: single | double | int16 | uint8 | uint16

PSF — Point spread function
numeric array

Point spread function, specified as a numeric array. The size of the PSF cannot exceed half
of the image size in any dimension.
Data Types: single | double | int16 | uint8 | uint16

 edgetaper

1-711

Output Arguments
J — Weighted sum of original image and its blurred version
numeric array

Weighted sum of original image and its blurred version, returned as a numeric array the
same size and class as I. The weighting array, determined by the autocorrelation function
of PSF, makes J equal to I in its central region, and equal to the blurred version of I near
the edges.

See Also
deconvlucy | deconvreg | deconvwnr | otf2psf | padarray | psf2otf

Introduced before R2006a

1 Functions — Alphabetical List

1-712

entropy
Entropy of grayscale image

Syntax
e = entropy(I)

Description
e = entropy(I) returns e, a scalar value representing the entropy of grayscale image
I.

Examples

Calculate Entropy of Grayscale Image

Read image into the workspace.

I = imread('circuit.tif');

Calculate the entropy.

J = entropy(I)

J = 6.9439

Input Arguments
I — Grayscale image
real, nonsparse numeric array

 entropy

1-713

Grayscale image, specified as a real, nonsparse numeric array. I can have any dimension.
If I has more than two dimensions, entropyfilt treats it as a multidimensional
grayscale image and not as a truecolor (RGB) image.
Data Types: double | uint8 | uint16 | uint32 | logical

Output Arguments
e — Entropy
numeric scalar

Entropy of image I, returned as a numeric scalar.
Data Types: double

Definitions

Entropy
Entropy is a statistical measure of randomness that can be used to characterize the
texture of the input image.

Entropy is defined as -sum(p.*log2(p)), where p contains the normalized histogram
counts returned from imhist.

Tips
• By default, entropy uses two bins for logical arrays and 256 bins for uint8, uint16,

or double arrays. entropy converts any class other than logical to uint8 for the
histogram count calculation so that the pixel values are discrete and directly
correspond to a bin value.

References
[1] Gonzalez, R.C., R.E. Woods, S.L. Eddins, Digital Image Processing Using MATLAB,

New Jersey, Prentice Hall, 2003, Chapter 11.

1 Functions — Alphabetical List

1-714

See Also
entropyfilt | imhist

Introduced before R2006a

 entropy

1-715

entropyfilt
Local entropy of grayscale image

Syntax
J = entropyfilt(I)
J = entropyfilt(I,nhood)

Description
J = entropyfilt(I) returns the array J, where each output pixel contains the entropy
value of the 9-by-9 neighborhood around the corresponding pixel in the input image I.

For pixels on the borders of I, entropyfilt uses symmetric padding. In symmetric
padding, the values of padding pixels are a mirror reflection of the border pixels in I.

J = entropyfilt(I,nhood) performs entropy filtering of the input image I where you
specify the neighborhood in nhood. nhood is a multidimensional array of zeros and ones
where the nonzero elements specify the neighbors.

Examples

Perform Entropy Filtering

This example shows how to perform entropy filtering using entropyfilt. Brighter pixels
in the filtered image correspond to neighborhoods in the original image with higher
entropy.

Read an image into the workspace.

I = imread('circuit.tif');

Perform entropy filtering using entropyfilt.

J = entropyfilt(I);

1 Functions — Alphabetical List

1-716

Show the original image and the processed image.

imshow(I)
title('Original Image')

figure
imshow(J,[])
title('Result of Entropy Filtering')

 entropyfilt

1-717

Input Arguments
I — Image to be filtered
real, nonsparse numeric array

Image to be filtered, specified as a real, nonsparse numeric array. I can have any
dimension. If I has more than two dimensions, entropyfilt treats it as a
multidimensional grayscale image and not as a truecolor (RGB) image.
Data Types: double | uint8 | uint16 | uint32 | logical

nhood — Neighborhood
true(9) (default) | multidimensional, logical or numeric array containing zeros and ones

1 Functions — Alphabetical List

1-718

Neighborhood, specified as a multidimensional, logical or numeric array containing zeros
and ones. The size of nhood must be odd in each dimension.

By default, entropyfilt uses the neighborhood true(9). entropyfilt determines
the center element of the neighborhood by floor((size(NHOOD) + 1)/2).

To specify neighborhoods of other shapes, such as a disk, use the strel function to
create a structuring element object of the desired shape. Then, extract the neighborhood
from the structuring element object’s neighborhood property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array the same size as the input image and of class
double.

Algorithms
entropyfilt converts any class other than logical to uint8 for the histogram count
calculation so that the pixel values are discrete and directly correspond to a bin value.

References
[1] Gonzalez, R.C., R.E. Woods, S.L. Eddins, Digital Image Processing Using MATLAB,

New Jersey, Prentice Hall, 2003, Chapter 11.

See Also
entropy | imhist | rangefilt | stdfilt

Topics
“What Is Image Filtering in the Spatial Domain?”

 entropyfilt

1-719

Introduced before R2006a

1 Functions — Alphabetical List

1-720

esfrChart
Imatest® edge spatial frequency response (eSFR) test chart

Description
An esfrChart object stores the positions and measurements of regions of interest of the
Enhanced Imatest® edge spatial frequency response (eSFR) test chart.

The Enhanced eSFR test chart is an extended version of the ISO 12233:2014 standard
test chart [2].

Creation

Syntax
chart = esfrChart(A)
chart = esfrChart(A,'Sensitivity',s)
chart = esfrChart(A,'RegistrationPoints',p)

Description
chart = esfrChart(A) creates an esfrChart object and sets the Image on page
1-0 property from input image A.

chart = esfrChart(A,'Sensitivity',s) creates an esfrChart object, using
sensitivity s during chart import.

chart = esfrChart(A,'RegistrationPoints',p) creates an esfrChart object
and sets the RegistrationPoints property from points in argument p.

Input Arguments
s — Sensitivity
0.5 (default) | numeric scalar in the range [0, 1]

 esfrChart

1-721

https://www.imatest.com/mathworks/esfr/

Sensitivity of chart detection, specified as a numeric scalar in the range [0, 1]. If you set a
high sensitivity value, the esfrChart model detects more points of interest with which to
register the test chart image.
Data Types: single | double

Properties
Image — Test chart image
m-by-n-by-3 RGB image

Test chart image, specified as an m-by-n-by-3 RGB image.
Data Types: single | double | uint8 | uint16

SlantedEdgeROIs — Position and intensity values of slanted edges
60-by-1 vector of structures

Position and intensity values of slanted edges, specified as a 60-by-1 vector of structures.
Each element in the vector corresponds to one ROI and contains the following fields:

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector

has the form [X Y Width Height]. X and Y are the coordinates
of the top-left corner of the ROI. Width and Height are the width
and height of the ROI, in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array
has dimensions Height-by-Width-by-3. The data type of
ROIIntensity matches the data type of the Image on page 1-
0 property.

GrayROIs — Position and intensity values of gray patches
20-by-1 vector of structures

Position and intensity values of gray patches, specified as a 20-by-1 vector of structures.
Each element in the vector corresponds to one ROI and contains the following fields:

1 Functions — Alphabetical List

1-722

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector

has the form [X Y Width Height]. X and Y are the coordinates
of the top-left corner of the ROI. Width and Height are the width
and height of the ROI, in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array
has dimensions Height-by-Width-by-3. The data type of
ROIIntensity matches the data type of the Image on page 1-
0 property.

ColorROIs — Position and intensity values of color patches
16-by-1 vector of structures

Position and intensity values of color patches, specified as a 16-by-1 vector of structures.
Each element in the vector corresponds to one ROI and contains the following fields:

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector

has the form [X Y Width Height]. X and Y are the coordinates
of the top-left corner of the ROI. Width and Height are the width
and height of the ROI, in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array
has dimensions Height-by-Width-by-3. The data type of
ROIIntensity matches the data type of the Image on page 1-
0 property.

RegistrationPoints — Position of registration points
4-by-2 numeric matrix

Position of registration points used to orient the image, specified as a 4-by-2 numeric
matrix. The four rows correspond to the top-left, top-right, bottom-right, and bottom-left
registration points, respectively. The two columns represent pixel coordinates in [x, y]
format.
Data Types: double

ReferenceGrayLab — Reference values of gray ROIs
20-by-3 numeric matrix

 esfrChart

1-723

Reference values of gray ROIs in the CIE 1976 L*a*b* color space, specified as a 20-by-3
numeric matrix. The three columns contain the L*, a*, and b* values of the gray patches,
respectively. The rows contain the reference intensities of the 20 gray ROIs, in the same
sequential order.

Note The esfrChart object includes default CIE 1976 L*a*b* values for the gray ROIs.
However, the actual reference values can vary depending on several factors, such as print
quality.

Data Types: double

ReferenceColorLab — Reference values of color ROIs
16-by-3 numeric matrix

Reference values of color ROIs in the CIE 1976 L*a*b* color space, specified as a 16-by-3
numeric matrix. The three columns contain the L*, a*, and b* values of the color patches,
respectively. The rows contain the reference intensities of the 16 color ROIs, in the same
sequential order.

Note The esfrChart object includes default CIE 1976 L*a*b* values for the color ROIs.
However, the actual reference values can vary depending on several factors, such as print
quality. Accurate reference color values result in more faithful color reproduction
measurements.

Data Types: double

Object Functions
measureSharpness Measure spatial frequency response using Imatest®

eSFR chart
measureChromaticAberration Measure chromatic aberration at slanted edges using

Imatest® eSFR chart
measureNoise Measure noise using Imatest® eSFR chart
measureColor Measure color reproduction using Imatest® eSFR chart
measureIlluminant Measure scene illuminant using Imatest® eSFR chart
displayChart Display Imatest® eSFR chart with overlaid regions of

interest

1 Functions — Alphabetical List

1-724

Examples

Create an eSFR Chart Object from a Test Image

Read an image of an eSFR chart into the workspace. Display the image.

I = imread('eSFRTestImage.jpg');
figure
imshow(I)
title('Captured Image of eSFR Chart')
text(size(I,2),size(I,1)+15, ...
 ['Chart courtesy of Imatest',char(174)],'FontSize',10,'HorizontalAlignment','right');

Linearize the image. The displayed chart will appear darker because the image no longer
has gamma correction.

I_lin = rgb2lin(I);

 esfrChart

1-725

Create an esfrChart object using the linearized chart image. Specify the sensitivity that
the esfrChart model uses to detect the points with which to register the chart image.

chart = esfrChart(I_lin,'Sensitivity',0.6)

chart =
 esfrChart with properties:

 Image: [1836x3084x3 uint8]
 SlantedEdgeROIs: [60x1 struct]
 GrayROIs: [20x1 struct]
 ColorROIs: [16x1 struct]
 RegistrationPoints: [4x2 double]
 ReferenceGrayLab: [20x3 double]
 ReferenceColorLab: [16x3 double]

Display the imported eSFR chart. Regions of interest (ROI) are highlighted and labeled.

displayChart(chart)

1 Functions — Alphabetical List

1-726

The chart is imported correctly. All 60 slanted edge ROIs (labeled with green numbers)
are visible and centered on appropriate edges. 20 gray patch ROIs (labeled in red) and 16
color patch ROIs (labeled in white) are visible and are contained within the boundary of
each patch.

Create eSFR Chart Object Using Specified Registration Points

Create an esfrChart object by specifying the coordinates of the four registration points.
Registration points are located at the center of the black-and-white checkered circles.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Display the image and configure it to collect four registration points.

 esfrChart

1-727

figure
imshow(I)
[X, Y] = ginput(4);

Click the registration points in this order: top-left, top-right, bottom-right, bottom-left.

Create an esfrChart object, specifying the four registration points. Display the imported
eSFR chart. Regions of interest are highlighted and labeled. The registration points
appear in red.

chart = esfrChart(I,'RegistrationPoints',[X, Y]);
displayChart(chart);

Tips
• For accurate and reliable results, acquire an image of the test chart according to

standard specifications outlined in the ISO standard and by the manufacturer [1] [2].
As a simple guideline, align the chart horizontally on a light background. Cover over
90% of the field of view with the chart, but ensure that the top and bottom edges of
the chart are still visible. For reliable measurements, set the minimum image width to
at least 500 pixels.

• You can capture an image of the eSFR test chart at the full 16:9 aspect ratio, or at an
aspect ratio of 3:2 or 4:3, as specified on the chart.

• To ensure that the chart is properly imported, visually verify the test chart image using
the displayChart function.

References
[1] ISO 12233:2014. "Photography – Electronic still picture imaging – Resolution and

spatial frequency responses." International Organization for Standardization;
ISO/TC 42 Photography. URL: https://www.iso.org/standard/59419.html.

[2] Using eSFR ISO Part 1. URL: https://www.imatest.com/docs/esfriso_instructions.

See Also
displayColorPatch | plotChromaticity | plotSFR

1 Functions — Alphabetical List

1-728

https://www.iso.org/standard/59419.html
https://www.imatest.com/docs/esfriso_instructions

Topics
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

 esfrChart

1-729

fan2para
Convert fan-beam projections to parallel-beam

Syntax
P = fan2para(F,D)
P = fan2para(F,D,Name,Value)
[P,parallel_sensor_positions,parallel_rotation_angles] = fan2para(
___)

Description
P = fan2para(F,D) converts the fan-beam data F to the parallel-beam data P. Each
column of F contains the fan-beam data at one rotation angle. D is the distance from the
fan-beam vertex to the center of rotation.

P = fan2para(F,D,Name,Value) uses name-value pairs to control aspects of the data
conversion. Argument names can be abbreviated, and case does not matter.

[P,parallel_sensor_positions,parallel_rotation_angles] = fan2para(
___) returns the parallel-beam sensor locations in parallel_sensor_positions and
rotation angles in parallel_rotation_angles.

Examples

Recover Parallel-beam Data from Fan-beam Data

Create synthetic parallel-beam data.

ph = phantom(128);

Calculate the parallel beam transform and display it.

theta = 0:179;
[Psynthetic,xp] = radon(ph,theta);

1 Functions — Alphabetical List

1-730

imshow(Psynthetic,[],...
 'XData',theta,'YData',xp,'InitialMagnification','fit')
axis normal
title('Synthetic Parallel-Beam Data')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

Convert the parallel-beam data to fan-beam.

Fsynthetic = para2fan(Psynthetic,100,'FanSensorSpacing',1);

Recover original parallel-beam data.

 fan2para

1-731

[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
 'FanSensorSpacing',1,...
 'ParallelSensorSpacing',1);
figure
imshow(Precovered,[],...
 'XData',Pangles,'YData',Ploc,'InitialMagnification','fit')
axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(gca,hot), colorbar

1 Functions — Alphabetical List

1-732

Input Arguments
F — Fan-beam projection data
numeric matrix

Fan-beam projection data, specified as a numeric matrix. Each column of F contains the
fan-beam data at one rotation angle. The number of columns indicates the number of fan-
beam rotation angles and the number of rows indicates the number of fan-beam sensors.
Data Types: double | single

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a
positive number. fan2para assumes that the center of rotation is the center point of the
projections, which is defined as ceil(size(F,1)/2). The figure illustrates D in relation
to the fan-beam vertex for one fan-beam projection.

Data Types: double | single

 fan2para

1-733

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: P = fan2para(F,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of
'FanCoverage' and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair
consisting of 'FanRotationIncrement' and a positive scalar.

Data Types: double

1 Functions — Alphabetical List

1-734

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal

angles along a circular arc at
distance D from the center of
rotation.

FanSensorSpacing defines the
angular spacing in degrees.

 fan2para

1-735

Value Meaning Diagram
'line' Sensors are spaced at equal

distances along a line that is
parallel to the x' axis. The closest
sensor is distance D from the
center of rotation.

FanSensorSpacing defines the
distance between fan-beams on
the x' axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

Fan-bean sensor spacing, specified as the comma-separated pair consisting of
'FanSensorSpacing' and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular
spacing in degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear
distance between fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the
comma-separated pair consisting of 'Interpolation' and one of these values.

1 Functions — Alphabetical List

1-736

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

ParallelCoverage — Range of parallel-beam rotation
'halfcycle' (default) | 'cycle

Range of parallel-beam rotation, specified as the comma-separated pair consisting of
'ParallelCoverage' and one of these values.

• 'cycle' — Parallel data covers the full range of [0, 360) degrees.
• 'halfcycle' — Parallel data covers [0, 180) degrees.

ParallelRotationIncrement — Parallel-beam rotation angle increment
positive scalar

Parallel-beam rotation angle increment in degrees, specified as the comma-separated pair
consisting of 'ParallelRotationIncrement' and a positive scalar k such that 180/k
is an integer. If you do not specify ParallelRotationIncrement, then the default value
is equal to FanRotationIncrement.
Data Types: double

ParallelSensorSpacing — Parallel-beam sensor spacing
positive scalar

Parallel-beam sensor spacing in pixels, specified as the comma-separated pair consisting
of 'ParallelSensorSpacing' and a positive scalar. The range of parallel-beam sensor
locations is computed from the range of fan angles, fanangles, according to:
[D*sin(min(fanangles)) D*sin(max(fanangles))].

If you do not specify ParallelSensorSpacing, then the spacing is assumed to be
uniform and is set to the minimum spacing implied by the fan angles and sampled over
the range implied by the fan angles.
Data Types: double

 fan2para

1-737

Output Arguments
P — Parallel-beam projection data
numeric matrix

Parallel-beam projection data, returned as a numeric matrix. Each column of P contains
the parallel-beam data at one rotation angle. The number of columns indicates the total
number of parallel-beam rotation angles and is equal to the length of
parallel_rotation_angles. The number of rows indicates the total number of
parallel-beam sensors and is equal to the length of parallel_sensor_positions.
Data Types: double

parallel_sensor_positions — Parallel-beam sensor locations
numeric column vector

Parallel-beam sensor locations, returned as a numeric column vector.
Data Types: double

parallel_rotation_angles — Parallel-beam rotation angles
numeric row vector

Parallel-beam rotation angles, returned as a numeric row vector.
Data Types: double

See Also
fanbeam | ifanbeam | iradon | para2fan | phantom | radon

Introduced before R2006a

1 Functions — Alphabetical List

1-738

fanbeam
Fan-beam transform

Syntax
F = fanbeam(I,D)
F = fanbeam(I,D,Name,Value)
[F,fan_sensor_positions,fan_rotation_angles] = fanbeam(___)

Description
F = fanbeam(I,D) computes the fan-beam projection data (sinogram) F from the image
I. Each column of F contains fan-beam projection data at one rotation angle. D is the
distance from the fan-beam vertex to the center of rotation.

F = fanbeam(I,D,Name,Value) uses name-value pairs to specify the rotation
increment and sensor spacing. Argument names can be abbreviated, and case does not
matter.

[F,fan_sensor_positions,fan_rotation_angles] = fanbeam(___) returns the
location of fan-beam sensors in fan_sensor_positions and the rotation angles where
the fan-beam projections are calculated in fan_rotation_angles.

Examples

Compute Fan-beam Projections for Rotation Angles Over Entire Image

Set the IPT preference to make the axes visible.

iptsetpref('ImshowAxesVisible','on')

Create a sample image and display it.

ph = phantom(128);
imshow(ph)

 fanbeam

1-739

Calculate the fanbeam projections and display them.

[F,Fpos,Fangles] = fanbeam(ph,250);
figure
imshow(F,[],'XData',Fangles,'YData',Fpos,...
 'InitialMagnification','fit')
axis normal
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(gca,hot), colorbar

1 Functions — Alphabetical List

1-740

Compute Radon and Fan-beam Projections and Compare Results

Compute fan-beam projections for 'arc' geometry.

I = ones(100);
D = 200;
dtheta = 45;
[Farc,FposArcDeg,Fangles] = fanbeam(I,D,...
 'FanSensorGeometry','arc',...
 'FanRotationIncrement',dtheta);

Convert angular positions to linear distance along x-prime axis.

 fanbeam

1-741

FposArc = D*tan(FposArcDeg*pi/180);

Compute fan-beam projections for 'line' geometry.

[Fline,FposLine] = fanbeam(I,D,...
 'FanSensorGeometry','line',...
 'FanRotationIncrement',dtheta);

Compute the corresponding Radon transform.

[R,Rpos]=radon(I,Fangles);

Display the three projections at one particular rotation angle. Note the three are very
similar. Differences are due to the geometry of the sampling, and the numerical
approximations used in the calculations.

figure
idx = find(Fangles==45);
plot(Rpos,R(:,idx),...
 FposArc,Farc(:,idx),...
 FposLine,Fline(:,idx))
legend('Radon','Arc','Line')

1 Functions — Alphabetical List

1-742

Input Arguments
I — Input image
2-D numeric matrix | 2-D logical matrix

Input image, specified as a 2-D numeric or logical matrix.

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a
positive number. The center of rotation is the center pixel of the image, defined as

 fanbeam

1-743

floor((size(I)+1)/2). D must be large enough to ensure that the fan-beam vertex is
outside of the image at all rotation angles. See “Tips” on page 1-747 for guidelines on
specifying D. The figure illustrates D in relation to the fan-beam vertex for one fan-beam
geometry.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: F = fanbeam(I,D,'FanRotationIncrement',5)

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair
consisting of 'FanRotationIncrement' and a positive scalar.

1 Functions — Alphabetical List

1-744

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal

angles along a circular arc at
distance D from the center of
rotation.

FanSensorSpacing defines the
angular spacing in degrees.

 fanbeam

1-745

Value Meaning Diagram
'line' Sensors are spaced at equal

distances along a line that is
parallel to the x' axis. The closest
sensor is distance D from the
center of rotation.

FanSensorSpacing defines the
distance between fan-beams on
the x' axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

Fan-bean sensor spacing, specified as the comma-separated pair consisting of
'FanSensorSpacing' and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular
spacing in degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear
distance between fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Output Arguments
F — Fan-beam projection data
numsensors-by-numangles numeric matrix

1 Functions — Alphabetical List

1-746

Fan-beam projection data, returned as a numsensors-by-numangles numeric matrix.
numsensors is the number of fan-beam sensors and numangles is the number of fan-beam
rotation angles. Each column of F contains the fan-beam sensor samples at one rotation
angle.
Data Types: double

fan_sensor_positions — Location of fan-beam sensors
numsensors-by-1 numeric vector

Location of fan-beam sensors, returned as a numsensors-by-1 numeric vector.

• If FanSensorGeometry is 'arc' (the default), then fan_sensor_positions
contains the fan-beam spread angles.

• If FanSensorGeometry is 'line', then fan_sensor_positions contains the fan-
beam sensor positions along the x' axis. See FanSensorSpacing for more
information.

fanbeam determines the number of sensors by calculating how many beams are required
to cover the entire image for any rotation angle. Fewer sensors are required to cover the
image when the distance D between the fan-beam vertex and the center of rotation is
large.
Data Types: double

fan_rotation_angles — Rotation angle of fan-beam sensors
1-by-numangles numeric vector

Rotation angle of fan-beam sensors, returned as a 1-by-numangles numeric vector.
numangles is 360/FanRotationIncrement.
Data Types: double

Tips
As a guideline, try making D a few pixels larger than half the image diagonal dimension,
calculated as follows.

sqrt(size(I,1)^2 + size(I,2)^2)

The values returned in F are a numerical approximation of the fan-beam projections. The
algorithm depends on the Radon transform, interpolated to the fan-beam geometry. The

 fanbeam

1-747

results vary depending on the parameters used. You can expect more accurate results
when the image is larger, D is larger, and for points closer to the middle of the image,
away from the edges.

References
[1] Kak, A.C., & Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press,

NY, 1988, pp. 92-93.

See Also
fan2para | ifanbeam | iradon | para2fan | phantom | radon

Introduced before R2006a

1 Functions — Alphabetical List

1-748

fibermetric
Enhance elongated or tubular structures in image

Syntax
B = fibermetric(A)
B = fibermetric(A,thickness)
B = fibermetric(___ ,Name,Value)

Description
B = fibermetric(A) enhances elongated or tubular structures in intensity image A
using Hessian-based multiscale filtering. The image returned, B, contains the maximum
response of the filter at a thickness that approximately matches the size of the tubular
structure in the image.

B = fibermetric(A,thickness) enhances elongated or tubular structures in
intensity image A, where thickness specifies the thickness of the tubular structures.

B = fibermetric(___ ,Name,Value) enhances the tubular structures in the image
using name-value pairs to control different aspects of the filtering algorithm.

Examples

Find Threads Approximately Seven Pixels Thick

Read an image into the workspace that contains tubular structures of varying
thicknesses, and display it.

A = imread('threads.png');
imshow(A)

 fibermetric

1-749

Create an enhanced version of the image that highlights threads that are seven pixels
thick, and display it.

B = fibermetric(A, 7, 'ObjectPolarity', 'dark', 'StructureSensitivity', 7);
figure;

1 Functions — Alphabetical List

1-750

imshow(B);
title('Possible tubular structures 7 pixels thick')

Threshold the enhanced image to create a binary mask image containing the threads with
the specified thickness.

 fibermetric

1-751

C = B > 0.15;
figure;
imshow(C);
title('Thresholded result')

1 Functions — Alphabetical List

1-752

Input Arguments
A — 2-D grayscale image
nonsparse numeric array

2-D grayscale image, specified as a nonsparse numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

thickness — Thickness of tubular structures
vector | scalar

Thickness of tubular structures, specified as a scalar or vector, measured in pixels.
Specify a value on the order of the width of the tubular structures in the image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = fibermetric(A,'StructureSensitivity',15)

StructureSensitivity — Threshold for differentiating the tubular structure
from the background
half the maximum of the Hessian norm of the image (default) | numeric scalar

Threshold for differentiating the tubular structure from the background, specified as the
comma-separated pair consisting of 'StructureSensitivity' and a numeric scalar.
The value depends on the grayscale range of the image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ObjectPolarity — Polarity of the tubular structures with the background
'bright' (default) | 'dark'

Polarity of the tubular structures with the background, specified as the comma-separated
pair consisting of 'ObjectPolarity' and one of the following values:

 fibermetric

1-753

Value Description
'bright' Structure is brighter than the background.
'dark' Structure is darker than the background.

Data Types: char | string

Output Arguments
B — Output image
numeric array

Output image, returned as a numeric array the same size as the input image of class
single.

Tips
• The fibermetric function does not perform segmentation. The function enhances an

image to highlight structures and is typically used as a preprocessing step for
segmentation.

References
[1] Frangi, Alejandro F., et al. Multiscale vessel enhancement filtering. Medical Image

Computing and Computer-Assisted Intervention—MICCAI’98. Springer Berlin
Heidelberg, 1998. 130-137.

See Also
edge | imgradient

Introduced in R2017a

1 Functions — Alphabetical List

1-754

findbounds
Find output bounds for spatial transformation

Syntax
outbounds = findbounds(tform,inbounds)

Description
outbounds = findbounds(tform,inbounds) estimates the output bounds
corresponding to a given spatial transformation and a set of input bounds. tform is a
spatial transformation structure. inbounds is a 2-by-num_dims matrix that specifies the
lower and upper bounds of the output image. outbounds is an estimate of the smallest
rectangular region completely containing the transformed rectangle represented by the
input bounds, and has the same form as inbounds. Since outbounds is only an estimate,
it might not completely contain the transformed input rectangle.

Examples

Calculate Boundaries of Transformed Output Image

Read an image into the workspace, and display the image.

I = imread('cameraman.tif');
figure
imshow(I)

 findbounds

1-755

Create a spatial transformation structure that stretches an image.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);

Calculate the boundaries of the output image, given the size of the input image and the
spatial transformation. The dimensions of the input image are 256-by-256. The
boundaries of the output image reflect the transformation: 256-by-512.

outb = findbounds(T,[0 0;256 256])

outb = 2×2

 0 0
 256 512

Apply the transformation, and display the image.

1 Functions — Alphabetical List

1-756

transformedI = imtransform(I,T);
figure
imshow(transformedI)

 findbounds

1-757

1 Functions — Alphabetical List

1-758

Input Arguments
tform — Spatial transformation
structure

Spatial transformation, specified as a structure (tform).
Data Types: struct

inbounds — Bounds for each dimension of the input image
2-by-num_dims matrix

Bounds for each dimension of the input image, specified as a 2-by-num_dims matrix. The
first row of inbounds specifies the lower bounds for each dimension, and the second row
specifies the upper bounds. num_dims has to be consistent with the ndims_in field of
tform.
Example: outb = findbounds(T,[0 0;256 256]) where input image is 256-by-256.
Data Types: double

Output Arguments
outbounds — Bounds for each dimension of the output image
2-by-num_dims matrix of class double

Bounds for each dimension of the output image (output space bounding box), returned as
a 2-by-num_dims matrix of class double.

Algorithms
1 findbounds first creates a grid of input-space points. These points are at the center,

corners, and middle of each edge in the image.

I = imread('rice.png');
h = imshow(I);
set(h,'AlphaData',0.3);
axis on, grid on
in_points = [...
 0.5000 0.5000

 findbounds

1-759

 0.5000 256.5000
 256.5000 0.5000
 256.5000 256.5000
 0.5000 128.5000
 128.5000 0.5000
 128.5000 128.5000
 128.5000 256.5000
 256.5000 128.5000];
hold on
plot(in_points(:,1),in_points(:,2),'.','MarkerSize',18)
hold off

Grid of Input-Space Points
2 Next, findbounds transforms the grid of input-space points to output space. If

tform contains a forward transformation (a nonempty forward_fcn field), then
findbounds transforms the input-space points using tformfwd. For example:

tform = maketform('affine', ...
 [1.1067 -0.2341 0; 0.5872 1.1769 0; 1000 -300 1]);
out_points = tformfwd(tform, in_points)

 out_points =

 1.0e+03 *

 1.0008 -0.2995
 1.1512 0.0018

1 Functions — Alphabetical List

1-760

 1.2842 -0.3595
 1.4345 -0.0582
 1.0760 -0.1489
 1.1425 -0.3295
 1.2177 -0.1789
 1.2928 -0.0282

If tform does not contain a forward transformation, then findbounds estimates the
output bounds using the Nelder-Mead optimization function fminsearch.

3 Finally, findbounds computes the bounding box of the transformed grid of points.

See Also
tformarray | tformfwd | tforminv

Introduced before R2006a

 findbounds

1-761

fitbrisque
Fit custom model for BRISQUE image quality score

Syntax
model = fitbrisque(imds,opinionScores)

Description
model = fitbrisque(imds,opinionScores) creates a Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) model from a reference image datastore, imds, with
corresponding human perceptual differential mean opinion score (DMOS) values,
opinionScore.

Note To use the fitbrisque function, you must have Statistics and Machine Learning
Toolbox™.

Examples

Calculate BRISQUE Score Using Custom Feature Model

Train a custom BRISQUE model from a set of quality-aware features and corresponding
human opinion scores. Use the custom model to calculate a BRISQUE score for an image
of a natural scene.

Save images from an image datastore. These images all have compression artifacts
resulting from JPEG compression.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

1 Functions — Alphabetical List

1-762

Specify the opinion score for each image. The following differential mean opinion score
(DMOS) values are for illustrative purposes only. They are not real DMOS values obtained
through experimentation.

opinionScores = 100*rand(1,size(imds.Files,1));

Create the custom model of quality-aware features using the image datastore and the
opinion scores. Because the scores are random, the property values will vary.

model = fitbrisque(imds,opinionScores')

Extracting features from 37 images.
..
Completed 4 of 37 images. Time: Calculating...
...
Completed 13 of 37 images. Time: 00:26 of 01:02
...
Completed 23 of 37 images. Time: 00:37 of 00:55
.....Training support vector regressor...

Done.

model =
 brisqueModel with properties:

 Alpha: [35x1 double]
 Bias: 56.2632
 SupportVectors: [35x36 double]
 Kernel: 'gaussian'
 Scale: 0.2717

Read an image of a natural scene that has the same type of distortion as the training
images. Display the image.

I = imread('car1.jpg');
imshow(I)

 fitbrisque

1-763

Calculate the BRISQUE score for the image using the custom model. Display the score.

brisqueI = brisque(I,model);
fprintf('BRISQUE score for the image is %0.4f.\n',brisqueI)

BRISQUE score for the image is 78.7367.

Input Arguments
imds — Reference image datastore
ImageDatastore object

Reference image datastore, specified as an ImageDatastore object. Images within the
datastore must be real, nonsparse, m-by-n or m-by-n-by-3 arrays of data type single,

1 Functions — Alphabetical List

1-764

double, int16, uint8, or uint16. The images must have a known set of distortions
such as compression artifacts, blurring, or noise.

opinionScores — Human opinion scores
numeric vector

Human opinion scores, specified as a numeric vector with values in the range [0, 100].
Each element in opinionScores is the human perceptual DMOS value corresponding to
an image in the datastore imds. The length of opinionScores is equal to the number of
images in imds.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
model — Custom model of image features
brisqueModel object

Custom model of image features, returned as a brisqueModel object. model contains a
support vector regressor (SVR) with a Gaussian kernel trained to predict the BRISQUE
quality score.

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in

the Spatial Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12,
December 2012, pp. 4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality
Evaluation Engine." Presentation at the 45th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2011.

See Also
Functions
brisque | fitniqe | niqe

Objects
brisqueModel

 fitbrisque

1-765

Topics
“Image Quality Metrics”
“Train and Use a No-Reference Quality Assessment Model”

Introduced in R2017b

1 Functions — Alphabetical List

1-766

fitgeotrans
Fit geometric transformation to control point pairs

Syntax
tform = fitgeotrans(movingPoints,fixedPoints,transformationType)
tform = fitgeotrans(movingPoints,fixedPoints,'polynomial',degree)
tform = fitgeotrans(movingPoints,fixedPoints,'pwl')
tform = fitgeotrans(movingPoints,fixedPoints,'lwm',n)

Description
tform = fitgeotrans(movingPoints,fixedPoints,transformationType) takes
the pairs of control points, movingPoints and fixedPoints, and uses them to infer the
geometric transformation specified by transformationType.

tform = fitgeotrans(movingPoints,fixedPoints,'polynomial',degree) fits
a PolynomialTransformation2D object to control point pairs movingPoints and
fixedPoints. Specify the degree of the polynomial transformation degree, which can
be 2, 3, or 4.

tform = fitgeotrans(movingPoints,fixedPoints,'pwl') fits a
PiecewiseLinearTransformation2D object to control point pairs movingPoints and
fixedPoints. This transformation maps control points by breaking up the plane into
local piecewise-linear regions. A different affine transformation maps control points in
each local region.

tform = fitgeotrans(movingPoints,fixedPoints,'lwm',n) fits a
LocalWeightedMeanTransformation2D object to control point pairs movingPoints
and fixedPoints. The local weighted mean transformation creates a mapping, by
inferring a polynomial at each control point using neighboring control points. The
mapping at any location depends on a weighted average of these polynomials. The n
closest points are used to infer a second degree polynomial transformation for each
control point pair.

 fitgeotrans

1-767

Examples

Create Geometric Transformation for Image Alignment

This example shows how to create a geometric transformation that can be used to align
two images.

Create a checkerboard image and rotate it to create a misaligned image.

I = checkerboard(40);
J = imrotate(I,30);
imshowpair(I,J,'montage')

Define some matching control points on the fixed image (the checkerboard) and moving
image (the rotated checkerboard). You can define points interactively using the Control
Point Selection tool.

fixedPoints = [41 41; 281 161];
movingPoints = [56 175; 324 160];

1 Functions — Alphabetical List

1-768

Create a geometric transformation that can be used to align the two images, returned as
an affine2d geometric transformation object.

tform = fitgeotrans(movingPoints,fixedPoints,'NonreflectiveSimilarity')

tform =
 affine2d with properties:

 Dimensionality: 2
 T: [3x3 double]

Use the tform estimate to resample the rotated image to register it with the fixed image.
The regions of color (green and magenta) in the false color overlay image indicate error
in the registration. This error comes from a lack of precise correspondence in the control
points.

Jregistered = imwarp(J,tform,'OutputView',imref2d(size(I)));
figure
imshowpair(I,Jregistered)

 fitgeotrans

1-769

Recover angle and scale of the transformation by checking how a unit vector parallel to
the x-axis is rotated and stretched.

u = [0 1];
v = [0 0];
[x, y] = transformPointsForward(tform, u, v);
dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)

angle = 29.7686

scale = 1 / sqrt(dx^2 + dy^2)

scale = 1.0003

1 Functions — Alphabetical List

1-770

Input Arguments
movingPoints — x- and y-coordinates of control points in the image you want to
transform
m-by-2 double matrix

x- and y-coordinates of control points in the image you want to transform, specified as an
m-by-2 double matrix.
Example: movingPoints = [11 11; 41 71];
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 double matrix

x- and y- coordinates of control points in the fixed image, specified as an m-by-2 double
matrix.
Example: fixedPoints = [14 44; 70 81];
Data Types: double | single

transformationType — Type of transformation
'nonreflectivesimilarity' | 'similarity' | 'affine' | 'projective'

Type of transformation, specified as one of the following:
'nonreflectivesimilarity', 'similarity', 'affine', or 'projective'. For
more information, see “Transformation Types” on page 1-772.
Data Types: char | string

degree — Degree of the polynomial
2 | 3 | 4

Degree of the polynomial, specified as the integer 2, 3, or 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

n — Number of points to use in local weighted mean calculation
numeric value

 fitgeotrans

1-771

Number of points to use in local weighted mean calculation, specified as a numeric value.
n can be as small as 6, but making n small risks generating ill-conditioned polynomials
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
tform — Transformation
transformation object

Transformation, returned as a transformation object. The type of object depends on the
transformation type. For example, if you specify the transformation type 'affine', then
tform is an affine2d object. If you specify 'pwl', then tform is an
image.geotrans.PiecewiseLinearTransformation2d object.

Definitions

Transformation Types
The table lists all the transformation types supported by fitgeotrans in order of
complexity.

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'nonreflective
similarity'

Use this transformation when shapes in
the moving image are unchanged, but the
image is distorted by some combination of
translation, rotation, and scaling. Straight
lines remain straight, and parallel lines are
still parallel.

2

'similarity' Same as 'nonreflective similarity'
with the addition of optional reflection.

3

1 Functions — Alphabetical List

1-772

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'affine' Use this transformation when shapes in
the moving image exhibit shearing.
Straight lines remain straight, and parallel
lines remain parallel, but rectangles
become parallelograms.

3

'projective' Use this transformation when the scene
appears tilted. Straight lines remain
straight, but parallel lines converge toward
a vanishing point.

4

'polynomial' Use this transformation when objects in
the image are curved. The higher the order
of the polynomial, the better the fit, but
the result can contain more curves than
the fixed image.

6 (order 2)

10 (order 3)

15 (order 4)
'pwl' Use this transformation (piecewise linear)

when parts of the image appear distorted
differently.

4

'lwm' Use this transformation (local weighted
mean) when the distortion varies locally
and piecewise linear is not sufficient.

6 (12
recommended)

References
[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration,"

Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and
Vision Computing, Vol. 6, 1988, pp. 255-261.

 fitgeotrans

1-773

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fitgeotrans supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the transformationType argument must be a compile-time
constant and only the following transformation types are supported:
'nonreflectivesimilarity', 'similarity', 'affine', and'projective'.

See Also
Functions
cpselect | imwarp

Objects
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
PolynomialTransformation2D | affine2d | projective2d

Topics
“Matrix Representation of Geometric Transformations”

Introduced in R2013b

1 Functions — Alphabetical List

1-774

fitniqe
Fit custom model for NIQE image quality score

Syntax
model = fitniqe(imds)
model = fitniqe(imds,Name,Value)

Description
model = fitniqe(imds) creates a Naturalness Image Quality Evaluator (NIQE) model
from reference image datastore imds.

model = fitniqe(imds,Name,Value) creates a NIQE model using additional
parameters to control the model calculation.

Examples

Calculate NIQE Score Using Custom Feature Model

Load a set of natural images into an image datastore. These images are shipped in Image
Processing Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Train a custom NIQE model using the image datastore.

model = fitniqe(imds);

Extracting features from 37 images.
..
Completed 4 of 37 images. Time: Calculating...
...
Completed 13 of 37 images. Time: 00:25 of 01:01

 fitniqe

1-775

...
Completed 23 of 37 images. Time: 00:35 of 00:53
.....
Done.

Read an image of a natural scene. Display the image.

I = imread('car1.jpg');
imshow(I)

Calculate the NIQE score for the image using the custom model. Display the score.

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 1.8601.

1 Functions — Alphabetical List

1-776

Fit Custom NIQE Model Using Specified Block Size

Load a set of natural images into an image datastore. These images are shipped in Image
Processing Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create the custom model of NSS features using the image datastore. Specify a block size
and use the default sharpness threshold.

model = fitniqe(imds,'BlockSize',[48 96])

Extracting features from 37 images.
.
Completed 3 of 37 images. Time: Calculating...
..
Completed 11 of 37 images. Time: 00:22 of 01:00
..
Completed 14 of 37 images. Time: 00:36 of 01:30
...
Completed 24 of 37 images. Time: 00:49 of 01:12
....
Done.

model =
 niqeModel with properties:

 Mean: [1x36 double]
 Covariance: [36x36 double]
 BlockSize: [48 96]
 SharpnessThreshold: 0

Read a natural image into the workspace. Display the image.

I = imread('yellowlily.jpg');
imshow(I)

 fitniqe

1-777

1 Functions — Alphabetical List

1-778

Calculate the NIQE score for the image using the custom model. Display the score.

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 2.9944.

Input Arguments
imds — Reference image datastore
ImageDatastore object

Reference image datastore, specified as an ImageDatastore object. Images within the
datastore must be real, nonsparse, m-by-n or m-by-n-by-3 matrices of data type single,
double, int16, uint8, or uint16.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: model = fitniqe(imds,'BlockSize',[48 36]) fits a NIQE model using
48-by-36 pixel blocks.

BlockSize — Block size used to partition the images
[96 96] (default) | 2-element row vector of positive even integers

Block size used to partition the images, specified as the comma-separated pair consisting
of 'BlockSize' and a 2-element row vector of positive even integers. Blocks are
nonoverlapping. Natural scene statistics, which are calculated from the blocks, define the
output model.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SharpnessThreshold — Sharpness threshold
0 (default) | numeric scalar in the range [0, 1]

Sharpness threshold, specified as the comma-separated pair consisting of
'SharpnessThreshold' and a numeric scalar in the range [0, 1]. The sharpness

 fitniqe

1-779

threshold, s, controls which image blocks are used to compute the model. fitniqe
computes the model using all blocks that have sharpness more than s times the maximum
sharpness among all blocks.
Data Types: single | double

Output Arguments
model — Custom model of image features
niqeModel object

Custom model of image features, returned as a niqeModel object.

Tips
• The custom dataset specified in the image datastore imds should consist of images

that are perceptually pristine to human subjects. However, the definition of pristine
depends on the application. For example, a pristine set of microscopy images has a
different set of quality criteria than images of buildings or outdoor scenes. When
training a custom NIQE model, use images with varied image content and with
potentially different sets of quality criteria.

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image

Quality Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March
2013, pp. 209–212.

See Also
Functions
brisque | fitbrisque | niqe

Objects
niqeModel

1 Functions — Alphabetical List

1-780

Topics
“Image Quality Metrics”
“Train and Use a No-Reference Quality Assessment Model”

Introduced in R2017b

 fitniqe

1-781

fliptform
Flip input and output roles of spatial transformation structure

Syntax
tflip = fliptform(T)

Description
tflip = fliptform(T) creates a new TFORM spatial transformation structure by
flipping the roles of the inputs and outputs in an existing TFORM structure.

Examples

Flip Spatial Transformation Structure

Create a spatial transformation structure.

T = maketform('affine', [.5 0 0; .5 2 0; 0 0 1])

T =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @fwd_affine
 inverse_fcn: @inv_affine
 tdata: [1×1 struct]

Create a new spatial transformation structure by flipping the roles of the inputs and
outputs.

T2 = fliptform(T)

1 Functions — Alphabetical List

1-782

T2 =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @inv_affine
 inverse_fcn: @fwd_affine
 tdata: [1×1 struct]

After flipping the spatial transformation structures, the following statements are
equivalent.

x = tformfwd([-3 7],T)
x = tforminv([-3 7],T2)

x =

 2 14

x =

 2 14

Input Arguments
T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure.
Data Types: struct

Output Arguments
tflip — Flipped spatial transformation
TFORM spatial transformation structure

Flipped spatial transformation, returned as a TFORM spatial transformation structure.

 fliptform

1-783

See Also
maketform | tformfwd | tforminv

Introduced before R2006a

1 Functions — Alphabetical List

1-784

freqz2
2-D frequency response

Syntax
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,[n1 n2])
[H,f1,f2] = freqz2(h,f1, f2)
[___] = freqz2(h, ___ ,[dx dy])
freqz2(___)

Description
[H,f1,f2] = freqz2(h) returns H, the 64-by-64 frequency response of h, and the
frequency vectors f1 (of length 64) and f2 (of length 64). h is a two-dimensional FIR
filter, in the form of a computational molecule.

freqz2 returns f1 and f2 as normalized frequencies in the range -1.0 to 1.0, where 1.0
corresponds to half the sampling frequency, or π radians.

[H,f1,f2] = freqz2(h,[n1 n2]) returns H, the n2-by-n1 frequency response of h,
and the frequency vectors f1 (of length n1) and f2 (of length n2). You can also specify
[n1 n2] as two separate arguments, n1,n2.

[H,f1,f2] = freqz2(h,f1, f2) returns the frequency response for the FIR filter h at
frequency values in f1 and f2. These frequency values must be in the range -1.0 to 1.0,
where 1.0 corresponds to half the sampling frequency, or π radians. You can also specify
[f1 f2] as two separate arguments, f1, f2.

[___] = freqz2(h, ___ ,[dx dy]) uses [dx dy] to override the intersample
spacing in h. You can also specify a scalar to specify the same spacing in both the x and y
dimensions.

freqz2(___) produces a mesh plot of the two-dimensional magnitude frequency
response when no output arguments are specified.

 freqz2

1-785

Examples

View Frequency Response of Filter

This example shows how to create a two-dimensional filter using fwind1 and how to view
the filter's frequency response using freqz2.

Create an ideal frequency response.

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;

Create a 1-D window. This example uses a Bartlett window of length 16.

w = [0:2:16 16:-2:0]/16;

Create the 16-by-16 filter using fwind1 and the 1-D window. This filter gives the closest
match to the ideal frequency response.

h = fwind1(Hd,w);

Display the actual frequency response of the filter.

colormap(parula(64))
freqz2(h,[32 32]);
axis ([-1 1 -1 1 0 1])

1 Functions — Alphabetical List

1-786

Input Arguments
h — 2-D FIR filter
computational molecule

2-D FIR filter, specified in the form of a computational molecule.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

[n1 n2] — Number of points in the frequency response
[64 64] (default) | two-element vector

 freqz2

1-787

Number of points in the frequency response, specified as a two-element vector.
Data Types: double

f1, f2 — Frequency vectors
numeric vectors

Frequency vectors, specified as numeric vectors.
Data Types: double

[dx dy] — Sample spacing
0.5 (default) | two-element vector or scalar

Sample spacing, specified as a two-element vector of the form [dx dy]. The default
spacing is 0.5, which corresponds to a sampling frequency of 2.0. dx determines the
spacing for the x dimension and dy determines the spacing for the y dimension. If you
specify a scalar, freqz2 uses the value to determine the intersample spacing in both
dimensions.
Data Types: double

Output Arguments
H — Frequency response
numeric array

Frequency response, returned as a numeric array.

f1 — Frequency vector
vector

Frequency vector, returned as a numeric vector.
Data Types: double

f2 — Frequency vector
vector

Frequency vector, returned as a numeric vector.

1 Functions — Alphabetical List

1-788

See Also
freqz

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

 freqz2

1-789

fsamp2
2-D FIR filter using frequency sampling

Syntax
h = fsamp2(Hd)
h = fsamp2(f1,f2,Hd,[m n])

Description
h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response Hd, and
returns the filter coefficients in matrix h. The filter h has a frequency response that
passes through points in Hd. fsamp2 designs two-dimensional FIR filters based on a
desired two-dimensional frequency response sampled at points on the Cartesian plane.

h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the filter
response at the points in the vectors f1 and f2. The frequency vectors f1 and f2 are in
normalized frequency, where 1.0 corresponds to half the sampling frequency, or π
radians. The resulting filter fits the desired response as closely as possible in the least
squares sense. For best results, there must be at least m*n desired frequency points.
fsamp2 issues a warning if you specify fewer than m*n points.

Examples

Create 2-D FIR Filter using Frequency Sampling

Use fsamp2 to design an approximately symmetric, two-dimensional bandpass filter with
passband between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the
sampling frequency, or π radians).

Create a matrix Hd that contains the desired bandpass response. Use freqspace to
create the frequency vectors f1 and f2.

1 Functions — Alphabetical List

1-790

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

Design the filter that passes through this response.

h = fsamp2(Hd);
freqz2(h)

 fsamp2

1-791

Input Arguments
Hd — Frequency response
numeric matrix

Frequency response, specified as a numeric matrix. Hd is a matrix containing the desired
frequency response sampled at equally spaced points between -1.0 and 1.0 along the x
and y frequency axes. The value 1.0 corresponds to half the sampling frequency, or π
radians.

Hd(f1, f2) = Hd(ω1, ω2) ω1 = πf1, ω2 = πf1

1 Functions — Alphabetical List

1-792

For best results, use frequency points returned by freqspace to create Hd.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

f1 — Frequency vector
numeric vector

Frequency vector, specified as a numeric vector.
Data Types: double

f2 — Frequency vector
numeric vector

Frequency vector, specified as a numeric vector.
Data Types: double

[m n] — Size of output FIR filter
2-element vector of positive integers

Size of output FIR filter h, specified as a 2-element vector of positive integers. The filter
has m rows and n columns.
Data Types: double

Output Arguments
h — 2-D FIR filter
numeric array

2-D FIR filter, returned as a numeric array. fsamp2 returns h as a computational
molecule, which is the appropriate form to use with filter2. If you specify a frequency
response matrix Hd, then h has the same size. If Hd is of class single, h is also of class
single. Otherwise, h is of class double.
Data Types: single | double

 fsamp2

1-793

Algorithms
fsamp2 computes the filter h by taking the inverse discrete Fourier transform of the
desired frequency response. If the desired frequency response is real and symmetric (zero
phase), the resulting filter is also zero phase.

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990, pp. 213-217.

See Also
conv2 | filter2 | freqspace | ftrans2 | fwind1 | fwind2

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

1 Functions — Alphabetical List

1-794

fspecial
Create predefined 2-D filter

Syntax
h = fspecial(type)
h = fspecial('average',hsize)
h = fspecial('disk',radius)
h = fspecial('gaussian',hsize,sigma)
h = fspecial('laplacian',alpha)
h = fspecial('log',hsize,sigma)
h = fspecial('motion',len,theta)
h = fspecial('prewitt')
h = fspecial('sobel')

Description
h = fspecial(type) creates a two-dimensional filter h of the specified type. Some of
the filter types have optional additional parameters, shown in the following syntaxes.
fspecial returns h as a correlation kernel, which is the appropriate form to use with
imfilter.

h = fspecial('average',hsize) returns an averaging filter h of size hsize.

h = fspecial('disk',radius) returns a circular averaging filter (pillbox) within the
square matrix of size 2*radius+1.

h = fspecial('gaussian',hsize,sigma) returns a rotationally symmetric Gaussian
lowpass filter of size hsize with standard deviation sigma. Not recommended. Use
imgaussfilt or imgaussfilt3 instead.

h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating the shape
of the two-dimensional Laplacian operator, alpha controls the shape of the Laplacian.

h = fspecial('log',hsize,sigma) returns a rotationally symmetric Laplacian of
Gaussian filter of size hsize with standard deviation sigma.

 fspecial

1-795

h = fspecial('motion',len,theta) returns a filter to approximate, once convolved
with an image, the linear motion of a camera. len specifies the length of the motion and
theta specifies the angle of motion in degrees in a counter-clockwise direction. The filter
becomes a vector for horizontal and vertical motions. The default len is 9 and the default
theta is 0, which corresponds to a horizontal motion of nine pixels.

h = fspecial('prewitt') returns a 3-by-3 filter that emphasizes horizontal edges by
approximating a vertical gradient. To emphasize vertical edges, transpose the filter h'.

[1 1 1
 0 0 0
 -1 -1 -1]

h = fspecial('sobel') returns a 3-by-3 filter that emphasizes horizontal edges using
the smoothing effect by approximating a vertical gradient. To emphasize vertical edges,
transpose the filter h'.

[1 2 1
 0 0 0
 -1 -2 -1]

Examples

Create Various Filters and Filter an Image

Read image and display it.

I = imread('cameraman.tif');
imshow(I);

1 Functions — Alphabetical List

1-796

Create a motion filter and use it to blur the image. Display the blurred image.

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
imshow(MotionBlur);

 fspecial

1-797

Create a disk filter and use it to blur the image. Display the blurred image.

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
imshow(blurred);

1 Functions — Alphabetical List

1-798

Input Arguments
type — Type of filter
'average' | 'disk' | 'gaussian' | 'laplacian' | 'log' | 'motion' | 'prewitt' |
'sobel'

Type of filter, specified as one of the following values:

Value Description
'average' Averaging filter
'disk' Circular averaging filter (pillbox)
'gaussian' Gaussian lowpass filter. Not recommended. Use

imgaussfilt or imgaussfilt3 instead.

 fspecial

1-799

Value Description
'laplacian' Approximates the two-dimensional Laplacian operator
'log' Laplacian of Gaussian filter
'motion' Approximates the linear motion of a camera
'prewitt' Prewitt horizontal edge-emphasizing filter
'sobel' Sobel horizontal edge-emphasizing filter

Data Types: char | string

hsize — Size of the filter
positive integer | 2-element vector of positive integers

Size of the filter, specified as a positive integer or 2-element vector of positive integers.
Use a vector to specify the number of rows and columns in h. If you specify a scalar, then
h is a square matrix.

When used with the 'average' filter type, the default filter size is [3 3]. When used
with the Laplacian of Gaussian ('log') filter type, the default filter size is [5 5].
Data Types: double

radius — Radius of a disk-shaped filter
5 (default) | positive number

Radius of a disk-shaped filter, specified as a positive number.
Data Types: double

sigma — Standard deviation
0.5 (default) | positive number

Standard deviation, specified as a positive number.
Data Types: double

alpha — Shape of the Laplacian
0.2 (default) | scalar in the range [0 1]

Shape of the Laplacian, specified as a scalar in the range [0 1].
Data Types: double

1 Functions — Alphabetical List

1-800

len — Linear motion of camera
9 (default) | numeric scalar

Linear motion of camera, specified as a numeric scalar, measured in pixels.
Data Types: double

theta — Angle of camera motion
0 (default) | numeric scalar

Angle of camera motion, specified as a numeric scalar, measured in degrees, in a counter-
clockwise direction.
Data Types: double

Output Arguments
h — Correlation kernel
matrix

Correlation kernel, returned as a matrix.
Data Types: double

Algorithms
Averaging filters:

ones(n(1),n(2))/(n(1)*n(2))

Gaussian filters:

hg(n1, n2) = e
−(n1

2 + n2
2)

2σ2

h(n1, n2) =
hg(n1, n2)
∑
n1
∑
n2

hg

Laplacian filters:

 fspecial

1-801

∇2 = ∂2

∂x2 + ∂2

∂y2

∇2 = 4
(α + 1)

α
4

1 − α
4

α
4

1 − α
4 −1 1 − α

4
α
4

1 − α
4

α
4

Laplacian of Gaussian (LoG) filters:

hg(n1, n2) = e
−(n1

2 + n2
2)

2σ2

h(n1, n2) =
(n1

2 + n2
2− 2σ2)hg(n1, n2)
σ4∑

n1
∑
n2

hg

Note that fspecial shifts the equation to ensure that the sum of all elements of the
kernel is zero (similar to the Laplace kernel) so that the convolution result of
homogeneous regions is always zero.

Motion filters:

1 Construct an ideal line segment with the length and angle specified by the arguments
len and theta, centered at the center coefficient of h.

2 For each coefficient location (i,j), compute the nearest distance between that
location and the ideal line segment.

3 h = max(1 - nearest_distance, 0);
4 Normalize h: h = h/(sum(h(:)))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-802

Usage notes and limitations:

• fspecial supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all inputs must be constants at compilation time.

See Also
conv2 | del2 | edge | filter2 | fsamp2 | fspecial3 | fwind1 | fwind2 | imfilter |
imsharpen

Topics
“Filter Images Using Predefined Filters”
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

 fspecial

1-803

fspecial3
Create predefined 3-D filter

Syntax
h = fspecial3(type)
h = fspecial3('average',hsize)
h = fspecial3('ellipsoid',semiaxes)
h = fspecial3('gaussian',hsize,sigma)
h = fspecial3('laplacian',gamma1,gamma2)
h = fspecial3('log',hsize,sigma)
h = fspecial3('prewitt',direction)
h = fspecial3('sobel',direction)

Description
h = fspecial3(type) creates a three-dimensional filter h of the specified type. Some
of the filter types have optional additional parameters, shown in the following syntaxes.
fspecial3 returns h as a correlation kernel, which is the appropriate form to use with
imfilter.

h = fspecial3('average',hsize) returns an averaging filter h of size hsize. Not
recommended. Use imboxfilt3 instead.

h = fspecial3('ellipsoid',semiaxes) returns an ellipsoidal averaging filter with
the length of the principal semiaxes specified by semiaxes. The filter h is returned in an
array of size 2*ceil(semiaxes)+1.

h = fspecial3('gaussian',hsize,sigma) returns a Gaussian lowpass filter of size
hsize with standard deviation sigma. Not recommended. Use imgaussfilt3 instead.

h = fspecial3('laplacian',gamma1,gamma2) returns a 3-by-3-by-3 filter
approximating the shape of the three-dimensional Laplacian operator. gamma1 and
gamma2 control the shape of the Laplacian [1][2].

1 Functions — Alphabetical List

1-804

h = fspecial3('log',hsize,sigma) returns a Laplacian of Gaussian filter of size
hsize with standard deviation sigma.

h = fspecial3('prewitt',direction) returns a 3-by-3-by-3 filter that emphasizes
gradients in the specified direction.

h = fspecial3('sobel',direction) returns a 3-by-3-by-3 filter that emphasizes
gradients in the specified direction and smooths the other directions [3].

Examples

Smooth Volume Using 3-D Ellipsoidal Filter

Load a 3-D grayscale MRI volume. Display the planes of the volume.

load mristack;
montage(mristack,'BackgroundColor','w')

 fspecial3

1-805

Create a 3-D ellipsoidal filter. Specify a semiaxis length of 7 pixels in the y (rows) and x
(columns) directions, and a semiaxis length of 3 pixels in the z (planes) direction.

H = fspecial3('ellipsoid',[7 7 3]);

1 Functions — Alphabetical List

1-806

Smooth the volume with the filter.

volSmooth = imfilter(mristack,H,'replicate');

Display the planes of the smoothed volume.

montage(volSmooth,'BackgroundColor','w')

 fspecial3

1-807

1 Functions — Alphabetical List

1-808

Detect Horizontal Edges Using 3-D Sobel Filter

Load an MRI volume. This volume is stored as a 4-D array with a singleton dimension.
Create a 3-D grayscale volume by using the squeeze function to remove the singleton
dimension.

load mri;
V = squeeze(D);

Display the planes of the volume.

montage(D,'BackgroundColor','w')

 fspecial3

1-809

Create a 3-D Sobel filter that detects horizontal edges in the volume. Horizontal edges
appear where there is a large gradient magnitude in the y direction, so specify the
direction of the Sobel filter as 'Y'. The Sobel filter smooths the gradient in the x and z
directions.

H = fspecial3('sobel','Y');

Filter the volume with the 3-D Sobel filter.

edgesHor = imfilter(V,H,'replicate');

1 Functions — Alphabetical List

1-810

Display the planes of the filtered volume.

montage(edgesHor)

 fspecial3

1-811

Input Arguments
type — Type of filter
'average' | 'ellipsoid' | 'gaussian' | 'laplacian' | 'log' | 'prewitt' |
'sobel'

Type of filter, specified as one of the following values:

Value Description
'average' Averaging filter. Not recommended. Use imboxfilt3

instead.
'ellipsoid' Ellipsoidal averaging filter
'gaussian' Gaussian lowpass filter. Not recommended. Use

imgaussfilt3 instead.
'laplacian' Approximates the three-dimensional Laplacian operator
'log' Laplacian of Gaussian filter
'prewitt' Prewitt edge-emphasizing filter
'sobel' Sobel edge-emphasizing filter

Data Types: char | string

hsize — Size of the filter
[5 5 5] (default) | positive integer | 3-element vector of positive integers

Size of the filter, specified as a positive integer or 3-element vector of positive integers.
Use a vector to specify the number of rows, columns, and planes in h. Use a scalar to
specify the side length of a cube.

For the 'gaussian' and 'log' filter types, if you specify hsize as [], then fspecial3
creates a filter with a default size of 2*ceil(2*sigma)+1.
Data Types: double

semiaxes — Semiaxes length of ellipsoidal filter
5 (default) | positive number | 3-element vector of positive numbers

Semiaxes length of an ellipsoidal filter, specified as a positive number or 3-element vector
of positive numbers. Use a vector to specify the length of the three principal semiaxes in

1 Functions — Alphabetical List

1-812

rows, columns, and planes. These values correspond to length in the Cartesian y, x, and z
directions, respectively. Use a scalar to specify the radius of a sphere.
Data Types: double

sigma — Standard deviation of Gaussian filter
1 (default) | positive number | 3-element vector of positive numbers

Standard deviation of Gaussian filter, specified as a positive number or 3-element vector
of positive numbers. If you specify a scalar, then fspecial3 creates a cubic Gaussian
kernel.
Data Types: double

gamma1, gamma2 — Shape of the Laplacian
0 (default) | scalar in the range [0 1]

Shape of the Laplacian, specified as a scalar in the range [0 1]. The sum of gamma1 and
gamma2 must not exceed 1.
Data Types: double

direction — Direction of gradients
'X' (default) | 'Y' | 'Z'

Direction of gradients for Prewitt and Sobel filtering, specified as 'X', 'Y', or 'Z'.
Data Types: char | string

Output Arguments
h — Correlation kernel
numeric array

Correlation kernel, returned as a numeric array.
Data Types: double

References
[1] Lindeberg, T., Scale-Space Theory in Computer Vision. Boston, MA: Kluwer Academic

Publishers, 1994.

 fspecial3

1-813

[2] Geometry-Driven Diffusion in Computer Vision. Edited by B. M. ter Haar Romeny.
Boston, MA: Kluwer Academic Publishers, 1994.

[3] Engel, K., M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-Time
Volume Graphics. Wellesley, MA: A K Peters, Ltd., 2006, pp. 112–114.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fspecial3 supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all inputs must be constants at compilation time.

See Also
edge3 | fspecial | imboxfilt3 | imfilter | imgaussfilt3

Topics
“What Is Image Filtering in the Spatial Domain?”

Introduced in R2018b

1 Functions — Alphabetical List

1-814

ftrans2
2-D FIR filter using frequency transformation

Syntax
h = ftrans2(b,t)
h = ftrans2(b)

Description
h = ftrans2(b,t) produces the two-dimensional FIR filter h that corresponds to the
one-dimensional FIR filter b using the transform t. b must be a one-dimensional, Type I
(even symmetric, odd-length) filter such as can be returned by fir1, fir2, or firpm in
the Signal Processing Toolbox software. The transform matrix t contains coefficients that
define the frequency transformation to use.

h = ftrans2(b) uses the McClellan transform matrix t.

t = [1 2 1; 2 -4 2; 1 2 1]/8;

Examples

Design Circularly Symmetric 2-D Bandpass Filter

Use ftrans2 to design an approximately circularly symmetric two-dimensional bandpass
filter with passband between 0.1 and 0.6 (normalized frequency, where 1.0 corresponds to
half the sampling frequency, or π radians). Since ftrans2 transforms a one-dimensional
FIR filter to create a two-dimensional filter, first design a one-dimensional FIR bandpass
filter using the Signal Processing Toolbox function firpm.

colormap(jet(64))
b = firpm(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

 ftrans2

1-815

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Use ftrans2 with the default McClellan transformation to create the desired
approximately circularly symmetric filter.

h = ftrans2(b);
freqz2(h)

1 Functions — Alphabetical List

1-816

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

F
x

F
y

M
ag

ni
tu

de

Input Arguments
b — One-dimensional FIR filter
numeric matrix

1-D FIR filter, specified as a numeric matrix. b must be a 1-D Type I (even symmetric, odd-
length) filter such as can be returned by fir1, fir2, or firpm in the Signal Processing
Toolbox software,
Data Types: double

t — Transform matrix
McClellan transform matrix (default) | numeric matrix

The transform matrix, specified as a numeric matrix. t contains coefficients that define
the frequency transformation to use.
Data Types: double

 ftrans2

1-817

Output Arguments
h — 2-D FIR filter
numeric matrix

2-D FIR filter, returned as a numeric matrix. ftrans2 returns h as a computational
molecule, which is the appropriate form to use with filter2. If t is m-by-n and b has
length Q, then h is size ((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).

Algorithms
The transformation below defines the frequency response of the two-dimensional filter
returned by ftrans2.

H(ω1, ω2) = B(ω) cosω = T(ω1, ω2),

where B(ω) is the Fourier transform of the one-dimensional filter b:

B(ω) = ∑
n = − N

N
b(n)e− jωn

and T(ω1,ω2) is the Fourier transform of the transformation matrix t:

T(ω1, ω2) = ∑
n2
∑
n1

t(n1, n2)e− jω1n1e− jω2n2 .

The returned filter h is the inverse Fourier transform of H(ω1,ω2):

h(n1, n2) = 1
2π 2∫−π

π∫−π

π
H(ω1, ω2)e jω1n1e jω2n2dω1dω2 .

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990, pp. 218-237.

1 Functions — Alphabetical List

1-818

See Also
conv2 | filter2 | fsamp2 | fwind1 | fwind2

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

 ftrans2

1-819

fwind1
2-D FIR filter using 1-D window method

Syntax
h = fwind1(Hd,win)
h = fwind1(Hd,win1,win2)
h = fwind1(f1,f2,Hd, ___)

Description
h = fwind1(Hd,win) uses a 1-D window specification to design a two-dimensional FIR
filter h based on the desired frequency response Hd. fwind1 returns h as a computational
molecule, which is the appropriate form to use with filter2. fwind1 uses the one-
dimensional window win to form an approximately circularly symmetric two-dimensional
window using Huang's method.

fwind1 works with 1-D windows only; use fwind2 to work with two-dimensional
windows.

h = fwind1(Hd,win1,win2) uses the two 1-D windows, win1 and win2, to create a
separable 2-D window. If length(win1) is n and length(win2) is m, then h is m-by-n.
The length of the windows controls the size of the resulting filter.

h = fwind1(f1,f2,Hd, ___) lets you specify the desired frequency response Hd at
arbitrary frequencies (f1 and f2) along the x- and y-axes.

Examples

Create 2-D FIR Filter using 1-D Window Method

This example shows how to design an approximately circularly symmetric two-
dimensional bandpass filter using a 1-D window method.

1 Functions — Alphabetical List

1-820

Create the frequency range vectors f1 and f2 using freqspace. These vectors have
length 21.

[f1,f2] = freqspace(21,'meshgrid');

Compute the distance of each position from the center frequency.

r = sqrt(f1.^2 + f2.^2);

Create a matrix Hd that contains the desired bandpass response. In this example, the
desired passband is between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to
half the sampling frequency, or π radians).

Hd = ones(21);
Hd((r<0.1)|(r>0.5)) = 0;

Display the ideal bandpass response.

colormap(parula(64))
mesh(f1,f2,Hd)

 fwind1

1-821

Design the 1-D window. This example uses a Hamming window of length 21.

win = 0.54 - 0.46*cos(2*pi*(0:20)/20);

Plot the 1-D window.

figure
plot(linspace(-1,1,21),win);

1 Functions — Alphabetical List

1-822

Using the 1-D window, design the filter that best produces this frequency response

h = fwind1(Hd,win);

Display the actual frequency response of this filter.

freqz2(h)

 fwind1

1-823

Input Arguments
Hd — Desired frequency response
numeric matrix

Desired frequency response, specified as a numeric matrix. Hd is sampled at equally
spaced points between -1.0 and 1.0 (in normalized frequency, where 1.0 corresponds to
half the sampling frequency, or π radians) along the x and y frequency axes. For accurate
results, use frequency points returned by freqspace to create Hd.

1 Functions — Alphabetical List

1-824

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

win — 1-D window
numeric matrix

1-D window, specified as a numeric matrix. You can specify win using windows from the
Signal Processing Toolbox software, such as boxcar, hamming, hanning, bartlett,
blackman, kaiser, or chebwin. If length(win) is n, then h is n-by-n.The length of the
window controls the size of the resulting filter.
Data Types: single | double

win1 — 1-D window
numeric matrix

1-D window, specified as a numeric matrix.
Data Types: single | double

win2 — 1-D window
numeric matrix

1-D window, specified as a numeric matrix.
Data Types: single | double

f1 — Desired frequency along the x-axis
vector

Desired frequency along the x-axis. The frequency vector should be in the range -1.0 to
1.0, where 1.0 corresponds to half the sampling frequency, or π radians.
Data Types: single | double

f2 — Desired frequency along the y-axis
vector

Desired frequency along the y-axis. The frequency vector should be in the range -1.0 to
1.0, where 1.0 corresponds to half the sampling frequency, or π radians.
Data Types: single | double

 fwind1

1-825

Output Arguments
h — 2-D FIR filter

2-D FIR filter, returned as a numeric matrix of class double, when the input Hd is of class
double or any integer class. If Hd is of class single, the output matrix is of class
single.

Algorithms
fwind1 takes a one-dimensional window specification and forms an approximately
circularly symmetric two-dimensional window using Huang's method,

w(n1, n2) = w(t) t = n1
2 + n2

2,

where w(t) is the one-dimensional window and w(n1,n2) is the resulting two-dimensional
window.

Given two windows, fwind1 forms a separable two-dimensional window:

w(n1, n2) = w1(n1)w2(n2) .

fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2 computes h using
an inverse Fourier transform and multiplication by the two-dimensional window:

hd(n1, n2) = 1
2π 2∫−π

π∫−π

π
Hd(ω1, ω2)e jω1n1e jω2n2dω1dω2

h(n1, n2) = hd(n1, n2)w(n2, n2) .

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990.

See Also
conv2 | filter2 | freqspace | fsamp2 | ftrans2 | fwind2

1 Functions — Alphabetical List

1-826

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

 fwind1

1-827

fwind2
2-D FIR filter using 2-D window method

Syntax
h = fwind2(Hd,win)
h = fwind2(f1,f2,Hd,win)

Description
h = fwind2(Hd,win) produces the two-dimensional FIR filter h using an inverse
Fourier transform of the desired frequency response Hd and multiplication by the window
win. Hd is a matrix containing the desired frequency response at equally spaced points in
the Cartesian plane. fwind2 returns h as a computational molecule, which is the
appropriate form to use with filter2. h is the same size as win.

Use fwind2 to design two-dimensional FIR filters using the window method. fwind2 uses
a two-dimensional window specification to design a two-dimensional FIR filter based on
the desired frequency response Hd. fwind2 works with two-dimensional windows; use
fwind1 to work with one-dimensional windows.

For accurate results, use frequency points returned by freqspace to create Hd.

h = fwind2(f1,f2,Hd,win) lets you specify the desired frequency response Hd at
arbitrary frequencies (f1 and f2) along the x- and y-axes. The frequency vectors f1 and
f2 should be in the range -1.0 to 1.0, where 1.0 corresponds to half the sampling
frequency, or π radians. h is the same size as win.

Examples

Create 2-D FIR Filter using 2-D Window Method

This example shows how to design an approximately circularly symmetric two-
dimensional bandpass filter using a 2-D window method.

1 Functions — Alphabetical List

1-828

Create the frequency range vectors f1 and f2 using freqspace. These vectors have
length 21.

[f1,f2] = freqspace(21,'meshgrid');

Compute the distance of each position from the center frequency.

r = sqrt(f1.^2 + f2.^2);

Create a matrix Hd that contains the desired bandpass response. In this example, the
desired passband is between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to
half the sampling frequency, or π radians).

Hd = ones(21);
Hd((r<0.1)|(r>0.5)) = 0;

Display the ideal bandpass response.

colormap(parula(64))
mesh(f1,f2,Hd)

 fwind2

1-829

Create a 2-D Gaussian window using fspecial. Normalize the window.

win = fspecial('gaussian',21,2);
win = win ./ max(win(:));

Display the window.

mesh(win)

1 Functions — Alphabetical List

1-830

Using the 2-D window, design the filter that best produces the desired frequency response

h = fwind2(Hd,win);

Display the actual frequency response of this filter.

freqz2(h)

 fwind2

1-831

Input Arguments
Hd — Desired frequency response
numeric matrix

Desired frequency response, at equally spaced points in the Cartesian plane, specified as
a numeric matrix. The input matrix Hd can be of class double or of any integer class. All
other inputs to fwind2 must be of class double. All outputs are of class double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-832

win — 2-D window
numeric matrix

2-D window, specified as a numeric matrix.
Data Types: single | double

f1 — Desired frequency along the x-axis
vector

Desired frequency along the x-axis. The frequency vector should be in the range -1.0 to
1.0, where 1.0 corresponds to half the sampling frequency, or π radians.
Data Types: single | double

f2 — Desired frequency along the y-axis
vector

Desired frequency along the y-axis. The frequency vector should be in the range -1.0 to
1.0, where 1.0 corresponds to half the sampling frequency, or π radians.
Data Types: single | double

Output Arguments
h — 2-D FIR filter
numeric matrix

2-D FIR filter, returned as a numeric matrix.

Algorithms
fwind2 computes h using an inverse Fourier transform and multiplication by the two-
dimensional window win.

hd(n1, n2) = 1
2π 2∫−π

π∫−π

π
Hd(ω1, ω2)e jω1n1e jω2n2dω1dω2

h(n1, n2) = hd(n1, n2)w(n1, n2)

 fwind2

1-833

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990, pp. 202-213.

See Also
conv2 | filter2 | freqspace | fsamp2 | ftrans2 | fwind1

Introduced before R2006a

1 Functions — Alphabetical List

1-834

gabor
Create Gabor filter or Gabor filter bank

Syntax
g = gabor(wavelength,orientation)
g = gabor(___ ,Name,Value,...)

Description
g = gabor(wavelength,orientation) creates a Gabor filter with the specified
wavelength (in pixels/cycle) and orientation (in degrees). If you specify wavelength
or orientation as vectors, gabor returns an array of gabor objects, called a filter
bank, that contain all the unique combinations of wavelength and orientation. For
example, if wavelength is a vector of length 2 and orientation is a vector of length 3,
then the output array g is a vector of length 6. To apply the Gabor filters to an image, use
the imgaborfilt function.

g = gabor(___ ,Name,Value,...) creates an array of Gabor filters using name-value
pairs to control aspects of Gabor filter design. If you specify a vector of values, the output
array g contains all the unique combinations of the input values.

Examples

Construct Gabor Filter Array and Apply to Input Image

Create a sample image of a checkerboard.

A = checkerboard(20);

Create an array of Gabor filters.

 gabor

1-835

wavelength = 20;
orientation = [0 45 90 135];
g = gabor(wavelength,orientation);

Apply the filters to the checkerboard image.

outMag = imgaborfilt(A,g);

Display the results.

outSize = size(outMag);
outMag = reshape(outMag,[outSize(1:2),1,outSize(3)]);
figure, montage(outMag,'DisplayRange',[]);
title('Montage of gabor magnitude output images.');

1 Functions — Alphabetical List

1-836

 gabor

1-837

Construct Gabor Filter Array and Visualize Wavelength and Orientation

Create array of Gabor filters.

g = gabor([5 10],[0 90]);

Visualize the real part of the spatial convolution kernel of each Gabor filter in the array.

figure;
subplot(2,2,1)
for p = 1:length(g)
 subplot(2,2,p);
 imshow(real(g(p).SpatialKernel),[]);
 lambda = g(p).Wavelength;
 theta = g(p).Orientation;
 title(sprintf('Re[h(x,y)], \\lambda = %d, \\theta = %d',lambda,theta));
end

1 Functions — Alphabetical List

1-838

Input Arguments
wavelength — Wavelength of sinusoid
numeric scalar in the range [2,Inf)

Wavelength of sinusoid, specified as a numeric scalar or vector, in pixels/cycle.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

orientation — Orientation of filter in degrees
numeric scalar in the range [0 180]

 gabor

1-839

Orientation of filter in degrees, specified as a numeric scalar in the range [0 180],
where the orientation is defined as the normal direction to the sinusoidal plane wave.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: g = gabor(4,90,'SpatialFrequencyBandwidth',1.5);

SpatialFrequencyBandwidth — Define spatial-frequency bandwidth
1.0 (default) | numeric vector

A numeric vector that defines the spatial-frequency bandwidth in units of Octaves. The
spatial-frequency bandwidth determines the cutoff of the filter response as frequency
content in the input image varies from the preferred frequency, 1/lambda. Typical values
for spatial-frequency bandwidth are in the range [0.5 2.5].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SpatialAspectRatio — Aspect ratio of Gaussian in spatial domain
0.5 (default) | numeric scalar

Aspect ratio of Gaussian in spatial domain, specified as a numeric vector that defines the
ratio of the semi-major and semi-minor axes of the Gaussian envelope: semi-minor/
semi-major. This parameter controls the ellipticity of the Gaussian envelope. Typical
values for spatial aspect ratio are in the range [0.23 0.92].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
g — Gabor filter array
Array of gabor objects

1 Functions — Alphabetical List

1-840

Gabor filter array, returned as an array of gabor objects.

See Also
imgaborfilt

Topics
“Texture Segmentation Using Gabor Filters”

Introduced in R2015b

 gabor

1-841

geometricTransform2d
2-D geometric transformation object

Description
A geometricTransform2d object defines a custom 2-D geometric transformation using
point-wise mapping functions.

Creation

Syntax
tform = geometricTransform2d(inverseFcn)
tform = geometricTransform2d(inverseFcn,fowardFcn)

Description
tform = geometricTransform2d(inverseFcn) creates a geometricTransform2d
object and sets the inverse mapping InverseFcn property.

tform = geometricTransform2d(inverseFcn,fowardFcn) also sets the forward
mapping property, ForwardFcn.

Properties
InverseFcn — Inverse mapping function
function handle

Inverse mapping function, specified as a function handle. The function should accept and
return coordinates as a n-by-2 numeric matrix representing the packed (x,y) coordinates
of n points.

For more information about function handles, see “Create Function Handle” (MATLAB).

1 Functions — Alphabetical List

1-842

Example: ifcn = @(xy) [xy(:,1).^2, sqrt(xy(:,2))];

ForwardFcn — Forward mapping function
function handle

Forward mapping function, specified as a function handle. The function should accept and
return coordinates as a n-by-2 numeric matrix representing the packed (x,y) coordinates
of n points.

For more information about function handles, see “Create Function Handle” (MATLAB).
Example: ffcn = @(xy) [sqrt(xy(:,1)),(xy(:,2).^2)];

Object Functions
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Transform Packed Coordinates Using Custom 2-D Transformation

Specify the packed (x,y) coordinates of five input points. The packed coordinates are
stored in a 5-by-2 matrix, where the x-coordinate of each point is in the first column, and
the y-coordinate of each point is in the second column.

XY = [10 15;11 32;15 34;2 7;2 10];

Define the inverse mapping function. The function accepts and returns points in packed
(x,y) format.

inversefn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2)]

inversefn = function_handle with value:
 @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]

Create a 2-D geometric transform object, tform, that stores the inverse mapping
function.

tform = geometricTransform2d(inversefn)

 geometricTransform2d

1-843

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

UV = transformPointsInverse(tform,XY)

UV = 5×2

 25 -5
 43 -21
 49 -19
 9 -5
 12 -8

Transform Coordinate Arrays Using Custom 2-D Transformation

Specify the x- and y-coordinates vectors of five points to transform.

x = [10 11 15 2 2];
y = [15 32 34 7 10];

Define the inverse and forward mapping functions. Both functions accept and return
points in packed (x,y) format.

inversefn = @(c) [c(:,1).^2,sqrt(c(:,2))];
forwardfn = @(c) [sqrt(c(:,1)),c(:,2).^2];

Create a 2-D geometric transform object, tform, that stores the inverse mapping function
and the optional forward mapping function.

tform = geometricTransform2d(inversefn,forwardfn)

tform =
 geometricTransform2d with properties:

1 Functions — Alphabetical List

1-844

 InverseFcn: @(c)[c(:,1).^2,sqrt(c(:,2))]
 ForwardFcn: @(c)[sqrt(c(:,1)),c(:,2).^2]
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

[u,v] = transformPointsInverse(tform,x,y)

u = 1×5

 100 121 225 4 4

v = 1×5

 3.8730 5.6569 5.8310 2.6458 3.1623

Apply the forward geometric transform to the transformed points u and v.

[x,y] = transformPointsForward(tform,u,v)

x = 1×5

 10 11 15 2 2

y = 1×5

 15.0000 32.0000 34.0000 7.0000 10.0000

Transform Grayscale Image Using Custom 2-D Transformation

Define an inverse mapping function that applies anisotropic scaling. The function must
accept and return packed (x,y) coordinates, where the x-coordinate of each point is in the
first column, and the y-coordinate of each point is in the second column.

xscale = 0.3;
yscale = 0.5;
inversefn = @(xy) [xscale*xy(:,1), yscale*xy(:,2)];

 geometricTransform2d

1-845

Create a 2-D geometric transform object, tform, that stores the inverse mapping
function.

tform = geometricTransform2d(inversefn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(xy)[xscale*xy(:,1),yscale*xy(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Read an image to be transformed.

I = imread('cameraman.tif');
imshow(I)

1 Functions — Alphabetical List

1-846

Use imwarp to apply the inverse geometric transform to the input image. The image is
enlarged vertically by a factor of 2 (the inverse of yscale) and horizontally by a factor of
10/3 (the inverse of xscale).

Itransformed = imwarp(I,tform);
imshow(Itransformed)

Transform Color Image Using Custom 2-D Transformation

Define an inverse mapping function that accepts packed (x,y) coordinates, where the x-
coordinate of each point is in the first column, and the y-coordinate of each point is in the
second column. The inverse mapping function in this example takes the square of the
polar radial component.

r = @(c) sqrt(c(:,1).^2 + c(:,2).^2);
w = @(c) atan2(c(:,2), c(:,1));

 geometricTransform2d

1-847

f = @(c) [r(c).^2 .* cos(w(c)), r(c).^2 .* sin(w(c))];
g = @(c) f(c);

Create a 2-D geometric transform object, tform, that stores the inverse mapping
function.

tform = geometricTransform2d(g);

Read a color image to be transformed.

I = imread('peppers.png');
imshow(I)

1 Functions — Alphabetical List

1-848

Create an imref2d object, specifying the size and world limits of the input and output
images.

Rin = imref2d(size(I),[-1 1],[-1 1]);
Rout = imref2d(size(I),[-1 1],[-1 1]);

Apply the inverse geometric transform to the input image.

Itransformed = imwarp(I,Rin,tform,'OutputView',Rout);
imshow(Itransformed)

 geometricTransform2d

1-849

See Also
affine2d | geometricTransform3d | imwarp | projective2d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-850

geometricTransform3d
3-D geometric transformation object

Description
A geometricTransform3d object defines a custom 3-D geometric transformation using
point-wise mapping functions.

Creation

Syntax
tform = geometricTransform3d(inverseFcn)
tform = geometricTransform3d(inverseFcn,forwardFcn)

Description
tform = geometricTransform3d(inverseFcn) creates a geometricTransform3d
object, and sets the value of inverse mapping function property, InverseFcn to
inverseFcn.

tform = geometricTransform3d(inverseFcn,forwardFcn) also sets the value of
forward mapping function property, ForwardFcn to forwardFcn.

Properties
InverseFcn — Inverse mapping function
function handle

Inverse mapping function, specified as a function handle. The function must accept and
return coordinates as an n-by-3 numeric matrix representing the packed (x,y,z)
coordinates of n points.

 geometricTransform3d

1-851

For more information about function handles, see “Create Function Handle” (MATLAB).
Example: ifcn = @(xyz) [xyz(:,1).^2,xyz(:,2).^2,xyz(:,3).^2];

ForwardFcn — Forward mapping function
function handle

Forward mapping function, specified as a function handle. The function must accept and
return coordinates as an n-by-3 numeric matrix representing the packed (x,y,z)
coordinates of n points.

For more information about function handles, see “Create Function Handle” (MATLAB).
Example: ffcn = @(xyz) [sqrt(xyz(:,1)),sqrt(xyz(:,2)),sqrt(xyz(:,3))];

Object Functions
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Transform Packed Coordinates Using Custom 3-D Transformation

Specify the packed (x,y,z) coordinates of five input points. The packed coordinates are
stored as a 5-by-3 matrix, where the first, second, and third columns contain the x-, y-,
and z- coordinates,respectively.

XYZ = [5 25 20;10 5 25;15 10 5;20 15 10;25 20 15];

Define an inverse mapping function that accepts and returns points in packed (x,y,z)
format.

inverseFcn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping
function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

1 Functions — Alphabetical List

1-852

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2]
 ForwardFcn: []
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

UVW = transformPointsInverse(tform,XYZ)

UVW = 5×3

 30 -20 400
 15 5 625
 25 5 25
 35 5 100
 45 5 225

Transform Coordinate Arrays Using Custom 3-D Transformation

Specify the x-, y- and the z-coordinate vectors of five points to transform.

x = [3 5 7 9 11];
y = [2 4 6 8 10];
z = [5 9 13 17 21];

Define the inverse and forward mapping functions that accept and return points in
packed (x,y,z) format.

inverseFcn = @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2];
forwardFcn = @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))];

Create a 3-D geometric transformation object, tform, that stores these inverse and
forward mapping functions.

tform = geometricTransform3d(inverseFcn,forwardFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2]

 geometricTransform3d

1-853

 ForwardFcn: @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))]
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

[u,v,w] = transformPointsInverse(tform,x,y,z)

u = 1×5

 9 25 49 81 121

v = 1×5

 4 16 36 64 100

w = 1×5

 25 81 169 289 441

Apply the forward geometric transform to the transformed points u, v, and w.

[x,y,z] = transformPointsForward(tform,u,v,w)

x = 1×5

 3 5 7 9 11

y = 1×5

 2 4 6 8 10

z = 1×5

 5 9 13 17 21

1 Functions — Alphabetical List

1-854

Transform 3-D Volumetric Image Using Custom 3-D Transformation

Define an inverse mapping function that performs reflection about horizontal axis. The
function must accept and return packed (x,y,z) coordinates, where the first, second, and
third columns contain the x-, y-, and z-coordinates, respectively.

inverseFcn = @(xyz)[xyz(:,1),-xyz(:,2),xyz(:,3)];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping
function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(xyz)[xyz(:,1),-xyz(:,2),xyz(:,3)]
 ForwardFcn: []
 Dimensionality: 3

Load and display an MRI volume to be transformed.

s = load('mri');
mriVolume = squeeze(s.D);

Use imwarp to apply the inverse geometric transform to the input MRI volume.

[mriVolumeTransformed] = imwarp(mriVolume,tform,'nearest','SmoothEdges',true);

Display the image slices from the input MRI volume as montage.

montage(mriVolume,'Size',[4 8],'BackgroundColor','w')
title('Image Slices from 3-D MRI','FontSize',14)

 geometricTransform3d

1-855

Display the image slices from the transformed MRI volume as a montage. The
transformed image slices are the reflection of the input image slices across the x-axis.

montage(mriVolumeTransformed,'Size',[4 8],'BackgroundColor','w')
title('Image Slices from Inverse Geometric Transformation of 3-D MRI','FontSize',14)

1 Functions — Alphabetical List

1-856

See Also
affine2d | affine3d | geometricTransform2d | imwarp | projective2d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2018b

 geometricTransform3d

1-857

getheight
Height of structuring element

Note getheight will be removed in a future release. See strel for the current list of
methods.

Syntax
h = getheight(SE)

Description
h = getheight(SE) returns the height of all neighbors of structuring element SE.

Examples
Get Height of Arbitrary Structuring Element
se = strel(ones(3,3),magic(3));
getheight(se)

ans =

 8 1 6
 3 5 7
 4 9 2

Input Arguments
SE — Structuring element
strel object

Structuring element, specified as a strel object.

1 Functions — Alphabetical List

1-858

Output Arguments
h — Height
numeric matrix

Height of the structuring element SE, returned as a numeric matrix of the same size as
getnhood(SE). For a flat structuring element, h is all zeros.
Data Types: double

See Also
strel

Topics
“Structuring Elements”

Introduced before R2006a

 getheight

1-859

getimage
Image data from axes

Syntax
I = getimage(h)
[x,y,I] = getimage(h)
[___ ,flag] = getimage(h)
[___] = getimage

Description
I = getimage(h) returns the first image data contained in the graphics object h.

[x,y,I] = getimage(h) also returns the image extent in the x and y direction.

[___ ,flag] = getimage(h) also returns a flag that indicates the type of image that h
contains.

[___] = getimage returns information for the current axes object.

Examples

Import Data into Workspace from Image Displayed in Figure or App

Display image directly from a file using imshow and create a variable in the workspace
that contains the image data.

imshow rice.png

1 Functions — Alphabetical List

1-860

I = getimage;

Display image directly from a file using the Image Viewer app (imtool) and create a
variable in the workspace that contains the image data.

h = imtool('cameraman.tif');

 getimage

1-861

I = getimage(imgca);

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle containing multiple images, then getimage uses the first image
returned by findobj(h,'Type','image').

1 Functions — Alphabetical List

1-862

Output Arguments
I — Image data
numeric array

Image data, returned as a numeric array. I is identical to the image CData; it contains the
same values and is of the same class as the image CData. If h is not an image or does not
contain an image, then I is empty.

x — Image extent in x direction
2-element numeric vector

Image extent in the x direction, returned as a 2-element numeric vector of the form
[xmin xmax]. x is identical to the image XData.
Data Types: double

y — Image extent in y direction
2-element numeric vector

Image extent in the y direction, returned as a 2-element numeric vector of the form
[ymin ymax]. y is identical to the image YData.
Data Types: double

flag — Image type
integer

Image type, returned as an integer with one of these values:

Flag Type of Image
0 Not an image; I is returned as an empty matrix
1 Indexed image
2 Intensity image with values in standard range. The

standard range for single and double images is [0,1].
3 Intensity data, but not in standard range
4 RGB image
5 Binary image

Data Types: double

 getimage

1-863

See Also
imshow | imtool

Introduced before R2006a

1 Functions — Alphabetical List

1-864

getimagemodel
Image model object from image object

Syntax
imgmodel = getimagemodel(himage)

Description
imgmodel = getimagemodel(himage) returns the image model object associated with
himage. himage must be a handle to an image object or an array of handles to image
objects.

The return value imgmodel is an image model object. If himage is an array of handles to
image objects, imgmodel is an array of image models.

If himage does not have an associated image model object, getimagemodel creates one.

Examples

Retrieve imagemodel Object Associated with Image

Read an image into the workspace.

h = imshow('bag.png');

 getimagemodel

1-865

Retrieve the image model associated with this image.

imgmodel = getimagemodel(h)

imgmodel =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: [0 255]
 ImageHeight: 250
 ImageType: 'intensity'
 ImageWidth: 189
 MinIntensity: 0
 MaxIntensity: 255

1 Functions — Alphabetical List

1-866

See Also
imagemodel

Introduced before R2006a

 getimagemodel

1-867

getline
Select polyline with mouse

Note getline is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
[xi,yi] = getline
[xi,yi] = getline(fig)
[xi,yi] = getline(ax)
[xi,yi] = getline(___ ,'closed')

Description
[xi,yi] = getline lets you select a polyline in the current figure using the mouse.
When you finish selecting the polyline, getline returns the coordinates of the polyline
endpoints in xi and yi.

Use normal button clicks to add points to the polyline. A shift-, right-, or double-click adds
a final point and ends the polyline selection. Pressing Return or Enter ends the polyline
selection without adding a final point. Pressing Backspace or Delete removes the
previously selected point from the polyline.

[xi,yi] = getline(fig) lets you select a polyline in the current axes of figure fig,
using the mouse.

[xi,yi] = getline(ax) lets you select a polyline in axes ax, using the mouse.

[xi,yi] = getline(___ ,'closed') animates and returns a closed polygon.

1 Functions — Alphabetical List

1-868

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

Axes handle, specified as a handle.

Output Arguments
xi — x-coordinates of selected polyline endpoints
numeric vector

x-coordinates of selected polyline endpoints, returned as a numeric vector.
Data Types: double

yi — y-coordinates of selected polyline endpoints
numeric vector

y-coordinates of selected polyline endpoints, returned as a numeric vector.
Data Types: double

See Also
getpts | getrect | imline

Introduced before R2006a

 getline

1-869

getneighbors
Structuring element neighbor locations and heights

Note getneighbors will be removed in a future release. See strel for the current list
of functions recommended for use with structuring elements.

Syntax
[offsets,heights] = getneighbors(SE)

Description
[offsets,heights] = getneighbors(SE) returns the relative locations and
corresponding heights for each of the neighbors in the structuring element SE.

Examples

Get Neighbor Location and Height of 2-D Structuring Element
Create a nonflat 2-D structuring element with two neighbors.

se = strel('arbitrary',[1 0 1],[5 0 -5]);

Get the row and column offset of each neighbor from the center of the structuring
element. Also get the heights of the neighbors.

[offsets,heights] = getneighbors(se)

offsets =

 0 -1
 0 1

1 Functions — Alphabetical List

1-870

heights =

 5 -5

Input Arguments
SE — Structuring element
strel object

Structuring element, specified as a strel object with P neighbors and dimensionality N.

Output Arguments
offsets — Position of neighbors
P-by-N matrix

Position of neighbors relative to the center of the structuring element, in pixels, returned
as a P-by-N matrix.
Data Types: double

heights — Height of neighbors
P-by-1 column vector

Height of neighbors, returned as a P-by-1 column vector.
Data Types: double

See Also

Topics
“Structuring Elements”

Introduced before R2006a

 getneighbors

1-871

getnhood
Get structuring element neighborhood

Note getnhood will be removed in a future release. See strel for the current list of
methods.

Syntax
nhood = getnhood(SE)

Description
nhood = getnhood(SE) returns the neighborhood associated with the structuring
element SE.

Examples

Get Neighborhood of Flat Structuring Element

se = strel(eye(5));
nhood = getnhood(se)

nhood =

 5×5 logical array

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0

1 Functions — Alphabetical List

1-872

 0 0 0 1 0
 0 0 0 0 1

Input Arguments
SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

Output Arguments
nhood — Neighborhood of structuring element
logical array

Neighborhood of structuring element, returned as a logical array.

Note If SE is an offsetstrel object, then nhood indicates which pixels are in the
neighborhood but does not return the offset of the pixels. You can get the offset from the
property SE.Offset.

Data Types: logical

See Also

Topics
“Structuring Elements”

Introduced before R2006a

 getnhood

1-873

getpts
Specify points with mouse

Note getpts is not recommended. Use one of the ROI classes instead, described in “ROI
Creation Overview”.

Syntax
[xi,yi] = getpts
[xi,yi] = getpts(fig)
[xi,yi] = getpts(ax)

Description
[xi,yi] = getpts lets you choose points in the current figure using the mouse. When
you finish selecting points, getpts returns the coordinates of the selected points in xi
and yi.

Use normal button clicks to add points. A shift-, right-, or double-click adds a final point
and ends the selection. Pressing Return or Enter ends the selection without adding a
final point. Pressing Backspace or Delete removes the previously selected point.

[xi,yi] = getpts(fig) lets you choose points in the current axes of figure fig, using
the mouse.

[xi,yi] = getpts(ax) lets you choose points in axes ax, using the mouse.

Examples

Select Points in Image Interactively

Display an image using imshow.

1 Functions — Alphabetical List

1-874

figure
imshow('moon.tif')

Call getpts to choose points interactively in the displayed image using the mouse.
Double-click to complete your selection. When you are done, getpts returns the
coordinates of your points.

[x,y] = getpts

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

Axes handle, specified as a handle.

Output Arguments
xi — x-coordinates of sampled points
numeric vector

x-coordinates of sampled points, returned as a numeric vector.
Data Types: double

yi — y-coordinates of sampled points
numeric vector

y-coordinates of sampled points, returned as a numeric vector.
Data Types: double

See Also
getline | getrect | impixel | impoint

 getpts

1-875

Introduced before R2006a

1 Functions — Alphabetical List

1-876

getrangefromclass
Default display range of image based on its class

Syntax
range = getrangefromclass(I)

Description
range = getrangefromclass(I) returns the default display range of the image I,
based on its class type.

Examples

Get Default Display Range of Image

Read 16-bit DICOM image into the workspace.

CT = dicomread('CT-MONO2-16-ankle.dcm');

Get the display range from the image.

r = getrangefromclass(CT)

r = 1×2

 -32768 32767

Input Arguments
I — Input image
numeric array | logical array

 getrangefromclass

1-877

Input image, specified as a numeric array or logical array.

Output Arguments
range — Display range
2-element numeric vector

Display range, returned as a 2-element numeric vector of the form [min max].

• For single and double data, getrangefromclass returns the range [0 1] to be
consistent with the way double and single images are interpreted in MATLAB.

• For integer data, getrangefromclass returns the minimum and maximum
representable values for that integer class. For example, if the class is uint8, the
dynamic range is [0 255].

• For logical data, getrangefromclass returns the range [0 1].

Data Types: double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• getrangefromclass supports the generation of C code (requires MATLAB Coder).
For more information, see “Code Generation for Image Processing”.

See Also
intmax | intmin

Topics
“Image Types in the Toolbox”

1 Functions — Alphabetical List

1-878

Introduced before R2006a

 getrangefromclass

1-879

getrect
Specify rectangle with mouse

Note getrect is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
rect = getrect
rect = getrect(fig)
rect = getrect(ax)

Description
rect = getrect lets you select a rectangle in the current axes using the mouse. When
you finish selecting the rectangle, getrect returns information about the position and
size of the rectangle in rect.

Use the mouse to click and drag the desired rectangle. To constrain the rectangle to be a
square, use a shift- or right-click to begin the drag.

rect = getrect(fig) lets you select a rectangle in the current axes of figure fig,
using the mouse.

rect = getrect(ax) lets you select a rectangle in axes ax, using the mouse.

Examples

Select Rectangle in Image Interactively

Display an image using imshow.

imshow('moon.tif')

1 Functions — Alphabetical List

1-880

Choose points interactively in the displayed image using the mouse. When you are done,
getrect returns the size and position of your rectangle.

rect = getrect

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

Axes handle, specified as a handle.

Output Arguments
rect — Selected rectangle
4-element numeric vector

Selected rectangle, returned as a 4-element numeric vector with the form [xmin ymin
width height].

See Also
getline | getpts | imrect

Introduced before R2006a

 getrect

1-881

getsequence
Sequence of decomposed structuring elements

Note getsequence will be removed in a future release. See strel for the current list of
methods.

Syntax
SEQ = getsequence(SE)

Description
SEQ = getsequence(SE) returns the array of structuring elements SEQ, containing the
individual structuring elements that form the decomposition of SE.

Examples

Decompose Square Structuring Element
The strel function uses decomposition for square structuring elements larger than 3-
by-3. Use getsequence to extract the decomposed structuring elements.
se = strel('square',5)

se =

strel is a square shaped structuring element with properties:

 Neighborhood: [5×5 logical]
 Dimensionality: 2

seq = getsequence(se)

seq =

 2×1 strel array with properties:

1 Functions — Alphabetical List

1-882

 Neighborhood
 Dimensionality

Use imdilate with the 'full' option to confirm that dilating sequentially with the
decomposed structuring elements forms a 5-by-5 square:

imdilate(1,seq,'full')

ans =

 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

Input Arguments
SE — Structuring elements
array of strel objects

Structuring elements, specified as an array of strel objects.

Output Arguments
SEQ — Decomposed structuring elements
array of strel objects

Decomposed structuring elements, returned as an array of strel objects. The elements
of SEQ have no further decomposition.

See Also
strel

Topics
“Structuring Elements”

 getsequence

1-883

Introduced before R2006a

1 Functions — Alphabetical List

1-884

grabcut
Segment image into foreground and background using iterative graph-based
segmentation

Syntax
BW = grabcut(A,L,ROI)
BW = grabcut(A,L,ROI,foremask,backmask)
BW = grabcut(A,L,ROI,foreind,backind)
BW = grabcut(V, ___)
BW = grabcut(___ ,Name,Value)

Description
BW = grabcut(A,L,ROI) segments the image A into foreground and background
regions. The label matrix L specifies the subregions of the image. ROI is a logical mask
designating the initial region of interest.

BW = grabcut(A,L,ROI,foremask,backmask) segments the image A, where
foremask and backmask are masks designating pixels in the image as foreground and
background, respectively.

BW = grabcut(A,L,ROI,foreind,backind) segments the image A, where foreind
and backind specify the linear indices of the pixels in the image marked as foreground
and background, respectively.

BW = grabcut(V, ___) segments the volume V into foreground and background
regions.

BW = grabcut(___ ,Name,Value) segments the image using name-value pairs to
control aspects of the segmentation.

Examples

 grabcut

1-885

Segment Foreground from Background in Image Using Grabcut

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Generate label matrix.

L = superpixels(RGB,500);

Specify a region of interest and create a mask image.

figure
imshow(RGB)
h1 = impoly(gca,[72,105; 1,231; 0,366; 104,359;...
 394,307; 518,343; 510,39; 149,72]);

1 Functions — Alphabetical List

1-886

roiPoints = getPosition(h1);
roi = poly2mask(roiPoints(:,1),roiPoints(:,2),size(L,1),size(L,2));

Perform the grab cut operation, specifying the original image, the label matrix and the
ROI.

BW = grabcut(RGB,L,roi);
figure
imshow(BW)

 grabcut

1-887

Create masked image.

maskedImage = RGB;
maskedImage(repmat(~BW,[1 1 3])) = 0;
figure;
imshow(maskedImage)

1 Functions — Alphabetical List

1-888

Segment 3-D Volume Using Grabcut

Load 3-D volumetric data.

load mristack
V = mristack;

Create a 2-D mask for initial foreground and background seed points.

 grabcut

1-889

seedLevel = 10;
fseed = V(:,:,seedLevel) > 75;
bseed = V(:,:,seedLevel) == 0;

Display foreground and background seed points.

imshow(fseed)

imshow(bseed)

1 Functions — Alphabetical List

1-890

Place seed points into empty 3-D mask.

fmask = zeros(size(V));
bmask = fmask;
fmask(:,:,seedLevel) = fseed;
bmask(:,:,seedLevel) = bseed;

Create initial region of interest.

roi = false(size(V));
roi(10:end-10,10:end-10,:) = true;

Generate label matrix.

L = superpixels3(V,500);

Perform GrabCut.

bw = grabcut(V,L,roi,fmask,bmask);

 grabcut

1-891

Display 3D segmented image.

montage(reshape(bw,size(V)))

1 Functions — Alphabetical List

1-892

Input Arguments
A — Input image
real, finite, nonsparse numeric array

Input image, specified as a real, finite, nonsparse, numeric array. Only grayscale images
can be int16.
Data Types: single | double | int16 | uint8 | uint16

V — Input volume
real, finite, nonsparse, 3-D numeric array

Input volume, specified as a real, finite, nonsparse, 3-D numeric array.
Data Types: single | double | int16 | uint8 | uint16

L — Label matrix
valid label matrix for input image

Label matrix, specified as a valid label matrix for input image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

ROI — Region of interest
logical array

Region of interest, specified as a logical array, where all pixels that define the region of
interest are equal to true.
Data Types: logical

foremask — Foreground mask
logical array

Foreground mask, specified as a logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

backmask — Background mask
logical array

Background mask, specified as a logical array.

 grabcut

1-893

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

foreind — Indices of pixels in foreground
vector

Indices of pixels in foreground, specified as a vector of linear indices.
Data Types: double

backind — Indices of pixels in background
vector

Indices of pixels in background, specified as a vector of linear indices.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: BW = grabcut(A,L,ROI,'Connectivity',4)

Connectivity — Connectivity of connected components
4 | 8 | 6 | 18 | 26

Connectivity of connected components, specified as one of the following values. The
default connectivity is 8 for 2–D images, and 26 for 3–D images.

Value Meaning
Two-dimensional connectivities
4 4-connected neighborhood

 Current pixel is shown in gray.

1 Functions — Alphabetical List

1-894

Value Meaning
8 8-connected neighborhood

 Current pixel is shown in gray.
Three-dimensional connectivities
6 6-connected neighborhood

 Current pixel is center of cube.
18 18-connected neighborhood

 Current pixel is center of cube.
26 26-connected neighborhood

 Current pixel is center of cube.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 grabcut

1-895

MaximumIterations — Maximum number of iterations
5 (default) | positive scalar

Maximum number of iterations performed by the algorithm. The algorithm can converge
to a solution before reaching the maximum number of iterations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Output image
logical array

Output image, returned as binary image the same size as the label matrix L.

Tips
• For double and single images, grabcut assumes the range of the image to be [0

1]. For uint16, int16, and uint8 images, grabcut assumes the range to be the full
range for the given data type.

• For grayscale images, the size of L, foremask, and backmask must match the size of
the image A. For color and multi-channel images, L, foremask, and backmask must
be 2-D arrays with the first two dimensions identical to the first two dimensions of the
image A.

Algorithms
• The algorithm treats all subregions fully or spatially outside the ROI mask as

belonging to the background. To get an optimal segmentation, make sure the object to
be segmented is fully contained within the ROI, surrounded by a small number of
background pixels.

• Do not mark a subregion of the label matrix as belonging to both the foreground mask
and the background mask. If a region of the label matrix contains pixels belonging to
both the foreground mask and background mask, the algorithm effectively treats the
region as unmarked.

1 Functions — Alphabetical List

1-896

• The algorithm assumes all subregions outside the region of interest belong to the
background. Marking one of these subregions as belonging to foreground or
background mask has no effect on the resulting segmentation.

References
[1] Rother, C., V. Kolmogorov, and A. Blake. "GrabCut - Interactive Foreground Extraction

using Iterated Graph Cuts". ACM Transactions on Graphics (SIGGRAPH). Vol. 23,
Number 3, 2004, pp. 309–314.

See Also
Image Segmenter | lazysnapping | superpixels | watershed

Topics
“Label and Measure Objects in a Binary Image”

Introduced in R2018a

 grabcut

1-897

gradientweight
Calculate weights for image pixels based on image gradient

Syntax
W = gradientweight(I)
W = gradientweight(I,sigma)
W = gradientweight(___,Name,Value)

Description
W = gradientweight(I) calculates the pixel weight for each pixel in image I based on
the gradient magnitude at that pixel, and returns the weight array W. The weight of a
pixel is inversely related to the gradient values at the pixel location. Pixels with small
gradient magnitude (smooth regions) have a large weight and pixels with large gradient
magnitude (such as on the edges) have a small weight.

W = gradientweight(I,sigma) uses sigma as the standard deviation for the
Derivative of Gaussian that is used for computing the image gradient.

W = gradientweight(___,Name,Value) returns the weight array W using name-value
pairs to control aspects of weight computation.

Examples

Segment Image Using Weights Derived from Image Gradient

This example segments an image using the Fast Marching Method based on the weights
derived from the image gradient.

Read image and display it.

1 Functions — Alphabetical List

1-898

I = imread('coins.png');
imshow(I)
title('Original Image')

Compute weights based on image gradient.

sigma = 1.5;
W = gradientweight(I, sigma, 'RolloffFactor', 3, 'WeightCutoff', 0.25);

Select a seed location.

R = 70; C = 216;
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);
title('Original Image with Seed Location')

 gradientweight

1-899

Segment the image using the weight array.

thresh = 0.1;
[BW, D] = imsegfmm(W, C, R, thresh);
figure, imshow(BW)
title('Segmented Image')
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);

1 Functions — Alphabetical List

1-900

Geodesic distance matrix D can be thresholded using different thresholds to get different
segmentation results.

figure, imshow(D)
title('Geodesic Distances')
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);

 gradientweight

1-901

Input Arguments
I — Input image
grayscale image

Input image, specified as a grayscale image. Must be nonsparse.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

sigma — Standard deviation for Derivative of Gaussian
1.5 (default) | positive scalar

Standard deviation for Derivative of Gaussian, specified as a positive scalar of class
double.
Example: sigma = 1.0; W = gradientweight(I, sigma)
Data Types: double

1 Functions — Alphabetical List

1-902

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: W =
gradientweight(I,1.5,'RolloffFactor',3,'WeightCutoff',0.25);

RolloffFactor — Output weight roll-off factor
3 (default) | positive scalar

Output weight roll-off factor, specified as the comma-separated pair consisting of
'RolloffFactor' and a positive scalar of class double. Controls how fast weight
values fall as a function of gradient magnitude. When viewed as a 2-D plot, pixel intensity
values might vary gradually at the edges of regions, creating a gentle slope. In your
segmented image, you might want the edge to be more well-defined. Using the roll-off
factor, you control the slope of the weight value curve at points where intensity values
start to change. If you specify a high value, the output weight values fall off sharply
around the edges of smooth regions. If you specify a low value, the output weight has a
more gradual fall-off around the edges. The suggested range for this parameter is [0.5
4].
Data Types: double

WeightCutoff — Threshold for weight values
0.25 (default) | positive scale in the range [1e-3 1]

Threshold for weight values, specified as the comma-separated pair consisting of
'WeightCutoff' and a positive scalar of class double. If you use this parameter to set
a threshold on weight values, it suppresses any weight values less than the value you
specify, setting these pixels to a small constant value (1e-3). This parameter can be useful
in improving the accuracy of the output when you use the output weight array W as input
to Fast Marching Method segmentation function, imsegfmm.
Data Types: double

 gradientweight

1-903

Output Arguments
W — Weight array
numeric array

Weight array, returned as a numeric array. The weight array is the same size as the input
image, I. The weight array is of class double, unless I is single, in which case it is of
class single.

Tips
• gradientweight uses double-precision floating point operations for internal

computations for all classes of I, except when I is of class single, in which case
gradientweight uses single-precision floating point operations internally.

See Also
graydiffweight | imsegfmm

Introduced in R2014b

1 Functions — Alphabetical List

1-904

gray2ind
Convert grayscale or binary image to indexed image

Syntax
[X,cmap] = gray2ind(I,c)
[X,cmap] = gray2ind(BW,c)

Description
[X,cmap] = gray2ind(I,c) converts the grayscale image I to an indexed image X
with colormap cmap with c colors.

[X,cmap] = gray2ind(BW,c) converts the binary image BW to an indexed image.

Examples

Convert Grayscale Image to Indexed Image

Read grayscale image into the workspace.

I = imread('cameraman.tif');

Convert the image to an indexed image using gray2ind. This example creates an
indexed image with 16 indices.

[X, map] = gray2ind(I, 16);

Display the indexed image.

imshow(X, map);

 gray2ind

1-905

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

BW — Binary image
numeric array

Binary image, specified as a numeric array of any dimension.
Data Types: logical

1 Functions — Alphabetical List

1-906

c — Number of colormap colors
positive integer

Number of colormap colors, specified as a positive integer between 1 and 65536.

• If the input image is grayscale, then the default value of c is 64.
• If the input image is binary, then the default value of c is 2.

Output Arguments
X — Indexed image
numeric array

Indexed image, returned as a numeric array of the same dimensionality as the input
grayscale or binary image. If the colormap length is less than or equal to 256, then the
class of the output image is uint8 ; otherwise it is uint16.
Data Types: uint8 | uint16

cmap — Color map
c-by-3 numeric array

Color map associated with indexed image X, returned as a c-by-3 numeric array. The color
map produced is equivalent to gray(c).
Data Types: double

See Also
grayslice | ind2gray | mat2gray

Introduced before R2006a

 gray2ind

1-907

graycomatrix
Create gray-level co-occurrence matrix from image

Syntax
glcms = graycomatrix(I)
glcms = graycomatrix(I,Name,Value,...)
[glcms,SI] = graycomatrix(___)

Description
glcms = graycomatrix(I) creates a gray-level co-occurrence matrix (GLCM) from
image I. Another name for a gray-level co-occurrence matrix is a gray-level spatial
dependence matrix. Also, the word co-occurrence is frequently used in the literature
without a hyphen, cooccurrence.

graycomatrix creates the GLCM by calculating how often a pixel with gray-level
(grayscale intensity) value i occurs horizontally adjacent to a pixel with the value j. (You
can specify other pixel spatial relationships using the 'Offsets' parameter.) Each
element (i,j) in glcm specifies the number of times that the pixel with value i occurred
horizontally adjacent to a pixel with value j.

glcms = graycomatrix(I,Name,Value,...) returns one or more gray-level co-
occurrence matrices, depending on the values of the optional name/value pairs.
Parameter names can be abbreviated, and case does not matter.

[glcms,SI] = graycomatrix(___) returns the scaled image, SI, used to calculate
the gray-level co-occurrence matrix. The values in SI are between 1 and NumLevels.

Examples

Create Gray-Level Co-occurrence Matrix for Grayscale Image

Read a grayscale image into the workspace.

1 Functions — Alphabetical List

1-908

I = imread('circuit.tif');
imshow(I)

Calculate the gray-level co-occurrence matrix (GLCM) for the grayscale image. By
default, graycomatrix calculates the GLCM based on horizontal proximity of the pixels:
[0 1]. That is the pixel next to the pixel of interest on the same row. This example specifies
a different offset: two rows apart on the same column.

glcm = graycomatrix(I,'Offset',[2 0])

glcm = 8×8

 14205 2107 126 0 0 0 0 0
 2242 14052 3555 400 0 0 0 0
 191 3579 7341 1505 37 0 0 0
 0 683 1446 7184 1368 0 0 0
 0 7 116 1502 10256 1124 0 0

 graycomatrix

1-909

 0 0 0 2 1153 1435 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Create Gray-Level Co-occurrence Matrix Returning Scaled Image

Create a simple 3-by-6 sample array.

I = [1 1 5 6 8 8; 2 3 5 7 0 2; 0 2 3 5 6 7]

I = 3×6

 1 1 5 6 8 8
 2 3 5 7 0 2
 0 2 3 5 6 7

Calculate the gray-level co-occurrence matrix (GLCM) and return the scaled image used
in the calculation. By specifying empty brackets for the GrayLimits parameter, the
example uses the minimum and maximum grayscale values in the input image as limits.

[glcm,SI] = graycomatrix(I,'NumLevels',9,'GrayLimits',[])

glcm = 9×9

 0 0 2 0 0 0 0 0 0
 0 1 0 0 0 1 0 0 0
 0 0 0 2 0 0 0 0 0
 0 0 0 0 0 2 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 2 1 0
 0 0 0 0 0 0 0 1 1
 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1

SI = 3×6

 2 2 6 7 9 9
 3 4 6 8 1 3
 1 3 4 6 7 8

1 Functions — Alphabetical List

1-910

Calculate GLCMs using Four Different Offsets

Read a grayscale image into the workspace.

I = imread('cell.tif');
imshow(I)

Define four offsets.

offsets = [0 1; -1 1;-1 0;-1 -1];

Calculate the GLCMs, returning the scaled image as well. Display the scaled image,
performing an additional rescaling of data values to the range [0, 1].

[glcms,SI] = graycomatrix(I,'Offset',offsets);
imshow(rescale(SI))

 graycomatrix

1-911

Note how the function returns an array of four GLCMs.

whos

 Name Size Bytes Class Attributes

 I 159x191 30369 uint8
 SI 159x191 242952 double
 glcms 8x8x4 2048 double
 offsets 4x2 64 double

Calculate Symmetric GLCM for Grayscale Image

Read a grayscale image into the workspace.

I = imread('circuit.tif');
imshow(I)

1 Functions — Alphabetical List

1-912

Calculate the GLCM using the Symmetric option, returning the scaled image as well. The
GLCM created when you set Symmetric to true is symmetric across its diagonal, and is
equivalent to the GLCM described by Haralick (1973).

[glcm,SI] = graycomatrix(I,'Offset',[2 0],'Symmetric',true);
glcm

glcm = 8×8

 28410 4349 317 0 0 0 0 0
 4349 28104 7134 1083 7 0 0 0
 317 7134 14682 2951 153 0 0 0
 0 1083 2951 14368 2870 2 0 0
 0 7 153 2870 20512 2277 0 0
 0 0 0 2 2277 2870 0 0
 0 0 0 0 0 0 0 0

 graycomatrix

1-913

 0 0 0 0 0 0 0 0

Display the scaled image, performing an additional rescaling of data values to the range
[0, 1].

imshow(rescale(SI))

Input Arguments
I — Input image
2-D, real, nonsparse, numeric or logical array

Input image, specified as a 2-D, real, nonsparse, numeric or logical array.

1 Functions — Alphabetical List

1-914

Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

GrayLimits — Range used scaling input image into gray levels
range specified by class (default) | two-element vector [low high]

Range used scaling input image into gray levels, specified as a two-element vector [low
high]. If N is the number of gray levels (see parameter 'NumLevels') to use for scaling,
the range [low high] is divided into N equal width bins and values in a bin get mapped
to a single gray level. Grayscale values less than or equal to low are scaled to 1.
Grayscale values greater than or equal to high are scaled to 'NumLevels'.
If'GrayLimits' is set to [], graycomatrix uses the minimum and maximum grayscale
values in I as limits, [min(I(:)) max(I(:))], for example, [0 1] for class double and
[-32768 32767] for class int16.
Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

NumLevels — Number of gray levels
8 for numeric, 2 for binary (default) | integer

Number of gray levels, specified as an integer. For example, if NumLevels is 8,
graycomatrix scales the values in I so they are integers between 1 and 8. The number
of gray-levels determines the size of the gray-level co-occurrence matrix (glcm).
Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 graycomatrix

1-915

Offset — Distance between the pixel of interest and its neighbor
[0 1] (default) | p-by-2 array of integers

Distance between the pixel of interest and its neighbor, specified as a p-by-2 array of
integers. Each row in the array is a two-element vector, [row_offset, col_offset],
that specifies the relationship, or offset, of a pair of pixels. row_offset is the number of
rows between the pixel-of-interest and its neighbor. col_offset is the number of
columns between the pixel-of-interest and its neighbor. Because the offset is often
expressed as an angle, the following table lists the offset values that specify common
angles, given the pixel distance D.

Angle Offset
0 [0 D]
45 [-D D]
90 [-D 0]
135 [-D -D]

The figure illustrates the array: offset = [0 1; -1 1; -1 0; -1 -1]

Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Symmetric — Consider ordering of values
false (default) | true

Consider ordering of values, specified as the Boolean value true or false. For example,
when 'Symmetric' is set to true, graycomatrix counts both 1,2 and 2,1 pairings
when calculating the number of times the value 1 is adjacent to the value 2. When
'Symmetric' is set to false, graycomatrix only counts 1,2 or 2,1, depending on the
value of 'offset'.
Example:

1 Functions — Alphabetical List

1-916

Data Types: logical

Output Arguments
glcms — Gray-level co-occurrence matrix (or matrices)
double array

Gray-level co-occurrence matrix (or matrices), returned as an NumLevels-by-NumLevels-
by-P array of class double, where P is the number of offsets in Offset.

SI — Scaled image used in calculation of GLCM
double matrix

Scaled image used in calculation of GLCM, returned as a double matrix the same size as
the input image.

Algorithms
graycomatrix calculates the GLCM from a scaled version of the image. By default, if I
is a binary image, graycomatrix scales the image to two gray-levels. If I is an intensity
image, graycomatrix scales the image to eight gray-levels. You can specify the number
of gray-levels graycomatrix uses to scale the image by using the 'NumLevels'
parameter, and the way that graycomatrix scales the values using the 'GrayLimits'
parameter .

The following figure shows how graycomatrix calculates several values in the GLCM of
the 4-by-5 image I. Element (1,1) in the GLCM contains the value 1 because there is only
one instance in the image where two, horizontally adjacent pixels have the values 1 and 1.
Element (1,2) in the GLCM contains the value 2 because there are two instances in the
image where two, horizontally adjacent pixels have the values 1 and 2. graycomatrix
continues this processing to fill in all the values in the GLCM.

 graycomatrix

1-917

graycomatrix ignores pixel pairs if either of the pixels contains a NaN, replaces positive
Infs with the value NumLevels, and replaces negative Infs with the value 1.
graycomatrix ignores border pixels, if the corresponding neighbor pixel falls outside
the image boundaries.

The GLCM created when 'Symmetric' is set to true is symmetric across its diagonal,
and is equivalent to the GLCM described by Haralick (1973). The GLCM produced by the
following syntax, with 'Symmetric' set to true

 graycomatrix(I, 'offset', [0 1], 'Symmetric', true)

is equivalent to the sum of the two GLCMs produced by the following statements
where'Symmetric' is set to false.

graycomatrix(I, 'offset', [0 1], 'Symmetric', false)
graycomatrix(I, 'offset', [0 -1], 'Symmetric', false)

References
[1] Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features for Image

Classification", IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3,
1973, pp. 610-621.

[2] Haralick, R.M., and L.G. Shapiro. Computer and Robot Vision: Vol. 1, Addison-Wesley,
1992, p. 459.

1 Functions — Alphabetical List

1-918

See Also
graycoprops

Introduced before R2006a

 graycomatrix

1-919

grayconnected
Select contiguous image region with similar gray values

Syntax
BW = grayconnected(I,row,column)
BW = grayconnected(I,row,column,tolerance)

Description
BW = grayconnected(I,row,column) finds connected regions of similar intensity in
the grayscale image I. You specify the intensity value to use as a starting point, the seed
pixel, by row and column indices. By default, grayconnected includes connected pixels
with values in the range [seedpixel–32,seedpixel+32] for integer-valued images
and within the range [seedpixel-0.1,seedpixel+0.1] for floating point images.
grayconnected returns a binary mask image, BW, where all of the foreground pixels are
8-connected to the seed pixel at (row, column) by pixels of similar intensity.

BW = grayconnected(I,row,column,tolerance) finds connected regions of similar
intensity in a grayscale image, where tolerance specifies the range of intensity values
to include in the mask, as in [(seedpixel-tolerance),(seedpixel+tolerance)].

Examples

Create Binary Mask from Connected Pixels

Create small sample image.

I = uint8([20 22 24 23 25 20 100
 21 10 12 13 12 30 6
 22 11 13 12 13 25 5
 23 13 13 13 13 20 5
 24 13 13 12 12 13 5
 25 26 5 28 29 50 6]);

1 Functions — Alphabetical List

1-920

Create mask image, specifying the seed location by row and column and the tolerance.
Since the seed location specifies the pixel with the value 23 and the tolerance is 3 , the
range of grayscale values is [20,26].

seedrow = 4

seedrow = 4

seedcol = 1

seedcol = 1

tol = 3

tol = 3

BW = grayconnected(I,seedrow,seedcol,tol)

BW = 6x7 logical array

 1 1 1 1 1 1 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 1 0 0 0 0 0

Input Arguments
I — Input grayscale image
real, nonsparse 2-D matrix

Input grayscale image, specified as a real, nonsparse, 2-D matrix.
Example: BW = grayconnected(I,50,40);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

row — Row index of seed location
real, positive, scalar integer.

Row index of seed location, specified as a real, positive, scalar integer.

 grayconnected

1-921

Example: BW = grayconnected(I,50,40);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

column — Column index of seed location
real, positive, scalar integer

Column index of seed location, specified as a real, positive, scalar integer.
Example: BW = grayconnected(I,50,40);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

tolerance — Range of intensity values to include in the mask
32 for integer valued images, 0.1 for floating point images (default) | numeric scalar

Range of intensity values to include in the mask, specified as a numeric scalar. The range
is defined as [(seedvalue-tolerance),(seedvalue+tolerance)]. By default,
grayconnected includes connected pixels with values in the range [seedpixel–
32,seedpixel+32] for integer-valued images and within the range
[seedpixel-0.1,seedpixel+0.1] for floating point images.
Example: BW = grayconnected(I,50,40,5);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
BW — Mask binary image
logical array

Mask binary image, returned as a logical array where all of the foreground pixels are 8-
connected to the seed pixel at (row,column) by pixels of similar intensity.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-922

Usage notes and limitations:

• grayconnected supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
grayconnected generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

See Also
Image Segmenter | bwselect | imfill

Introduced in R2015b

 grayconnected

1-923

graycoprops
Properties of gray-level co-occurrence matrix

Syntax
stats = graycoprops(glcm,properties)

Description
stats = graycoprops(glcm,properties) calculates the statistics specified in
properties from the gray-level co-occurrence matrix glcm. glcm is an m-by-n-by-p
array of valid gray-level co-occurrence matrices. If glcm is an array of GLCMs, stats is
an array of statistics for each glcm.

graycoprops normalizes the gray-level co-occurrence matrix (GLCM) so that the sum of
its elements is equal to 1. Each element (r,c) in the normalized GLCM is the joint
probability occurrence of pixel pairs with a defined spatial relationship having gray level
values r and c in the image. graycoprops uses the normalized GLCM to calculate
properties.

Examples

Calculate Statistics from Gray-level Co-occurrence Matrix

Create simple sample GLCM.

glcm = [0 1 2 3;1 1 2 3;1 0 2 0;0 0 0 3]

glcm = 4×4

 0 1 2 3
 1 1 2 3
 1 0 2 0
 0 0 0 3

1 Functions — Alphabetical List

1-924

Calculate statistical properties of the GLCM.

stats = graycoprops(glcm)

stats = struct with fields:
 Contrast: 2.8947
 Correlation: 0.0783
 Energy: 0.1191
 Homogeneity: 0.5658

Calculate Contrast and Homogeneity from Multiple GLCMs

Read grayscale image into the workspace.

I = imread('circuit.tif');

Create two gray-level co-occurrence matrices (GLCM) from the image, specifying
different offsets.

glcm = graycomatrix(I,'Offset',[2 0;0 2])

glcm =
glcm(:,:,1) =

 Columns 1 through 6

 14205 2107 126 0 0 0
 2242 14052 3555 400 0 0
 191 3579 7341 1505 37 0
 0 683 1446 7184 1368 0
 0 7 116 1502 10256 1124
 0 0 0 2 1153 1435
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 8

 0 0
 0 0
 0 0
 0 0

 graycoprops

1-925

 0 0
 0 0
 0 0
 0 0

glcm(:,:,2) =

 Columns 1 through 6

 13938 2615 204 4 0 0
 2406 14062 3311 630 23 0
 145 3184 7371 1650 133 0
 2 371 1621 6905 1706 0
 0 0 116 1477 9974 1173
 0 0 0 1 1161 1417
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 8

 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0

Get statistics on contrast and homogeneity of the image from the GLCMs.

stats = graycoprops(glcm,{'contrast','homogeneity'})

stats = struct with fields:
 Contrast: [0.3420 0.3567]
 Homogeneity: [0.8567 0.8513]

1 Functions — Alphabetical List

1-926

Input Arguments
glcm — Gray-level Co-occurrence Matrix
real, non-negative array of finite logical or numeric integers

Gray-level Co-occurrence Matrix, specified as a real, non-negative array of finite logical or
numeric integers. Use the graycomatrix function to create a GLCM.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

properties — Statistical properties of the image derived from GLCM
'all' (default) | comma-separated list | cell array | space-separated string scalar or
character vector

Statistical properties of the image derived from GLCM, specified as a comma-separated
list string scalars or character vectors, space-separated string scalar or character vector,
cell array of string scalars or character vectors, or 'all'. You can specify any of the
property names listed in this table. Property names can be abbreviated and are not case
sensitive.

Property Description Formula
'Contrast' Returns a measure of the intensity contrast

between a pixel and its neighbor over the
whole image.

Range = [0 (size(GLCM,1)-1)^2]

Contrast is 0 for a constant image.

The property Contrast is also known as
variance and inertia.

i j p i j

i j

-Â
,

(,)
2

'Correlation' Returns a measure of how correlated a pixel
is to its neighbor over the whole image.

Range = [-1 1]

Correlation is 1 or -1 for a perfectly positively
or negatively correlated image. Correlation is
NaN for a constant image.

()() (,)

,

i i j j p i j

i ji j

- -
Â

m m

s s

 graycoprops

1-927

Property Description Formula
'Energy' Returns the sum of squared elements in the

GLCM.

Range = [0 1]

Energy is 1 for a constant image.

The property Energy is also known as
uniformity, uniformity of energy, and angular
second moment.

p i j

i j

(,)

,

2Â

'Homogeneity' Returns a value that measures the closeness
of the distribution of elements in the GLCM to
the GLCM diagonal.

Range = [0 1]

Homogeneity is 1 for a diagonal GLCM.

p i j

i j
i j

(,)

,
1 + -

Â

Data Types: char | string | cell

Output Arguments
stats — Statistics derived from the GLCM
structure

Statistics derived from the GLCM, returned as a structure with fields that are specified by
properties. Each field contains a 1-by-p array, where p is the number of gray-level co-
occurrence matrices in GLCM. For example, if GLCM is an 8-by-8-by-3 array and
properties is 'Energy', stats is a structure containing the field Energy, which contains
a 1-by-3 array.

See Also
graycomatrix

Introduced before R2006a

1 Functions — Alphabetical List

1-928

graydiffweight
Calculate weights for image pixels based on grayscale intensity difference

Syntax
W = graydiffweight(I,refGrayVal)
W = graydiffweight(I,mask)
W = graydiffweight(I,C,R)
W = graydiffweight(V,C,R,P)
W = graydiffweight(___, Name,Value)

Description
W = graydiffweight(I,refGrayVal) computes the pixel weight for each pixel in the
grayscale image I. The weight is the absolute value of the difference between the
intensity of the pixel and the reference grayscale intensity specified by the scalar
refGrayVal. Pick a reference grayscale intensity value that is representative of the
object you want to segment. The weights are returned in the array W, which is the same
size as input image I.

The weight of a pixel is inversely related to the absolute value of the grayscale intensity
difference at the pixel location. If the difference is small (intensity value close to
refGrayVal), the weight value is large. If the difference is large (intensity value very
different from refGrayVal), the weight value is small.

W = graydiffweight(I,mask) computes the pixel weights, where the reference
grayscale intensity value is the average of the intensity values of all the pixels in I that
are marked as logical true in mask. Using the average of several pixels to calculate the
reference grayscale intensity value can be more effective than using a single reference
intensity value, as in the previous syntax.

W = graydiffweight(I,C,R) computes the pixel weights, where the reference
grayscale intensity value is the average of the intensity values of the pixel locations
specified by the vectors C and R. C and R contain the column and row indices of the pixel
locations that must be valid pixel indices in I.

 graydiffweight

1-929

W = graydiffweight(V,C,R,P) computes the weights for each voxel in the volume V,
specified by the vectors C, R, and P. C, R, and P contain the column, row, and plane indices
of the voxel locations that must be valid voxel indices in V.

W = graydiffweight(___, Name,Value) returns the weight array W using name-
value pairs to control aspects of weight computation.

Examples

Calculate Grayscale Intensity Difference Weights

This example segments an object in an image using Fast Marching Method using
grayscale intensity difference weights calculated from the intensity values at the seed
locations.

Read image and display it.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

1 Functions — Alphabetical List

1-930

Specify row and column index of pixels for use a reference grayscale intensity value.

seedpointR = 159;
seedpointC = 67;

Calculate the grayscale intensity difference weight array for the image and display it. The
example does log-scaling of W for better visualization.

W = graydiffweight(I, seedpointC, seedpointR,'GrayDifferenceCutoff',25);
figure, imshow(log(W),[])

 graydiffweight

1-931

Segment the image using the grayscale intensity difference weight array. Specify the
same seed point vectors you used to create the weight array.

thresh = 0.01;
BW = imsegfmm(W, seedpointC, seedpointR, thresh);
figure, imshow(BW)
title('Segmented Image')

1 Functions — Alphabetical List

1-932

Input Arguments
I — Input image
grayscale image

Input image, specified as a grayscale image. Must be nonsparse.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

V — Input volume
3-D grayscale image

Input volume, specified as a 3-D grayscale image. Must be nonsparse.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

 graydiffweight

1-933

refGrayVal — Reference grayscale intensity value
scalar

Reference grayscale intensity value, specified as a scalar.
Data Types: double

mask — Reference grayscale intensity mask
logical array

Reference grayscale intensity mask, specified as a logical array, the same size as I.
Data Types: logical

C — Column index of reference pixel (or voxel)
numeric vector

Column index of reference pixel (or voxel), specified as a numeric (integer-valued) vector.
Data Types: double

R — Row index of reference pixel (or voxel)
numeric vector

Row index of reference pixel (or voxel), specified as a numeric (integer-valued) vector.
Data Types: double

P — Plane index of reference voxel
numeric vector

Plane index of reference voxel, specified as a numeric (integer-valued) vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: W = graydiffweight(I, seedpointC,
seedpointR,'GrayDifferenceCutoff',25);

1 Functions — Alphabetical List

1-934

RolloffFactor — Output weight roll-off factor
0.5 (default) | positive scalar

Output weight roll-off factor, specified as the comma-separated pair consisting of
'RolloffFactor' and a positive scalar of class double. Controls how fast the output
weight falls as the function of the absolute difference between an intensity value and the
reference grayscale intensity. When viewed as a 2-D plot, pixel intensity values can vary
gradually at the edges of regions, creating a gentle slope. In your segmented image, you
might want the edge to be more well-defined. Using the roll-off factor, you control the
slope of the weight value curve at points where intensity values start to change. If you
specify a high value, the output weight values fall off sharply around the regions of
change intensity. If you specify a low value, the output weight has a more gradual fall-off
around the regions of changing intensity. The suggested range for this parameter is [0.5
4].
Data Types: double

GrayDifferenceCutoff — Threshold for absolute grayscale intensity difference
values
Inf (default) | nonnegative scalar

Threshold for absolute grayscale intensity difference values, specified as the comma-
separated pair consisting of 'GrayDifferenceCutoff' and a nonnegative scalar of
class double. When you put a threshold on intensity difference values, you strongly
suppress output weight values greater than the cutoff value. graydiffweight assigns
these pixels the smallest weight value. When the output weight array W is used for Fast
Marching Method based segmentation (as input to imsegfmm), this parameter can be
useful in improving the accuracy of the segmentation output. Default value of this
parameter is Inf, which means that there is no hard cutoff.
Data Types: double

Output Arguments
W — Weight array
numeric array

Weight array, specified as numeric array the same size as I. W is of class double, unless I
is of class single, in which case W is of class single.

 graydiffweight

1-935

See Also
gradientweight | graydist | imsegfmm

Introduced in R2014b

1 Functions — Alphabetical List

1-936

graydist
Gray-weighted distance transform of grayscale image

Syntax
T = graydist(I,mask)
T = graydist(I,C,R)
T = graydist(I,ind)
T = graydist(___ ,method)

Description
T = graydist(I,mask) computes the gray-weighted distance transform of the
grayscale image I. Locations where mask is true are seed locations.

T = graydist(I,C,R) specifies the column and row coordinates of seed locations in
vectors C and R.

T = graydist(I,ind) specifies the linear indices of seed locations, ind.

T = graydist(___ ,method) specifies an alternate distance metric, method.

Examples

Compute Minimum Path in Magic Square

Create a magic square. Matrices generated by the magic function have equal row,
column, and diagonal sums. The minimum path between the upper-left and lower-right
corner is along the diagonal.

A = magic(3)

A = 3×3

 graydist

1-937

 8 1 6
 3 5 7
 4 9 2

Calculate the gray-weighted distance transform, specifying the upper left corner and the
lower right corner of the square as seed locations.

T1 = graydist(A,1,1);
T2 = graydist(A,3,3);

Sum the two transforms to find the minimum path between the seed locations. As
expected, there is a constant-value minimum path along the diagonal.

T = T1 + T2

T = 3×3

 10 11 17
 13 10 13
 17 17 10

Input Arguments
I — Grayscale image
numeric array | logical array

Grayscale image, specified as a numeric or logical array.

mask — Binary mask
logical array

Binary mask that specifies seed locations, specified as a logical array the same size as I.

C, R — Column and row coordinates
vector of positive integers

Column and row coordinates of seed locations, specified as a vector of positive integers.
Coordinate values are valid C,R subscripts in I.

1 Functions — Alphabetical List

1-938

ind — Indices
vector of positive integers

Indices of seed locations, specified as a vector of positive integers.

method — Distance metric
'chessboard' (default) | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of these values.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2)

is

max(│x1 – x2│,│y1 – y2│).
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│
'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and

(x2,y2) is

x1− x2 + (2 − 1) y1− y2 , x1− x2 > y1− y2

(2 − 1) x1− x2 + y1− y2 , otherwise.

For more information, see “Distance Transform of a Binary Image”.

Output Arguments
T — Gray-weighted distance transform
numeric array

Gray-weighted distance transform, returned as a numeric array of the same size as I. If
the input numeric type of I is double, then the output numeric type of T is double. If
the input is any other numeric type, then the output T is single.
Data Types: single | double

 graydist

1-939

Algorithms
graydist uses the geodesic time algorithm [1]. The basic equation for geodesic time
along a path is:

τf P =
f po

2 +
f pl

2 + ∑
i = 1

l− 1
f pi

method determines the chamfer weights that are assigned to the local neighborhood
during outward propagation. Each pixel's contribution to the geodesic time is based on
the chamfer weight in a particular direction multiplied by the pixel intensity.

References
[1] Soille, P. "Generalized geodesy via geodesic time." Pattern Recognition Letters. Vol.15,

December 1994, pp. 1235–1240.

See Also
bwdist | bwdistgeodesic | watershed

Topics
“Distance Transform of a Binary Image”

Introduced in R2011b

1 Functions — Alphabetical List

1-940

grayslice
Convert grayscale image to indexed image using multilevel thresholding

Syntax
X = grayslice(I,N)
X = grayslice(I,thresholds)

Description
X = grayslice(I,N) converts a grayscale image to an indexed image by using
multilevel thresholding approach. The function automatically calculates the threshold
values based on N. To know about threshold calculation, see “Algorithms” on page 1-945.

X = grayslice(I,thresholds) returns an indexed image by multilevel thresholding
of input image using a set of thresholds.

Examples

Convert Grayscale Image to Indexed Image Using Thresholding

Read grayscale image into the workspace.

I = imread('snowflakes.png');

Threshold the intensity image, returning an indexed image.

X = grayslice(I,16);

Display the original image and the indexed image, using one of the standard colormaps.

imshow(I)

 grayslice

1-941

figure
imshow(X,jet(16))

Convert Grayscale Image to Indexed Image Using Multilevel Thresholds

Read a grayscale image into the workspace. Display the image.

I = imread('coins.png');
imshow(I)

1 Functions — Alphabetical List

1-942

Specify the threshold values for multilevel thresholding.

thresholds = [45 65 84 108 134 157 174 189 206 228];

Convert the input grayscale image to an indexed image.

X = grayslice(I,thresholds);

Display the indexed image. Set the colormap of the indexed image to jet. The length of
colormap, m, is the maximum intensity value in the indexed image.

m = double(max(X(:)));

figure
imshow(X,colormap(jet(m)))

 grayslice

1-943

Input Arguments
I — Input grayscale image
m-by-n matrix

Input grayscale image, specified as a m-by-n matrix. The input grayscale image must be
real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16

N — Number of threshold values
positive scalar

Number of threshold values, specified as a positive scalar. The value represents the total
number of thresholds to be used for multilevel thresholding.

1 Functions — Alphabetical List

1-944

thresholds — Set of thresholds
vector

Set of thresholds, specified as a vector. The number of threshold values to be used for
multilevel thresholding is equal to length(thresholds). You can choose the threshold
values to lie within the range of the image data type. If the input grayscale image is of
class:

• uint8, the threshold values can lie within the range [0 255].
• int16 or uint16, threshold values can lie within the range [0 65535].
• single or double, the threshold values can lie within the range [0 1].

Output Arguments
X — Output indexed image
m-by-n matrix

Output indexed image, returned as a m-by-n matrix of the same size as the input
grayscale image. The class of the output indexed image depends on number of threshold
values used for multilevel thresholding.

• If the number of threshold values is less than 256, then X is of class uint8. In this
case, the range of intensity values in X is either [0 N] or [0
length(thresholds)].

• If the number of threshold values is greater than or equal to 256, then X is of class
double. In this case, the range of intensity values in X is either [1 N+1] or [1
length(thresholds)+1].

Data Types: uint8 | double

Algorithms
The function performs multilevel thresholding of the input grayscale image and returns
an indexed image as the output. If you specify the number of thresholds N at the input,
the threshold values for multilevel thresholding are calculated as

maxintensity×
0 1 2 1

N N N

N

N
, , ,...,

-Ï
Ì
Ó

¸
˝
˛ .

 grayslice

1-945

maxintensity is the maximum permissible intensity value for a given class of the input
grayscale image. If the input grayscale image is of class:

• uint8, the value of maxintensity is 255.
• int16 or uint16, the value of maxintensity is 65535.
• single or double, the value of maxintensity is 1.

You can view the thresholded image using imshow(X,map) with a colormap of
appropriate length.

See Also
gray2ind

Introduced before R2006a

1 Functions — Alphabetical List

1-946

graythresh
Global image threshold using Otsu's method

Syntax
T = graythresh(I)
[T,EM] = graythresh(I)

Description
T = graythresh(I) computes a global threshold T from grayscale image I, using
Otsu's method [1]. Otsu's method chooses a threshold that minimizes the intraclass
variance of the thresholded black and white pixels. The global threshold T can be used
with imbinarize to convert a grayscale image to a binary image.

[T,EM] = graythresh(I) also returns the effectiveness metric, EM.

Examples

Convert Intensity Image to Binary Image Using Level Threshold

Read a grayscale image into the workspace.

I = imread('coins.png');

Calculate a threshold using graythresh. The threshold is normalized to the range [0, 1].

level = graythresh(I)

level = 0.4941

Convert the image into a binary image using the threshold.

BW = imbinarize(I,level);

 graythresh

1-947

Display the original image next to the binary image.

imshowpair(I,BW,'montage')

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimensionality. The graythresh
function converts multidimensional arrays to 2-D arrays, using reshape, and ignores any
nonzero imaginary part of I.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
T — Global threshold
numeric scalar

Global threshold, returned as a numeric scalar in the range [0, 1].

1 Functions — Alphabetical List

1-948

Data Types: double

EM — Effectiveness metric
positive scalar

Effectiveness metric of the threshold, returned as a positive scalar in the range [0,1]. The
lower bound is attainable only by images having a single gray level, and the upper bound
is attainable only by two-valued images.
Data Types: double

Tips
• By default, the function imbinarize creates a binary image using a threshold

obtained using Otsu’s method. This default threshold is identical to the threshold
returned by graythresh. However, imbinarize only returns the binary image. If
you want to know the level or the effectiveness metric, use graythresh before calling
imbinarize.

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE

Transactions on Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

See Also
imbinarize | imquantize | multithresh | rgb2ind

Introduced before R2006a

 graythresh

1-949

hdrread
Read high dynamic range (HDR) image

Syntax
hdr = hdrread(filename)

Description
hdr = hdrread(filename) reads the high dynamic range (HDR) image, hdr, from the
file specified by filename. For scene-referred data sets, pixel values usually are scene
illumination in radiance units.

Examples

Read and Display High Dynamic Range Image

Read high dynamic range image into the workspace.

hdr = hdrread('office.hdr');

Convert the HDR image to a lower dynamic range, suitable for display.

rgb = tonemap(hdr);

Display the image.

imshow(rgb);

1 Functions — Alphabetical List

1-950

Input Arguments
filename — File name
character vector | string scalar

File name of HDR image, specified as a character vector or string scalar.
Example: 'office.hdr' or "office.hdr"
Data Types: char | string

 hdrread

1-951

Output Arguments
hdr — HDR image
m-by-n-by-3 numeric array

HDR image, returned as an m-by-n-by-3 numeric array with values in the range [0,Inf).
Data Types: single

Tips
• To display HDR images, use an appropriate tone-mapping function, such as tonemap.

References
[1] Larson, Greg W. "Radiance File Formats". http://radsite.lbl.gov/radiance/refer/

filefmts.pdf

See Also
hdrwrite | makehdr | tonemap

Introduced in R2007b

1 Functions — Alphabetical List

1-952

hdrwrite
Write high dynamic range (HDR) image file

Syntax
hdrwrite(hdr,filename)

Description
hdrwrite(hdr,filename) writes high dynamic range (HDR) image hdr to a file with
name filename. The function uses run-length encoding to minimize file size.

Examples

Write High Dynamic Range Image to File

Read a high dynamic range image into the workspace.

hdr = hdrread('office.hdr');

Create a new HDR file, writing the high dynamic range data, hdr, to a file with a new
filename.

hdrwrite(hdr,'newHDRfile.hdr');

Input Arguments
hdr — HDR image
m-by-n-by-3 numeric array

HDR image, specified as an m-by-n-by-3 numeric array of positive numbers.
Data Types: single | double

 hdrwrite

1-953

filename — File name
character vector | string scalar

File name of HDR image, specified as a character vector or string scalar ending with
extension 'hdr'.
Example: 'office.hdr' or "office.hdr"
Data Types: char | string

See Also
hdrread | makehdr | tonemap

Introduced in R2008a

1 Functions — Alphabetical List

1-954

histeq
Enhance contrast using histogram equalization

Syntax
J = histeq(I,hgram)
J = histeq(I,n)
[J,T] = histeq(I)

newmap = histeq(X,map)
newmap = histeq(X,map,hgram)
[newmap,T] = histeq(X, ___)

Description
J = histeq(I,hgram) transforms the grayscale image I so that the histogram of the
output grayscale image J with length(hgram) bins approximately matches the target
histogram hgram.

You optionally can perform histogram equalization of grayscale images using a GPU
(requires Parallel Computing Toolbox). For more information, see “Image Processing on a
GPU”.

J = histeq(I,n) transforms the grayscale image I, returning in J an grayscale image
with n discrete gray levels. A roughly equal number of pixels is mapped to each of the n
levels in J, so that the histogram of J is approximately flat. The histogram of J is flatter
when n is much smaller than the number of discrete levels in I.

[J,T] = histeq(I) returns the grayscale transformation T that maps gray levels in the
image I to gray levels in J.

newmap = histeq(X,map) transforms the values in the colormap so that the histogram
of the gray component of the indexed image X is approximately flat. It returns the
transformed colormap in newmap.

This syntax is not supported on a GPU.

 histeq

1-955

newmap = histeq(X,map,hgram) transforms the colormap associated with the
indexed image X so that the histogram of the gray component of the indexed image
(X,newmap) approximately matches the target histogram hgram. The histeq function
returns the transformed colormap in newmap. length(hgram) must be the same as
size(map,1).

This syntax is not supported on a GPU.

[newmap,T] = histeq(X, ___) returns the grayscale transformation T that maps the
gray component of map to the gray component of newmap.

This syntax is not supported on a GPU.

Examples

Enhance Contrast Using Histogram Equalization

Read an image into the workspace.

I = imread('tire.tif');

Enhance the contrast of an intensity image using histogram equalization.

J = histeq(I);

Display the original image and the adjusted image.

imshowpair(I,J,'montage')
axis off

1 Functions — Alphabetical List

1-956

Display a histogram of the original image.

figure
imhist(I,64)

 histeq

1-957

Display a histogram of the processed image.

figure
imhist(J,64)

1 Functions — Alphabetical List

1-958

Enhance Contrast of Volumetric Image Using Histogram Equalization

Load a 3-D dataset.

load mristack

Perform histogram equalization.

enhanced = histeq(mristack);

Display the first slice of data for the original image and the contrast-enhanced image.

 histeq

1-959

figure
subplot(1,2,1)
imshow(mristack(:,:,1))
title('Slice of Original Image')
subplot(1,2,2)
imshow(enhanced(:,:,1))
title('Slice of Enhanced Image')

Enhance Contrast Using Histogram Equalization on a GPU

This example performs the same histogram equalization on the GPU.

1 Functions — Alphabetical List

1-960

I = gpuArray(imread('tire.tif'));
J = histeq(I);
figure
imshow(I)
figure
imshow(J)

Input Arguments
I — Input grayscale image
numeric array | gpuArray

Input grayscale image, specified as a numeric array of any dimension.

To perform histogram equalization using a GPU, specify I as a gpuArray that contains a
numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

hgram — Target histogram
numeric vector | gpuArray

Target histogram, specified as a numeric vector. hgram has equally spaced bins with
intensity values in the appropriate range:

• [0, 1] for images of class double or single
• [0, 255] for images of class uint8
• [0, 65535] for images of class uint16
• [-32768, 32767] for images of class int16

histeq automatically scales hgram so that sum(hgram)=numel(I). The histogram of J
will better match hgram when length(hgram) is much smaller than the number of
discrete levels in I.

If you perform histogram equalization using a GPU, then you optionally can specify hgram
as a gpuArray that contains a numeric vector.
Data Types: single | double

n — Number of discrete gray levels
64 (default) | scalar

 histeq

1-961

Number of discrete gray levels, specified as a scalar.
Data Types: single | double

X — Indexed image
numeric array

Indexed image, specified as a numeric array of any dimension. The values in X are an
index into the colormap map.
Data Types: single | double | uint8 | uint16

map — Colormap
c-by-3 array

Colormap, specified as an c-by-3 array. Each row specifies an RGB color value.
Data Types: double

Output Arguments
J — Output grayscale image
numeric array | gpuArray

Output grayscale image, returned as a numeric array of the same size and class as the
input image I.

If histogram equalization is performed using a GPU, then J is returned as a gpuArray
containing a numeric array.

T — Grayscale transformation
numeric vector | gpuArray

Grayscale transformation, returned as a numeric vector. The transformation T maps gray
levels in the image I to gray levels in J.

If histogram equalization is performed using a GPU, then T is returned as a gpuArray
containing a numeric vector.
Data Types: double

newmap — Colormap
n-by-3 array

1 Functions — Alphabetical List

1-962

Transformed colormap, specified as an n-by-3 array. Each row specifies an RGB color
value.
Data Types: double

Algorithms
When you supply a desired histogram hgram, histeq chooses the grayscale
transformation T to minimize

c1(T(k)) − c0(k) ,

where c0 is the cumulative histogram of A, c1 is the cumulative sum of hgram for all
intensities k. This minimization is subject to the constraints that T must be monotonic and
c1(T(a)) cannot overshoot c0(a) by more than half the distance between the histogram
counts at a. histeq uses the transformation b = T(a) to map the gray levels in X (or the
colormap) to their new values.

If you do not specify hgram, then histeq creates a flat hgram,

hgram = ones(1,n)*prod(size(A))/n;

and then applies the previous algorithm.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• histeq supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, histeq generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

 histeq

1-963

• When generating code, histeq does not support indexed images.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
brighten | imadjust | imhist

Introduced before R2006a

1 Functions — Alphabetical List

1-964

hough
Hough transform

Syntax
[H,theta,rho] = hough(BW)
[H,theta,rho] = hough(BW,Name,Value,...)

Description
[H,theta,rho] = hough(BW) computes the Standard Hough Transform (SHT) of the
binary image BW. The hough function is designed to detect lines. The function uses the
parametric representation of a line: rho = x*cos(theta) + y*sin(theta). The
function returns rho, the distance from the origin to the line along a vector perpendicular
to the line, and theta, the angle in degrees between the x-axis and this vector. The
function also returns the Standard Hough Transform, H, which is a parameter space
matrix whose rows and columns correspond to rho and theta values respectively. For
more information, see “Algorithms” on page 1-970.

[H,theta,rho] = hough(BW,Name,Value,...) computes the Standard Hough
Transform (SHT) of the binary image BW, where named parameters affect the
computation.

Examples

Compute and Display Hough Transform

Read an image, and convert it to a grayscale image.

RGB = imread('gantrycrane.png');
I = rgb2gray(RGB);

Extract edges.

 hough

1-965

BW = edge(I,'canny');

Calculate Hough transform.

[H,T,R] = hough(BW,'RhoResolution',0.5,'Theta',-90:0.5:89);

Display the original image and the Hough matrix.

subplot(2,1,1);
imshow(RGB);
title('gantrycrane.png');
subplot(2,1,2);
imshow(imadjust(rescale(H)),'XData',T,'YData',R,...
 'InitialMagnification','fit');
title('Hough transform of gantrycrane.png');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
colormap(gca,hot);

1 Functions — Alphabetical List

1-966

Compute Hough Transform Over Limited Theta Range

Read an image, and convert it to grayscale.

RGB = imread('gantrycrane.png');
I = rgb2gray(RGB);

Extract edges.

BW = edge(I,'canny');

Calculate the Hough transform over a limited range of angles.

 hough

1-967

[H,T,R] = hough(BW,'Theta',44:0.5:46);

Display the Hough transform.

figure
imshow(imadjust(rescale(H)),'XData',T,'YData',R,...
 'InitialMagnification','fit');
title('Limited Theta Range Hough Transform of Gantrycrane Image');
xlabel('\theta')
ylabel('\rho');
axis on, axis normal;
colormap(gca,hot)

1 Functions — Alphabetical List

1-968

Input Arguments
BW — Binary image
real, 2-D, nonsparse logical or numeric array

Binary image, specified as a real, 2-D, nonsparse logical or numeric array.
Example: [H,T,R] = hough(BW);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [H,T,R] = hough(BW,'RhoResolution',0.5,'Theta',0.5);

RhoResolution — Spacing of Hough transform bins along the rho axis
1 (default) | real, numeric scalar between 0 and norm(size(BW)), exclusive

Spacing of Hough transform bins along the rho axis, specified as the comma-separated
pair consisting of 'RhoResolution' and a real, numeric scalar between 0 and
norm(size(BW)), exclusive.
Data Types: double

Theta — Theta value for the corresponding column of the output matrix H
-90:89 (default) | real, numeric vector

Theta value for the corresponding column of the output matrix H, specified as the comma-
separated pair consisting of 'Theta' and a real, numeric vector within the range [-90,
90).
Data Types: double

 hough

1-969

Output Arguments
H — Hough transform matrix
numeric array

Hough transform matrix, returned as a numeric array, nrho-by-ntheta in size. The rows
and columns correspond to rho and theta values. For more information, see
“Algorithms” on page 1-970.

theta — Angle in degrees between the x-axis and the rho vector
numeric array

Angle in degrees between the x-axis and the rho vector, returned as a numeric array of
class double. For more information, see “Algorithms” on page 1-970.

rho — Distance from the origin to the line along a vector perpendicular to the
line
numeric array

Distance from the origin to the line along a vector perpendicular to the line, returned as a
numeric array of class double. For more information, see “Algorithms” on page 1-970.

Algorithms
The Standard Hough Transform (SHT) uses the parametric representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector perpendicular to
the line. theta is the angle of the perpendicular projection from the origin to the line
measured in degrees clockwise from the positive x-axis. The range of theta is
−90° ≤ θ < 90°. The angle of the line itself is θ + 90°, also measured clockwise with
respect to the positive x-axis.

1 Functions — Alphabetical List

1-970

The SHT is a parameter space matrix whose rows and columns correspond to rho and
theta values respectively. The elements in the SHT represent accumulator cells. Initially,
the value in each cell is zero. Then, for every non-background point in the image, rho is
calculated for every theta. rho is rounded off to the nearest allowed row in SHT. That
accumulator cell is incremented. At the end of this procedure, a value of Q in SHT(r,c)
means that Q points in the xy-plane lie on the line specified by theta(c) and rho(r). Peak
values in the SHT represent potential lines in the input image.

The Hough transform matrix, H, is nrho-by-ntheta where:

nrho = 2*(ceil(D/RhoResolution)) + 1, and
D = sqrt((numRowsInBW - 1)^2 + (numColsInBW - 1)^2).
rho values range from -diagonal to diagonal, where
diagonal = RhoResolution*ceil(D/RhoResolution).

ntheta = length(theta)

 hough

1-971

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• hough supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The optional parameters 'Theta' and 'RhoResolution' must be compile-time
string constants.

• The optional Theta vector must have a bounded size.

See Also
houghlines | houghpeaks

Topics
“Detect Lines in Images Using Hough”

Introduced before R2006a

1 Functions — Alphabetical List

1-972

houghlines
Extract line segments based on Hough transform

Syntax
lines = houghlines(BW,theta,rho,peaks)
lines = houghlines(___ ,Name,Value,...)

Description
lines = houghlines(BW,theta,rho,peaks) extracts line segments in the image BW
associated with particular bins in a Hough transform. theta and rho are vectors
returned by function hough. peaks is a matrix returned by the houghpeaks function that
contains the row and column coordinates of the Hough transform bins to use in searching
for line segments. The return value lines is a structure array whose length equals the
number of merged line segments found.

lines = houghlines(___ ,Name,Value,...) extracts line segments in the image
BW, where named parameters affect the operation.

Examples

Find Line Segments and Highlight longest segment

Read image into workspace.

I = imread('circuit.tif');

Rotate the image.

rotI = imrotate(I,33,'crop');

Create a binary image.

BW = edge(rotI,'canny');

 houghlines

1-973

Create the Hough transform using the binary image.

[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,...
 'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;

Find peaks in the Hough transform of the image.

P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','white');

1 Functions — Alphabetical List

1-974

Find lines and plot them.

lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(rotI), hold on
max_len = 0;
for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

 % Plot beginnings and ends of lines
 plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
 plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

 % Determine the endpoints of the longest line segment

 houghlines

1-975

 len = norm(lines(k).point1 - lines(k).point2);
 if (len > max_len)
 max_len = len;
 xy_long = xy;
 end
end

Highlight the longest line segment by coloring it cyan.

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');

1 Functions — Alphabetical List

1-976

Input Arguments
BW — Binary image
real, 2-D, nonsparse logical or numeric array

Binary image, specified as a real, 2-D, nonsparse logical or numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

theta — Line rotation angle in radians
real, 2-D, nonsparse numeric array

Line rotation angle in radians, specified as a real, 2-D, nonsparse logical or numeric array.

 houghlines

1-977

Data Types: double

rho — Distance from the coordinate origin
real, 2-D, nonsparse logical or numeric array

Distance from the coordinate origin, specified as a real, 2-D, nonsparse logical or numeric
array. The coordinate origin is the top-left corner of the image (0,0).
Data Types: double

peaks — Row and column coordinates of Hough transform bins
real, nonsparse numeric matrix

Row and column coordinates of Hough transform bins, specified as a real, nonsparse
numeric array.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);

FillGap — Distance between two line segments associated with the same Hough
transform bin
20 (default) | positive real scalar

Distance between two line segments associated with the same Hough transform bin,
specified as a positive real scalar. When the distance between the line segments is less
than the value specified, the houghlines function merges the line segments into a single
line segment.
Data Types: double

MinLength — Minimum line length
40 (default) | positive real scalar

Minimum line length, specified as a positive real scalar. houghlines discards lines that
are shorter than the value specified.

1 Functions — Alphabetical List

1-978

Data Types: double

Output Arguments
lines — Lines found
structure array

Lines found, returned as a structure array whose length equals the number of merged
line segments found. Each element of the structure array has these fields:

Field Description
point1 Two element vector [X Y] specifying the coordinates of the end-

point of the line segment
point2 Two element vector [X Y] specifying the coordinates of the end-

point of the line segment
theta Angle in degrees of the Hough transform bin
rho rho axis position of the Hough transform bin

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• houghlines supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The optional parameter names 'FillGap' and 'MinLength' must be compile-time
constants. Their associated values need not be compile-time constants.

See Also
hough | houghpeaks

 houghlines

1-979

Introduced before R2006a

1 Functions — Alphabetical List

1-980

houghpeaks
Identify peaks in Hough transform

Syntax
peaks = houghpeaks(H,numpeaks)
peaks = houghpeaks(___ ,Name,Value,...)

Description
peaks = houghpeaks(H,numpeaks) locates peaks in the Hough transform matrix, H,
generated by the hough function. numpeaks specifies the maximum number of peaks to
identify. The function returns peaks a matrix that holds the row and column coordinates
of the peaks.

peaks = houghpeaks(___ ,Name,Value,...) locates peaks in the Hough transform
matrix, where named parameters control aspects of the operation.

Examples

Locate and Display Peaks in Hough Transform of Rotated Image

Read image into workspace.

I = imread('circuit.tif');

Create binary image.

BW = edge(imrotate(I,50,'crop'),'canny');

Create Hough transform of image.

[H,T,R] = hough(BW);

Find peaks in the Hough transform of the image and plot them.

 houghpeaks

1-981

P = houghpeaks(H,2);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
plot(T(P(:,2)),R(P(:,1)),'s','color','white');

Input Arguments
H — Hough transform matrix
numeric array

1 Functions — Alphabetical List

1-982

Hough transform matrix, specified as a numeric array of class double. The rows and
columns correspond to rho and theta values. Use the hough function to create a Hough
transform matrix.
Data Types: double

numpeaks — Maximum number of peaks to identify
1 (default) | positive integer scalar

Maximum number of peaks to identify, specified as a numeric scalar.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: P = houghpeaks(H,2,'Threshold',15);

Threshold — Minimum value to be considered a peak
0.5*max(H(:)) (default) | nonnegative numeric scalar

Minimum value to be considered a peak, specified as a nonnegative numeric scalar. The
value can be any value between 0 and Inf.
Data Types: double

NHoodSize — Size of suppression neighborhood
smallest odd values greater than or equal to size(H)/50 (default) | two-element vector
of positive odd integers

Size of suppression neighborhood, specified as a two-element vector of positive odd
integers. The suppression neighborhood is the neighborhood around each peak that is set
to zero after the peak is identified.
Data Types: double

Theta — Hough transform theta values
-90:89 (default) | vector

 houghpeaks

1-983

Hough transform theta values, specified as a vector returned by the hough function. Each
element of the vector specifies the theta value for the corresponding column of the output
matrix H. houghpeaks uses the theta values specified for peak suppression.

Note If you specify the 'Theta' parameter as input to the hough function, you must
specify the theta parameter with the houghpeaks function. Use the theta output value
from the hough function as the theta input value for houghpeaks. Otherwise, peak
suppression can result in unexpected results.

Data Types: double

Output Arguments
peaks — Row and column coordinates of peaks found
Q-by-2 matrix

Row and column coordinates of peaks found, returned as a Q-by-2 matrix, where the value
Q can range from 0 to numpeaks.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• houghpeaks supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The optional parameter names 'Threshold' and 'NHoodSize' must be compile-
time constants. Their associated values need not be compile-time constants.

See Also
hough | houghlines

1 Functions — Alphabetical List

1-984

Introduced before R2006a

 houghpeaks

1-985

iccfind
Find ICC profiles

Syntax
profiles = iccfind(folder)
profiles = iccfind(folder,pattern)
[profiles,descriptions] = iccfind(___)

Description
profiles = iccfind(folder) finds and returns profile information for all of the
International Color Consortium (ICC) profiles stored in the folder.

profiles = iccfind(folder,pattern) finds and returns profile information for ICC
profiles in the folder whose profile names contain the value pattern. The function
performs case-insensitive pattern matching to find the ICC profile with the desired profile
name.

[profiles,descriptions] = iccfind(___) also returns the profile descriptions
associated with every profile listed in profiles.

Examples

Find International Color Consortium Profiles

Use iccroot to find the default folder to which the International Color Consortium (ICC)
profiles are stored.

folder = iccroot;
disp(folder)

C:\WINDOWS\System32\Spool\Drivers\Color

1 Functions — Alphabetical List

1-986

Find all the ICC profiles stored in default folder. Read the profile information of all ICC
profiles as a cell array of structures.

profiles = iccfind(folder);

Display the size of profiles to know the number of ICC profiles available in the default
folder.

size(profiles)

ans = 1×2

 22 1

Read profile information for the first ICC profile in profiles.

currentProfile = profiles{1}

currentProfile = struct with fields:
 Header: [1×1 struct]
 TagTable: {10×3 cell}
 Copyright: 'Copyright 2000 Adobe Systems Incorporated'
 Description: [1×1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 MatTRC: [1×1 struct]
 PrivateTags: {}
 Filename: 'C:\WINDOWS\System32\Spool\Drivers\Color\AdobeRGB1998.icc'

Inspect the Description field of currentProfile. The profile description is stored in
the String field of Description.

currentProfile.Description

ans = struct with fields:
 String: 'Adobe RGB (1998)'
 Optional: [0 0]

Display the profile name of selected ICC profile.

ProfileName = currentProfile.Description.String

 iccfind

1-987

ProfileName =
'Adobe RGB (1998)'

Read Profile Name of ICC Profiles

Find all the ICC profiles stored in default folder. Read the profile information and the
descriptions of all ICC profiles.

[~,descriptions] = iccfind(folder);

Display the descriptions of all the ICC profiles in profiles.

descriptions

descriptions = 22×1 cell array
 {'Adobe RGB (1998)' }
 {'Apple RGB' }
 {'Coated FOGRA27 (ISO 12647-2:2004)' }
 {'Coated FOGRA39 (ISO 12647-2:2004)' }
 {'Coated GRACoL 2006 (ISO 12647-2:2004)'}
 {'ColorMatch RGB' }
 {'Japan Color 2001 Coated' }
 {'Japan Color 2001 Uncoated' }
 {'Japan Color 2002 Newspaper' }
 {'Japan Color 2003 Web Coated' }
 {'Japan Web Coated (Ad)' }
 {'ProPhoto RGB' }
 {'Agfa : Swop Standard ' }
 {'U.S. Sheetfed Coated v2' }
 {'U.S. Sheetfed Uncoated v2' }
 {'U.S. Web Coated (SWOP) v2' }
 {'U.S. Web Uncoated v2' }
 {'Uncoated FOGRA29 (ISO 12647-2:2004)' }
 {'Web Coated FOGRA28 (ISO 12647-2:2004)'}
 {'Web Coated SWOP 2006 Grade 3 Paper' }
 {'Web Coated SWOP 2006 Grade 5 Paper' }
 {'sRGB IEC61966-2.1' }

Find Specific ICC Profiles

Find ICC profiles with a specific pattern in the profile description. Specify the pattern to
search in the profile description as 'rgb'.

[profiles,descriptions] = iccfind(folder,'rgb');

1 Functions — Alphabetical List

1-988

Display the descriptions of all the ICC profiles in profiles. The function returns the
profile information and the descriptions for ICC profiles containing the pattern 'rgb' in
profile description.

descriptions

descriptions = 5×1 cell array
 {'Adobe RGB (1998)' }
 {'Apple RGB' }
 {'ColorMatch RGB' }
 {'ProPhoto RGB' }
 {'sRGB IEC61966-2.1'}

Input Arguments
folder — Path to ICC profiles
character vector | string scalar

Path to ICC profiles, specified as a character vector or string scalar denotes the folder in
which the ICC profiles are stored. The ICC profiles can have the file extension .icc
or .icm.
Data Types: char | string

pattern — Search key
character vector | string scalar

Search key, specified as a character vector or string scalar. You can use this search key to
find ICC profiles whose profile names contain the search key. The ICC profile names are
stored in the profile descriptions.
Data Types: char | string

Output Arguments
profiles — Set of profile information
cell array of structures

Set of profile information, returned as a cell array of structures. Each structure in the cell
array contains profile information for an ICC profile in the folder.

 iccfind

1-989

Data Types: cell

descriptions — Profile descriptions
cell array of character vectors

Profile descriptions, returned as a cell array of character vectors. Each profile description
is the localized version of the ICC profile name.
Data Types: cell

Tips
• To improve performance, iccfind caches copies of the ICC profiles in memory.

Adding or modifying profiles might not change the results of iccfind. To clear the
cache, use the clear functions command.

References
[1] Abhay, S. "ICC Color Management: Architecture and Implementation." Color Image

Processing: Methods and Applications (R. Lukac and K. N. Plataniotis, eds.). CRC
Press, 2006.

See Also
iccread | iccroot | iccwrite

Introduced before R2006a

1 Functions — Alphabetical List

1-990

iccread
Read ICC profile

Syntax
profile = iccread(filename)

Description
profile = iccread(filename) reads the International Color Consortium (ICC) color
profile data from the file specified by the input filename.

Note iccread can read profiles that conform with either Version 2 (ICC.1:2001-04) or
Version 4 (ICC.1:2001-12) of the ICC specification. For more information about ICC
profiles, visit the ICC website, www.color.org.

Examples

Read ICC Profile for Typical PC Computer Monitor

Read the International Color Consortium (ICC) profile that describes a typical PC
computer monitor.

profile = iccread('sRGB.icm')

profile = struct with fields:
 Header: [1×1 struct]
 TagTable: {17×3 cell}
 Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'
 Description: [1×1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 DeviceMfgDesc: [1×1 struct]
 DeviceModelDesc: [1×1 struct]

 iccread

1-991

http://www.color.org

 ViewingCondDesc: [1×1 struct]
 ViewingConditions: [1×1 struct]
 Luminance: [76.0365 80 87.1246]
 Measurement: [1×1 struct]
 Technology: 'Cathode Ray Tube Display'
 MatTRC: [1×1 struct]
 PrivateTags: {}
 Filename: 'sRGB.icm'

Determine the source color space. The profile header provides general information about
the profile, such as its class, color space, and PCS.

profile.Header.ColorSpace

ans =
'RGB'

Input Arguments
filename — Name of the file containing ICC profile
character vector | string scalar

Name of the file containing ICC profile, specified as a character vector or string scalar.
The file can be either an ICC profile file or a TIFF file containing an embedded ICC
profile. To determine if a TIFF file contains an embedded ICC profile, use the imfinfo
function to get information about the file and look for the ICCProfileOffset field in the
output.

Note If you specify only the file name without its path, iccread searches for the file in
the current folder, a folder on the MATLABpath, or in the folder returned by iccroot in
that order.

Data Types: char | string

1 Functions — Alphabetical List

1-992

Output Arguments
profile — ICC profile data
structure array

ICC profile data, returned as a structure array. The fields contain the data structures
(called tags) defined in the ICC specification. The number of fields in profile depends
on the profile class and the choices made by the profile creator. iccread returns all the
tags for a given profile, both public and private. Private tags and certain public tags are
left as encoded uint8 data. The following table lists fields that are found in any profile
structure generated by iccread.

Field Data Type Description
Header 1-by-1 struct

array
Profile header fields.

TagTable n-by-3 cell
array

Profile tag table.

Copyright Character
vector

Profile copyright notice.

Description 1-by-1 struct
array

Profile description. The String field in
this structure contains a character vector
describing the profile.

MediaWhitePoint double array XYZ stimulus values of the device's media
white point.

PrivateTags m-by-2 cell
array

Contents of all the private tags or tags not
defined in the ICC specifications. The tag
signatures are in the first column, and the
contents of the tags are in the second
column. The iccread leaves the contents
of these tags in unsigned 8-bit encoding.

Filename Character
vector

Name of the file containing the profile.

Also, profile might contain one or more of the following transforms:

• Three-component, matrix-based transform: A simple transform that is often used to
transform between the RGB and XYZ color spaces. If this transform is present,
profile contains a field called MatTRC.

 iccread

1-993

• N-component look-up-table (LUT) based transform: A transform that is used for
transforming between color spaces that have a more complex relationship. This type of
transform is found in any of the following fields in profile:

AToB0 BToA0 Preview0
AToB1 BToA1 Preview1
AToB2 BToA2 Preview2
AToB3 BToA3 Gamut

Data Types: struct

Tips
• ICC profiles provide color management systems with the information necessary to

convert color data between native device color spaces and device-independent color
spaces, called the Profile Connection Space (PCS). You can use the profile as the
source or destination profile with the makecform or applycform functions to
compute color space transformations.

See Also
applycform | iccfind | iccroot | iccwrite | isicc | makecform

Introduced before R2006a

1 Functions — Alphabetical List

1-994

iccroot
Find system default ICC profile repository

Syntax
rootdir = iccroot

Description
rootdir = iccroot returns the system directory containing International Color
Consortium (ICC) profiles. Additional profiles can be stored in other directories, but this
is the default location used by the color management system.

Examples

Find System Directory Containing ICC Profiles

Find the default location of International Color Consortium (ICC) profile repository.

rootdir = iccroot

rootdir =
'C:\WINDOWS\System32\Spool\Drivers\Color'

See Also
iccfind | iccread | iccwrite

Introduced before R2006a

 iccroot

1-995

iccwrite
Write ICC color profile data

Syntax
outProfile = iccwrite(inProfile,filename)

Description
outProfile = iccwrite(inProfile,filename) writes an International Color
Consortium (ICC) profile data in structure inProfile to the file specified by filename.

You can use this function to modify fields in an ICC profile data structure and write it to a
file with name filename. For example, some applications use the string field in profile
description to present choices to users. The ICC recommends modifying the profile
description in ICC profile data before writing the data to a file. Each profile is
recommended to have a unique profile description. You can therefore, use the iccwrite
function to modify the profile description.

Note iccwrite can write profiles that conform with either Version 2 (ICC.1:2001-04) or
Version 4 (ICC.1:2001-12) of the ICC specification. To determine the version of the ICC
specification, use version field in the Header of profile data structure. Based on the
version, format the inProfile for output. For more information about ICC profiles, visit
the ICC website, www.color.org.

Examples

Write ICC Profile Data to a File

Read an ICC profile data into the workspace and display the profile name.

inProfile = iccread('monitor.icm');
inProfile.Description.String

1 Functions — Alphabetical List

1-996

http://www.color.org

ans =
'sgC4_050102_d50.pf'

Change the profile name to 'monitor_RGB'.

inProfile.Description.String = 'monitor_RGB';

Write the updated ICC profile data to a new file and display the corresponding output ICC
profile data. The new file is created in the current working folder.

outProfile = iccwrite(inProfile,'monitorcolor.icm')

outProfile = struct with fields:
 Header: [1×1 struct]
 TagTable: {11×3 cell}
 Description: [1×1 struct]
 MediaWhitePoint: [0.9642 1.0000 0.8249]
 Copyright: 'Copyright Sequel Imaging Inc. 1996-2001'
 MediaBlackPoint: [0 0 0]
 MatTRC: [1×1 struct]
 PrivateTags: {'vcgt' [1×786 uint8]}
 Filename: 'monitorcolor.icm'

Verify the modified description in output ICC profile data.

outProfile.Description.String

ans =
'monitor_RGB'

Input Arguments
inProfile — Input ICC profile data
structure array

Input ICC profile data, specified as a structure array represents an ICC profile in the data
format returned by iccread. The ICC profile data must contain all the tags and fields
required by the ICC profile specification. The input ICC profile data is written to
filename.
Data Types: struct

 iccwrite

1-997

filename — Name of the file to write ICC profile data
character vector | string scalar

Name of the file to write ICC profile data, specified as a character vector or string scalar.
Depending on the operating system, you can save the file with an extension .icc
or .icm.

Note If you specify only the file name without its path, iccwrite writes the file to
current working folder.

Data Types: char | string

Output Arguments
outProfile — Output ICC profile data
structure array

Output ICC profile data, returned as a structure array gives the ICC profile data written
to the file filename.
Data Types: struct

Tips
iccwrite does not perform automatic conversions from one version of the ICC
specification to another. Do the conversion manually by adding fields or modifying fields
in ICC profile data. Use isicc to validate the converted ICC profile data.

See Also
applycform | iccread | isicc | makecform

Introduced before R2006a

1 Functions — Alphabetical List

1-998

idct2
2-D inverse discrete cosine transform

Syntax
B = idct2(A)
B = idct2(A,m,n)
B = idct2(A,[m n])

Description
B = idct2(A) returns the two-dimensional inverse discrete cosine transform (DCT) of A.

B = idct2(A,m,n) and

B = idct2(A,[m n]) pads A with 0s to size m-by-n before applying the inverse
transformation. If m or n is smaller than the corresponding dimension of A, then idct2
crops A before the transformation.

Examples

Remove High Frequencies in Image using DCT

This example shows how to remove high frequencies from an image using the two-
dimensional discrete cosine transfer (DCT).

Read an image into the workspace, then convert the image to grayscale.

RGB = imread('autumn.tif');
I = rgb2gray(RGB);

Perform a 2-D DCT of the grayscale image using the dct2 function.

J = dct2(I);

 idct2

1-999

Display the transformed image using a logarithmic scale. Notice that most of the energy
is in the upper left corner.

figure
imshow(log(abs(J)),[])
colormap(gca,jet(64))
colorbar

Set values less than magnitude 10 in the DCT matrix to zero.

J(abs(J) < 10) = 0;

Reconstruct the image using the inverse DCT function idct2.

K = idct2(J);

Display the original grayscale image alongside the processed image.

figure
imshowpair(I,K,'montage')
title('Original Grayscale Image (Left) and Processed Image (Right)');

1 Functions — Alphabetical List

1-1000

Input Arguments
A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

m — Number of image rows
size(A,1) (default) | positive integer

Number of image rows, specified as a positive integer. idct2 pads image A with 0s or
truncates image A so that it has m rows. By default, m is equal to size(A,1).

n — Number of image columns
size(A,2) (default) | positive integer

Number of image columns, specified as a positive integer. idct2 pads image A with 0s or
truncates image A so that it has n columns. By default, n is equal to size(A,2)

 idct2

1-1001

Output Arguments
B — Transformed matrix
m-by-n numeric matrix

Transformed matrix using a two-dimensional discrete cosine transform, returned as an m-
by-n numeric matrix.
Data Types: double

Tips
• For any matrix A, idct2(dct2(A)) equals A to within round-off error.

Algorithms
idct2 computes the two-dimensional inverse DCT using:

Amn = ∑
p = 0

M − 1
∑

q = 0

N − 1
αpαqBpqcosπ(2m + 1)p

2M cosπ(2n + 1)q
2N ,

0 ≤ m ≤ M − 1
0 ≤ n ≤ N − 1

,

where

αp =

1
M , p = 0

2
M , 1 ≤ p ≤ M − 1

and

αq =

1
N , q = 0

2
N , 1 ≤ q ≤ N − 1

.

1 Functions — Alphabetical List

1-1002

References
[1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice

Hall, 1989, pp. 150-153.

[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data Compression Standard,
New York, Van Nostrand Reinhold, 1993.

See Also
dct2 | dctmtx | fft2 | ifft2

Introduced before R2006a

 idct2

1-1003

ifanbeam
Inverse fan-beam transform

Syntax
I = ifanbeam(F,D)
I = ifanbeam(F,D,Name,Value)
[I,H] = ifanbeam(___)

Description
I = ifanbeam(F,D) reconstructs the image I from fan-beam projection data in F. Each
column of F contains fan-beam projection data at one rotation angle. The angle between
sensors is assumed to be uniform and equal to the increment between fan-beam rotation
angles. D is the distance from the fan-beam vertex to the center of rotation.

I = ifanbeam(F,D,Name,Value) uses name-value pairs to control various aspects of
the reconstruction. Argument names can be abbreviated, and case does not matter.

[I,H] = ifanbeam(___) also returns the frequency response of the filter, H.

Examples

Recreate Image from Fan-beam Transformation

Create a sample image. The phantom function creates a phantom head image.

ph = phantom(128);

Create a fan-beam transformation of the phantom head image.

d = 100;
F = fanbeam(ph,d);

1 Functions — Alphabetical List

1-1004

Reconstitute the phantom head image from the fan-beam representation. Display the
original image and the reconstituted image.

I = ifanbeam(F,d);
imshow(ph)

figure
imshow(I);

 ifanbeam

1-1005

Generate Fan-beam with Fancoverage Set to Minimal

Create a sample image. The phantom function creates a phantom head image.

ph = phantom(128);

Create a radon transformation of the image.

P = radon(ph);

Convert the transformation from parallel beam projection to fan-beam projection.

[F,obeta,otheta] = para2fan(P,100,...
 'FanSensorSpacing',0.5,...
 'FanCoverage','minimal',...
 'FanRotationIncrement',1);

Reconstitute the image from fan-beam data.

phReconstructed = ifanbeam(F,100,...
 'FanSensorSpacing',0.5,...
 'Filter','Shepp-Logan',...
 'OutputSize',128,...
 'FanCoverage','minimal',...
 'FanRotationIncrement',1);

Display the original and the transformed image.

imshow(ph)

1 Functions — Alphabetical List

1-1006

figure
imshow(phReconstructed)

Input Arguments
F — Fan-beam projection data
numsensors-by-numangles numeric matrix

Fan-beam projection data, specified as a numsensors-by-numangles numeric matrix.
numsensors is the number of fan-beam sensors and numangles is the number of fan-beam
rotation angles. Each column of F contains the fan-beam sensor samples at one rotation
angle.
Data Types: double | single

D — Distance from fan-beam vertex to center of rotation
positive number

Distance in pixels from the fan-beam vertex to the center of rotation, specified as a
positive number. ifanbeam assumes that the center of rotation is the center point of the
projections, which is defined as ceil(size(F,1)/2). The figure illustrates D in relation
to the fan-beam vertex for one fan-beam projection.

 ifanbeam

1-1007

Data Types: double | single

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: I = ifanbeam(F,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of
'FanCoverage' and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

1 Functions — Alphabetical List

1-1008

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair
consisting of 'FanRotationIncrement' and a positive scalar.

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

 ifanbeam

1-1009

Value Meaning Diagram
'arc' Sensors are spaced at equal

angles along a circular arc at
distance D from the center of
rotation.

FanSensorSpacing defines the
angular spacing in degrees.

'line' Sensors are spaced at equal
distances along a line that is
parallel to the x' axis. The closest
sensor is distance D from the
center of rotation.

FanSensorSpacing defines the
distance between fan-beams on
the x' axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

1 Functions — Alphabetical List

1-1010

Fan-bean sensor spacing, specified as the comma-separated pair consisting of
'FanSensorSpacing' and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular
spacing in degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear
distance between fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Filter — Filter
'Ram-Lak' (default) | 'Shepp-Logan' | 'Cosine' | 'Hamming' | 'Hann' | 'None'

Filter to use for frequency domain filtering, specified as the comma-separated pair
consisting of 'Filter' and one of the values in the table. For more information, see
iradon.

Value Description
'Ram-Lak' Cropped Ram-Lak or ramp filter. The frequency response of this

filter is | f |. Because this filter is sensitive to noise in the
projections, one of the filters listed below might be preferable.
These filters multiply the Ram-Lak filter by a window that de-
emphasizes high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function
'Cosine' Multiplies the Ram-Lak filter by a cosine function
'Hamming' Multiplies the Ram-Lak filter by a Hamming window
'Hann' Multiplies the Ram-Lak filter by a Hann window
'None' No filtering. ifanbeam returns unfiltered data.

Data Types: char | string

FrequencyScaling — Scale factor
1 (default) | positive number in the range (0, 1]

Scale factor for rescaling the frequency axis, specified as the comma-separated pair
consisting of 'FrequencyScaling' and a positive number in the range (0, 1]. If
'FrequencyScaling' is less than 1, then the filter is compressed to fit into the
frequency range [0,FrequencyScaling], in normalized frequencies; all frequencies
above FrequencyScaling are set to 0. For more information, see iradon.

 ifanbeam

1-1011

Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the
comma-separated pair consisting of 'Interpolation' and one of the following values.

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)
Data Types: char | string

OutputSize — Size of reconstructed image
positive integer

Size of the reconstructed image, specified as the comma-separated pair consisting of
'OutputSize' and a positive integer. The image has an equal number of rows and
columns.

If you specify OutputSize, then ifanbeam reconstructs a smaller or larger portion of
the image but does not change the scaling of the data.

Note If the projections were calculated with the fanbeam function, then the
reconstructed image might not be the same size as the original image.

If you do not specify OutputSize, then the size is calculated automatically by:

OutputSize = 2*floor(size(R,1)/(2*sqrt(2)))

where R is the length of parallel-beam projection data used by iradon. For more
information, see “Algorithms” on page 1-1013.
Data Types: double

1 Functions — Alphabetical List

1-1012

Output Arguments
I — Reconstructed image
2-D numeric matrix

Reconstructed image, specified as a 2-D numeric matrix.

H — Frequency response
numeric vector

Frequency response of the filter, returned as a numeric vector.
Data Types: double

Tips
• To perform an inverse fan-beam reconstruction, you must give ifanbeam the same

parameters that were used to calculate the projection data, F. If you use fanbeam to
calculate the projection, then make sure the parameters are consistent when calling
ifanbeam.

Algorithms
ifanbeam converts the fan-beam data to parallel beam projections and then uses the
filtered back projection algorithm to perform the inverse Radon transform. The filter is
designed directly in the frequency domain and then multiplied by the FFT of the
projections. The projections are zero-padded to a power of 2 before filtering to prevent
spatial domain aliasing and to speed up the FFT.

References
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New

York, NY, IEEE Press, 1988.

See Also
fan2para | fanbeam | iradon | para2fan | phantom | radon

 ifanbeam

1-1013

Introduced before R2006a

1 Functions — Alphabetical List

1-1014

illumgray
Estimate illuminant using gray world algorithm

Syntax
illuminant = illumgray(A)
illuminant = illumgray(A,percentile)
illuminant = illumgray(___ ,Name,Value)

Description
illuminant = illumgray(A) estimates the illumination of the scene in RGB image A
by assuming that the average color of the scene is gray.

illuminant = illumgray(A,percentile) estimates the illumination, excluding the
specified bottom and top percentiles of pixel values.

illuminant = illumgray(___ ,Name,Value) estimates the illumination using name-
value pairs to control additional options.

Examples

Correct White Balance Using Gray World Algorithm

Open an image and display it. Specify an optional magnification to shrink the size of the
displayed image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

 illumgray

1-1015

The gray world algorithm assumes that the RGB values are linear. However, the JPEG file
format saves images in the gamma-corrected sRGB color space. Undo the gamma
correction by using the rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination, excluding the top and bottom 10% of pixels. Because the
input image has been linearized, illumgray returns the illuminant in the linear RGB
color space.

percentiles = 10;
illuminant = illumgray(A_lin,percentiles)

illuminant = 1×3

1 Functions — Alphabetical List

1-1016

 0.2206 0.2985 0.5219

The third coefficient of illuminant is the largest, which is consistent with the blue tint
of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by
using the lin2rgb function.

B = lin2rgb(B_lin);

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title(['White-Balanced Image Using Gray World with percentiles=[' ...
 num2str(percentiles) ' ' num2str(percentiles) ']'])

 illumgray

1-1017

Input Arguments
A — Input RGB image
real, nonsparse, m-by-n-by-3 array

Input RGB image, specified as a real, nonsparse, m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

percentile — Percentile of pixels to exclude
1 (default) | numeric scalar | 2-element numeric vector

1 Functions — Alphabetical List

1-1018

Percentile of pixels to exclude from the illuminant estimation, specified as a numeric
scalar or 2-element numeric vector. Excluding pixels helps prevent overexposed and
underexposed pixels from skewing the estimation.

• If percentile is a scalar, the same value is used for both the bottom percentile and
the top percentile. In this case, percentile must be in the range [0, 50] so that the
sum of the bottom and top percentiles does not exceed 100.

• If percentile is a 2-element vector, the first element is the bottom percentile and the
second element is the top percentile. Both percentiles must be in the range [0, 100)
and their sum cannot exceed 100.

The following image indicates the range of pixels that are included in the illuminant
estimation. The selection is separate for each color channel.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: illuminant = illumgray(I,'Mask',m) estimates the scene illuminant
using a subset of pixels in image I, selected according to a binary mask, m.

Mask — Image mask
m-by-n logical or numeric array

Image mask, specified as the comma-separated pair consisting of 'Mask' and an m-by-n
logical or numeric array. The mask indicates which pixels of the input image A to use

 illumgray

1-1019

when estimating the illuminant. The computation excludes pixels in A that correspond to a
mask value of 0. By default, the mask has all 1s, and all pixels in A are included in the
estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Norm — Type of vector norm (p-norm)
1 (default) | positive numeric scalar

Type of vector norm (p-norm), specified as the comma-separated pair consisting of
'Norm' and a positive numeric scalar. The p-norm affects the calculation of the average
RGB value in the input image A. The p-norm is defined as sum(abs(x)p) ^ (1/p).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

Estimate of scene illumination, returned as a 3-element numeric row vector. The three
elements correspond to the red, green, and blue values of the illuminant.
Data Types: double

Tips
• The gray world algorithm assumes uniform illumination and linear RGB values. If you

are working with nonlinear sRGB or Adobe RGB images, use the rgb2lin function to
undo the gamma correction before using illumgray. Also, make sure to convert the
chromatically adapted image back to sRGB by using the lin2rgb function.

• When you specify Mask on page 1-0 , the bottom percentile and top percentile
apply to the masked image.

• You can adjust the color balance of the image to remove the scene illumination by
using the chromadapt function.

1 Functions — Alphabetical List

1-1020

References
[1] Ebner, Marc. "The Gray World Assumption." Color Constancy. Chichester, West

Sussex: John Wiley & Sons, 2007.

See Also
chromadapt | illumpca | illumwhite | lin2rgb | rgb2lin

Introduced in R2017b

 illumgray

1-1021

illumpca
Estimate illuminant using principal component analysis (PCA)

Syntax
illuminant = illumpca(A)
illuminant = illumpca(A,percentage)
illuminant = illumpca(___ ,Name,Value)

Description
illuminant = illumpca(A) estimates the illumination of the scene in RGB image A
from large color differences using principal component analysis (PCA).

illuminant = illumpca(A,percentage) estimates the illumination using the
specified percentage of darkest and brightest pixels.

illuminant = illumpca(___ ,Name,Value) estimates the illumination using name-
value pairs to control additional options.

Examples

Correct White Balance Using Principal Component Analysis

Open an image and display it. Specify an optional magnification to shrink the size of the
displayed image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

1 Functions — Alphabetical List

1-1022

Principal component analysis assumes that the RGB values are linear. However, the JPEG
file format saves images in the gamma-corrected sRGB color space. Undo the gamma
correction by using the rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination from the darkest and brighest 3.5% of pixels (the default
percentage). Because the input image is linear, the illumpca function returns the
illuminant in the linear RGB color space,

illuminant = illumpca(A_lin)

illuminant = 1×3

 0.4075 0.5547 0.7254

 illumpca

1-1023

The third coefficient of illuminant is the largest, which is consistent with the blue tint
of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by
using the lin2rgb function.

B = lin2rgb(B_lin);

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title('White-Balanced Image using Principal Component Analysis')

1 Functions — Alphabetical List

1-1024

Input Arguments
A — Input RGB image
real, nonsparse, m-by-n-by-3 array

Input RGB image, specified as a real, nonsparse, m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

percentage — Percentage of pixels to retain
3.5 (default) | numeric scalar

Percentage of pixels to retain for the illuminant estimation, specified as a numeric scalar
in the range (0, 50].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: illuminant = illumpca(I,'Mask',m) estimates the scene illuminant
using a subset of pixels in image I, selected according to a binary mask, m.

Mask — Image mask
m-by-n logical or numeric array

Image mask, specified as the comma-separated pair consisting of 'Mask' and an m-by-n
logical or numeric array. The mask indicates which pixels of the input image A to use
when estimating the illuminant. The computation excludes pixels in A that correspond to a
mask value of 0. By default, the mask has all 1s, and all pixels in A are included in the
estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

 illumpca

1-1025

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

Estimate of scene illumination, returned as a 3-element numeric row vector. The three
elements correspond to the red, green, and blue values of the illuminant.
Data Types: double

Tips
• The algorithm assumes uniform illumination and linear RGB values. If you are working

with nonlinear sRGB or Adobe RGB images, use the rgb2lin function to undo the
gamma correction before using illumpca. Also, make sure to convert the
chromatically adapted image back to sRGB or Adobe RGB by using the lin2rgb
function.

Algorithms
Pixel colors are represented as vectors in the RGB color space. The algorithm orders
colors according to the brightness, or norm, of their projection on the average color in the
image. The algorithm retains only the darkest and brightest colors, according to this
ordering. Principal component analysis (PCA) is then performed on the subset of colors.
The first component of PCA indicates the illuminant estimate.

References
[1] Cheng, Dongliang, Dilip K. Prasad, and Michael S. Brown. "Illuminant Estimation for

Color Constancy: Why spatial-domain methods work and the role of the color
distribution." Journal of the Optical Society of America A. Vol. 31, Number 5,
2014, pp. 1049–1058.

See Also
chromadapt | illumgray | illumwhite | lin2rgb | rgb2lin

1 Functions — Alphabetical List

1-1026

Introduced in R2017b

 illumpca

1-1027

illumwhite
Estimate illuminant using White Patch Retinex algorithm

Syntax
illuminant = illumwhite(A)
illuminant = illumwhite(A,topPercentile)
illuminant = illumwhite(___ ,Name,Value)

Description
illuminant = illumwhite(A) estimates the scene illumination in RGB image A by
assuming that the top 1% brightest red, green, and blue values represent the color white.

illuminant = illumwhite(A,topPercentile) estimates the illumination using the
topPercentile percentage brightest red, green, and blue values.

illuminant = illumwhite(___ ,Name,Value) estimates the illumination using
name-value pairs to control additional options.

Examples

Correct White Balance Using White Patch Retinex Algorithm

Open an image and display it. Specify an optional magnification to shrink the size of the
displayed image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

1 Functions — Alphabetical List

1-1028

The JPEG file format saves images in the gamma-corrected sRGB color space. Undo the
gamma correction by using the rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination from the top 5% brightest pixels. Because the input
image has been linearized, the illumwhite function returns the illuminant in the linear
RGB color space.

topPercentile = 5;
illuminant = illumwhite(A,topPercentile)

illuminant = 1×3

 0.7333 0.8314 1.0000

 illumwhite

1-1029

The third coefficient of illuminant is the largest, which is consistent with the blue tint
of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by
using the lin2rgb function.

B = lin2rgb(B_lin);

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title(['White-Balanced Image using White Patch with topPercentile=' ...
 num2str(topPercentile)])

1 Functions — Alphabetical List

1-1030

Input Arguments
A — Input RGB image
real, nonsparse, m-by-n-by-3 array

Input RGB image, specified as a real, nonsparse, m-by-n-by-3 array.
Data Types: single | double | uint8 | uint16

topPercentile — Percentile of brightest colors
1 (default) | numeric scalar

 illumwhite

1-1031

Percentile of brightest colors to use for illuminant estimation, specified as a numeric
scalar in the range [0, 100). To return the maximum red, green, and blue values, set
topPercentile to 0.

The image indicates the red, green, and blue value that is selected to estimate the
illuminant. The selection is separate for each color channel.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: illuminant = illumwhite(I,'Mask',m) estimates the scene illuminant
using a subset of pixels in image I, selected according to a binary mask, m.

Mask — Image mask
m-by-n logical or numeric array

Image mask, specified as the comma-separated pair consisting of 'Mask' and an m-by-n
logical or numeric array. The mask indicates which pixels of the input image A to use
when estimating the illuminant. The computation excludes pixels in A that correspond to a
mask value of 0. By default, the mask has all 1s, and all pixels in A are included in the
estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-1032

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

Estimate of scene illumination, returned as a 3-element numeric row vector. The three
elements correspond to the red, green, and blue values of the illuminant.
Data Types: double

References
[1] Ebner, Marc. "White Patch Retinex." Color Constancy. Chichester, West Sussex: John

Wiley & Sons, 2007.

See Also
chromadapt | illumgray | illumpca | lin2rgb | rgb2lin | whitepoint

Introduced in R2017b

 illumwhite

1-1033

im2bw
Convert image to binary image, based on threshold

Note im2bw is not recommended. Use imbinarize instead. For more information, see
“Compatibility Considerations”.

Syntax
BW = im2bw(I,level)
BW = im2bw(X,cmap,level)
BW = im2bw(RGB,level)

Description
BW = im2bw(I,level) converts the grayscale image I to binary image BW, by replacing
all pixels in the input image with luminance greater than level with the value 1 (white)
and replacing all other pixels with the value 0 (black).

This range is relative to the signal levels possible for the image's class. Therefore, a
level value of 0.5 corresponds to an intensity value halfway between the minimum and
maximum value of the class.

BW = im2bw(X,cmap,level) converts the indexed image X with colormap cmap to a
binary image.

BW = im2bw(RGB,level) converts the truecolor image RGB to a binary image.

Examples

1 Functions — Alphabetical List

1-1034

Convert an Indexed Image To a Binary Image

load trees
BW = im2bw(X,map,0.4);
imshow(X,map), figure, imshow(BW)

 im2bw

1-1035

Input Arguments
I — 2-D grayscale image
m-by-n numeric matrix

2-D grayscale image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

X — 2-D indexed image
m-by-n numeric matrix

2-D indexed image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

1 Functions — Alphabetical List

1-1036

cmap — Color map
c-by-3 numeric matrix

Color map associated with indexed image X, specified as a c-by-3 numeric matrix
containing the RGB values of c colors.
Data Types: single | double | int16 | uint8 | uint16

RGB — 2-D RGB image
m-by-n-by-3 numeric matrix

2-D RGB image, specified as an m-by-n-by-3 numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

level — Luminance threshold
0.5 (default) | number in the range [0, 1]

Luminance threshold, specified as a number in the range [0, 1]. To compute level, you
can use the graythresh function.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Algorithms
If the input image is not a grayscale image, im2bw converts the input image to grayscale
using ind2gray or rgb2gray, and then converts this grayscale image to binary by
thresholding.

 im2bw

1-1037

Compatibility Considerations

im2bw is not recommended
Not recommended starting in R2016a

The default luminance threshold of im2bw is not optimal for most images. If you want to
use a threshold appropriate for your image, you must compute the level using
graythresh before calling im2bw.

In R2016a, the imbinarize function was introduced. This function computes the
luminance threshold and performs binarization in one step. imbinarize has additional
benefits, such as the ability to perform adaptive thresholding when the image has
nonuniform shading. For more information, see Image Binarization - New 2016a
Functions.

The table shows some typical usages of im2bw and how to update your code to use
imbinarize instead.

Not Recommended Recommended
BW = im2bw(I); BW = imbinarize(I,0.5);
thresh = graythresh(I);
BW = im2bw(I,thresh);

BW = imbinarize(I);

There are no plans to remove im2bw at this time.

See Also
graythresh | imbinarize | ind2gray | rgb2gray

Introduced before R2006a

1 Functions — Alphabetical List

1-1038

https://blogs.mathworks.com/steve/2016/05/16/image-binarization-new-r2016a-functions/
https://blogs.mathworks.com/steve/2016/05/16/image-binarization-new-r2016a-functions/

im2col
Rearrange image blocks into columns

Syntax
B = im2col(A,[m n],'distinct')
B = im2col(A,[m n],'sliding')
B = im2col(A,[m n])
B = im2col(A,'indexed', ___)

Description
B = im2col(A,[m n],'distinct') rearranges discrete image blocks of size m-by-n
into columns, and returns the concatenated columns in matrix B. The im2col function
pads image A, if necessary. For more information about the padding value, see “Tips” on
page 1-1041.

The order of the columns in matrix B is determined by traversing the image A in a column-
wise manner. For example, if A consists of distinct blocks Aij arranged as A = [A11
A12; A21 A22], then B = [A11(:) A21(:) A12(:) A22(:)].

B = im2col(A,[m n],'sliding') or

B = im2col(A,[m n]) rearranges sliding image neighborhoods of size m-by-n into
columns with no zero-padding, and returns the concatenated columns in matrix B.

B = im2col(A,'indexed', ___) interprets A as an indexed image.

Examples

Calculate Local Mean Using [2 2] Neighborhood

Create a matrix.

 im2col

1-1039

A = reshape(linspace(0,1,16),[4 4])'

A = 4×4

 0 0.0667 0.1333 0.2000
 0.2667 0.3333 0.4000 0.4667
 0.5333 0.6000 0.6667 0.7333
 0.8000 0.8667 0.9333 1.0000

Rearrange the values into a column-wise arrangement.

B = im2col(A,[2 2])

B = 4×9

 0 0.2667 0.5333 0.0667 0.3333 0.6000 0.1333 0.4000 0.6667
 0.2667 0.5333 0.8000 0.3333 0.6000 0.8667 0.4000 0.6667 0.9333
 0.0667 0.3333 0.6000 0.1333 0.4000 0.6667 0.2000 0.4667 0.7333
 0.3333 0.6000 0.8667 0.4000 0.6667 0.9333 0.4667 0.7333 1.0000

Calculate the mean.

M = mean(B)

M = 1×9

 0.1667 0.4333 0.7000 0.2333 0.5000 0.7667 0.3000 0.5667 0.8333

Rearrange the values back into their original, row-wise orientation.

newA = col2im(M,[1 1],[3 3])

newA = 3×3

 0.1667 0.2333 0.3000
 0.4333 0.5000 0.5667
 0.7000 0.7667 0.8333

1 Functions — Alphabetical List

1-1040

Input Arguments
A — Image
2-D grayscale image | 2-D binary image | 2-D indexed image

Image, specified as a 2-D grayscale image, 2-D binary image, or 2-D indexed image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

[m n] — Block size
2-element vector

Block size, specified as a 2-element vector. m is the number of rows and n is the number of
columns in the block.

Output Arguments
B — Image blocks
numeric matrix | logical matrix

Image blocks, returned as a numeric matrix or logical matrix with m*n rows. The number
of columns depends on whether the image blocks are discrete blocks or sliding
neighborhoods. Each column of B contains a block or neighborhood of A reshaped as a
column vector.

• For distinct block processing, B has as many columns as there are m-by-n blocks in A.
For example, if the size of A is [mm nn], then B has (mm/m)*(nn/n) columns.

• For sliding neighborhood processing, B has as many columns as there are m-by-n
neighborhoods of A. For example, if the size of A is [mm nn], then B has ((mm-m
+1)*(nn-n+1)) columns.

Tips
• For distinct block processing, im2col zero-pads A, if necessary, so its size is an

integer multiple of m-by-n. The padding value is 0 when A is data type uint8, uint16,
or logical. For other data types, the value of padding depends on whether A is
interpreted as an indexed image.

 im2col

1-1041

• The padding value is 1 when A is interpreted as an indexed image.
• The padding value is 0 when A is not interpreted as an indexed image.

• im2col orders the columns of B so that they can be reshaped to form a matrix
according to reshape.

For example, suppose you use a function, such as sum(B), that returns a scalar for
each column of B. You can directly store the result in a matrix of size (mm-m+1)-by-
(nn-n+1), using these calls.

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

See Also
blockproc | col2im | colfilt | nlfilter | reshape

Introduced before R2006a

1 Functions — Alphabetical List

1-1042

im2int16
Convert image to 16-bit signed integers

Syntax
J = im2int16(I)

Description
J = im2int16(I) converts the grayscale, RGB, or binary image I to int16, rescaling
the data if necessary.

If the input image is of class int16, then the output image is identical to it. If the input
image is of class logical, then im2int16 changes false-valued elements to -32768 and
true-valued elements to 32767.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Convert Array from double to int16

Create an array of class double.

I = reshape(linspace(0,1,20),[5 4])

I = 5×4

 0 0.2632 0.5263 0.7895
 0.0526 0.3158 0.5789 0.8421
 0.1053 0.3684 0.6316 0.8947
 0.1579 0.4211 0.6842 0.9474
 0.2105 0.4737 0.7368 1.0000

 im2int16

1-1043

Convert the array to class int16.

I2 = im2int16(I)

I2 = 5x4 int16 matrix

 -32768 -15522 1724 18970
 -29319 -12073 5173 22419
 -25870 -8624 8623 25869
 -22420 -5174 12072 29318
 -18971 -1725 15521 32767

Convert Array from double to int16 on a GPU

Create array of class double.

I1 = gpuArray(reshape(linspace(0,1,20),[5 4]))

Convert array to int16.

I2 = im2int16(I1)

Input Arguments
I — Image
numeric array | logical array | gpuArray

Intensity, RGB, or binary image, specified as a numeric array of any size and
dimensionality.

To perform the conversion using a GPU, specify I as a gpuArray that contains a numeric
array of any size and dimensionality.
Data Types: single | double | int16 | uint8 | uint16 | logical

1 Functions — Alphabetical List

1-1044

Output Arguments
J — Image with class int16
numeric array | gpuArray

Image with class int16, returned as a numeric array with the same size and
dimensionality as I.

If the conversion is performed using a GPU, then J is returned as a gpuArray containing
a numeric array.
Data Types: int16

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2int16 supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, im2int16
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

 im2int16

1-1045

See Also
gpuArray | im2double | im2single | im2uint16 | im2uint8 | int16

Introduced before R2006a

1 Functions — Alphabetical List

1-1046

im2java2d
Convert image to Java buffered image

Syntax
javaImage = im2java2d(I)
javaImage = im2java2d(X,map)

Description
javaImage = im2java2d(I) converts the input image to an instance of the Java image
class java.awt.image.BufferedImage.

javaImage = im2java2d(X,map) converts an indexed image with colormap map to an
instance of the Java image class java.awt.image.BufferedImage.

Examples

Convert a Grayscale Image to Java Buffered Image

Read an input image into the workspace.

I = imread('cameraman.tif');

Convert the input image to a Java buffered image.

javaImage = im2java2d(I);

Create an icon from the java buffered image.

icon = javax.swing.ImageIcon(javaImage);

Create a label to display the image icon.

label = javax.swing.JLabel(icon);

 im2java2d

1-1047

Read the size of the label and the set the location and size of the drawable area in figure
window.

pSize = label.getPreferredSize;
f = figure('visible','off');
fPos = get(f,'Position');
fPos(3:4) = [pSize.width, pSize.height];
set(f,'Position',fPos);

Display the Java component label at the specified position in figure window.

hLabel = javacomponent(label,[0 0 fPos(3:4)],f);
figure(f)

Convert an Indexed Image to Java Buffered Image

Read an indexed image into the workspace.

load mandrill

Display the indexed image X using its associated colormap, map.

figure
imshow(X,map)

1 Functions — Alphabetical List

1-1048

Convert the input indexed image to a Java buffered image.

javaImage = im2java2d(X,map);

Create an icon from the java buffered image.

icon = javax.swing.ImageIcon(javaImage);

 im2java2d

1-1049

Create a label to display the image icon.

label = javax.swing.JLabel(icon);

Read the size of the label and the set the location and size of the drawable area in figure
window.

pSize = label.getPreferredSize;
f = figure('visible','off');
fPos = get(f,'Position');
fPos(3:4) = [pSize.width, pSize.height];
set(f,'Position',fPos);

Display the Java component label at the specified position in figure window.

hLabel = javacomponent(label,[0 0 fPos(3:4)],f);
figure(f)

1 Functions — Alphabetical List

1-1050

Input Arguments
I — Input image
m-by-n matrix | m-by-n-by-3 matrix

Input image, specified as

 im2java2d

1-1051

• m-by-n matrix for grayscale and binary images.
• m-by-n-by-3 matrix for RGB color images.

Data Types: double | uint8 | uint16 | logical

X — Input indexed image
m-by-n matrix

Input indexed image, specified as a m-by-n matrix.
Data Types: double | uint8 | uint16

map — Colormap
c-by-3 numeric array

Colormap associated with input indexed image X, specified as a c-by-3 numeric array. c
represents the number of colors in the colormap.
Data Types: double

Output Arguments
javaImage — Output Java 2D image
BufferedImage class

Output Java 2D image, returned as a BufferedImageclass of instance
java.awt.image.BufferedImage. The output Java 2D image can be used with the Java
2D API and the Java Abstract Windowing Toolkit (AWT).

Introduced before R2006a

1 Functions — Alphabetical List

1-1052

im2single
Convert image to single precision

Syntax
J = im2single(I)
J = im2single(I,'indexed')

Description
J = im2single(I) converts the grayscale, RGB, or binary image I to single,
rescaling or offsetting the data as necessary.

If the input image is of class single, then the output image is identical. If the input
image is of class logical, then im2single changes true-valued elements to 65535.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = im2single(I,'indexed') converts the indexed image I to single, offsetting the
data if necessary.

Examples

Convert Array to Class Single

This example shows how to convert an array of class uint8 into class single .

Create a numeric array of class uint8 .

I = reshape(uint8(linspace(1,255,25)),[5 5])

I = 5x5 uint8 matrix

 im2single

1-1053

 1 54 107 160 213
 12 65 117 170 223
 22 75 128 181 234
 33 86 139 192 244
 43 96 149 202 255

Convert the array to class single .

I2 = im2single(I)

I2 = 5x5 single matrix

 0.0039 0.2118 0.4196 0.6275 0.8353
 0.0471 0.2549 0.4588 0.6667 0.8745
 0.0863 0.2941 0.5020 0.7098 0.9176
 0.1294 0.3373 0.5451 0.7529 0.9569
 0.1686 0.3765 0.5843 0.7922 1.0000

Convert Array to Class Single on GPU

Create an array of class uint8 on the GPU by creating a gpuArray object.

I = gpuArray(reshape(uint8(linspace(1,255,25)),[5 5]))

I =

 1 54 107 160 213
 12 65 117 170 223
 22 75 128 181 234
 33 86 139 192 244
 43 96 149 202 255

Convert the array from class uint8 to class single on the GPU. You can pass
im2single a gpuArray object.

I2 = im2single(I)

I2 =

 0.0039 0.2118 0.4196 0.6275 0.8353
 0.0471 0.2549 0.4588 0.6667 0.8745

1 Functions — Alphabetical List

1-1054

 0.0863 0.2941 0.5020 0.7098 0.9176
 0.1294 0.3373 0.5451 0.7529 0.9569
 0.1686 0.3765 0.5843 0.7922 1.0000

Input Arguments
I — Input image
numeric array | logical array | gpuArray

Input image, specified as a numeric or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical,
single, or int16.

• If I is an indexed image, then it can be uint8, uint16, double or logical.
• If I is a binary image, then it must be logical.

To perform the conversion using a GPU, specify I as a gpuArray that contains a numeric
or logical array of any size and dimensionality.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class single
numeric array | gpuArray

Image with class single, returned as a numeric array with the same size and
dimensionality as I.

If the conversion is performed using a GPU, then J is returned as a gpuArray containing
a numeric array.
Data Types: single

 im2single

1-1055

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2single supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
im2double | im2int16 | im2uint16 | im2uint8 | single

Introduced before R2006a

1 Functions — Alphabetical List

1-1056

im2uint16
Convert image to 16-bit unsigned integers

Syntax
J = im2uint16(I)
J = im2uint16(I,'indexed')

Description
J = im2uint16(I) converts the grayscale, RGB, or binary image I to uint16,
rescaling or offsetting the data as necessary.

If the input image is of class uint16, then the output image is identical. If the input
image is of class logical, then im2uint16 changes true-valued elements to 65535.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = im2uint16(I,'indexed') converts the indexed image I to uint16, offsetting the
data if necessary.

Examples

Convert Array from double to uint16

Create an array of class double.

I = reshape(linspace(0,1,20),[5 4])

I = 5×4

 0 0.2632 0.5263 0.7895
 0.0526 0.3158 0.5789 0.8421

 im2uint16

1-1057

 0.1053 0.3684 0.6316 0.8947
 0.1579 0.4211 0.6842 0.9474
 0.2105 0.4737 0.7368 1.0000

Convert the array to class uint16.

I2 = im2uint16(I)

I2 = 5x4 uint16 matrix

 0 17246 34492 51738
 3449 20695 37941 55187
 6898 24144 41391 58637
 10348 27594 44840 62086
 13797 31043 48289 65535

Convert Array from double to uint16 on a GPU

Create array of class double.

I1 = gpuArray(reshape(linspace(0,1,20),[5 4]))

Convert array to uint16.

I2 = im2uint16(I1)

Input Arguments
I — Input image
numeric array | logical array | gpuArray

Input image, specified as a numeric or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical,
single, or int16.

• If I is an indexed image, then it can be uint8, uint16, double or logical.

1 Functions — Alphabetical List

1-1058

Note It is not always possible to convert an indexed image to uint8. If the indexed
image is of class double, then the maximum value must be 65536 or less.

• If I is a binary image, then it must be logical.

To perform the conversion using a GPU, specify I as a gpuArray that contains a numeric
or logical array of any size and dimensionality.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class uint16
numeric array | gpuArray

Image with class uint16, returned as a numeric array with the same size and
dimensionality as I.

If the conversion is performed using a GPU, then J is returned as a gpuArray containing
a numeric array.
Data Types: uint16

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2uint16 supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, im2uint16
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

 im2uint16

1-1059

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
double | im2double | im2uint8 | imapprox | uint16 | uint8

Introduced before R2006a

1 Functions — Alphabetical List

1-1060

im2uint8
Convert image to 8-bit unsigned integers

Syntax
J = im2uint8(I)
J = im2uint8(I,'indexed')

Description
J = im2uint8(I) converts the grayscale, RGB, or binary image I to uint8, rescaling
or offsetting the data as necessary.

If the input image is of class uint8, then the output image is identical. If the input image
is of class logical, then im2uint8 changes true-valued elements to 255.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = im2uint8(I,'indexed') converts the indexed image I to uint8, offsetting the
data if necessary.

Examples

Convert uint16 Array to uint8 Array

Create an array of class uint16.

I = reshape(uint16(linspace(0,65535,25)),[5 5])

I = 5x5 uint16 matrix

 0 13653 27306 40959 54613
 2731 16384 30037 43690 57343

 im2uint8

1-1061

 5461 19114 32768 46421 60074
 8192 21845 35498 49151 62804
 10923 24576 38229 51882 65535

Convert the array to class uint8 .

I2 = im2uint8(I)

I2 = 5x5 uint8 matrix

 0 53 106 159 213
 11 64 117 170 223
 21 74 128 181 234
 32 85 138 191 244
 43 96 149 202 255

Convert uint16 Array to uint8 on a GPU

Create array of class uint16.

I1 = gpuArray(reshape(uint16(linspace(0,65535,25)),[5 5]))

Convert array to uint8.

I2 = im2uint8(I1);

Input Arguments
I — Input image
numeric array | logical array | gpuArray

Input image, specified as a numeric or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical,
single, or int16. The intensity values for input image of class single or double
must be in the range [0, 1].

1 Functions — Alphabetical List

1-1062

Note If I is of class single or double with values outside the range [0, 1] then you
can use rescale function to rescale values to the expected range.

• If I is an indexed image, then it can be uint8, uint16, double or logical.

Note It is not always possible to convert an indexed image to uint8. If the indexed
image is of class double, then the maximum value must be 256 or less. If the indexed
image is of class uint16, then the maximum value must be 255 or less.

• If I is a binary image, then it must be logical.

To perform the conversion using a GPU, specify I as a gpuArray that contains a numeric
or logical array of any size and dimensionality.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class uint8
numeric array | gpuArray

Image with class uint8, returned as a numeric array with the same size and
dimensionality as I.

If the conversion is performed using a GPU, then J is returned as a gpuArray containing
a numeric array.
Data Types: uint8

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2uint8 supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, im2uint8

 im2uint8

1-1063

generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
im2double | im2int16 | im2single | im2uint16 | uint8

Introduced before R2006a

1 Functions — Alphabetical List

1-1064

imabsdiff
Absolute difference of two images

Syntax
Z = imabsdiff(X,Y)

Description
Z = imabsdiff(X,Y) subtracts each element in array Y from the corresponding
element in array X and returns the absolute difference in the corresponding element of
the output array Z.

You optionally can compute the absolute difference of X and Y using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Display Absolute Difference between Filtered image and Original

Read image into workspace.

I = imread('cameraman.tif');

Filter the image.

J = uint8(filter2(fspecial('gaussian'), I));

Calculate the absolute difference of the two images.

K = imabsdiff(I,J);

Display the absolute difference image.

 imabsdiff

1-1065

figure
imshow(K,[])

Display Absolute Difference Between Images on GPU

Read image and convert it to a gpuArray.

I = gpuArray(imread('cameraman.tif'));

Filter the image, performing the operation on a GPU.

J = imgaussfilt(I);

Calculate the absolute difference between the filtered image and original image.

K = imabsdiff(I,J);

1 Functions — Alphabetical List

1-1066

Display the absolute difference image.

figure
imshow(K,[])

Input Arguments
X — Input image
real, nonsparse numeric array | gpuArray

Input image, specified as a real, nonsparse numeric array of any dimension.

To compute the absolute difference using a GPU, specify X as a gpuArray that contains a
numeric array.
Example: x = imread('cameraman.tif');
Example: X = gpuArray(imread('cameraman.tif'));
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Y — Input image
numeric array | gpuArray

Input image, specified as a numeric array. Y must be the same size and class as X.

To compute the absolute difference using a GPU, specify Y as a gpuArray that contains a
numeric array of the same size and class as the array in X.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Output Arguments
Z — Difference image
numeric array | gpuArray

Difference image, returned as a numeric array. Z has the same class and size as X and Y.
If X and Y are integer arrays, then imabsdiff truncates elements in the output that
exceed the range of the integer type.

 imabsdiff

1-1067

If the difference image is computed using a GPU, then Z is returned as a gpuArray
containing a numeric array of the same size and class as in X and Y.

Tips
• If X is of class double, then use the expression abs(X-Y) instead of this function.
• If X is of class logical, then use the expression XOR(X,Y) instead of this function.
• When X and Y are of class uint8, int16, or single, then imabsdiff can use

hardware optimization to run faster.
• imabsdiff runs on a GPU if at least one of X and Y are gpuArrays. It is not

necessary that both inputs are gpuArrays.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imabsdiff supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
imadd | imcomplement | imdivide | imlincomb | immultiply | imsubtract

1 Functions — Alphabetical List

1-1068

Introduced before R2006a

 imabsdiff

1-1069

imadd
Add two images or add constant to image

Syntax
Z = imadd(X,Y)

Description
Z = imadd(X,Y) adds each element in array X with the corresponding element in array
Y and returns the sum in the corresponding element of the output array Z.

If X is an integer array, elements in the output that exceed the range of the integer type
are truncated, and fractional values are rounded.

Examples

Add Two uint8 Arrays

This example shows how to add two uint8 arrays with truncation for values that exceed
255.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)

Z = 2x3 uint8 matrix

 255 50 125
 94 255 150

1 Functions — Alphabetical List

1-1070

Add Two Images and Specify Output Class

Read two grayscale uint8 images into the workspace.

I = imread('rice.png');
J = imread('cameraman.tif');

Add the images. Specify the output as type uint16 to avoid truncating the result.

K = imadd(I,J,'uint16');

Display the result.

imshow(K,[])

 imadd

1-1071

Add a Constant to an Image

Read an image into the workspace.

I = imread('rice.png');

Add a constant to the image.

J = imadd(I,50);

Display the original image and the result.

imshow(I)

figure
imshow(J)

1 Functions — Alphabetical List

1-1072

Input Arguments
X — First array
real, nonsparse, numeric or logical array

First array, specified as a real, nonsparse, numeric or logical array of any dimension.

Y — Second array
real, nonsparse, numeric or logical array

Second array to be added to X, specified as a real, nonsparse, numeric or logical array. Y
either has the same size and class as X, or Y is a scalar of type double.

 imadd

1-1073

Output Arguments
Z — Sum
numeric array

Sum, returned as a numeric array of the same size as X. Z is the same class as X unless X
is logical, in which case Z is data type double. If X is an integer array, elements of the
output that exceed the range of the integer type are truncated, and fractional values are
rounded.

See Also
imabsdiff | imcomplement | imdivide | imlincomb | immultiply | imsubtract

Introduced before R2006a

1 Functions — Alphabetical List

1-1074

imadjust
Adjust image intensity values or colormap

Syntax
J = imadjust(I)
J = imadjust(I,[low_in high_in])
J = imadjust(I,[low_in high_in],[low_out high_out])
J = imadjust(I,[low_in high_in],[low_out high_out],gamma)

J = imadjust(RGB,[low_in high_in], ___)
newmap = imadjust(cmap,[low_in high_in], ___)

Description
J = imadjust(I) maps the intensity values in grayscale image I to new values in J. By
default, imadjust saturates the bottom 1% and the top 1% of all pixel values. This
operation increases the contrast of the output image J.

You optionally can perform contrast adjustment using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

This syntax is equivalent to imadjust(I,stretchlim(I)).

J = imadjust(I,[low_in high_in]) maps intensity values in I to new values in J
such that values between low_in and high_in map to values between 0 and 1.

J = imadjust(I,[low_in high_in],[low_out high_out]) maps intensity values
in I to new values in J such that values between low_in and high_in map to values
between low_out and high_out.

J = imadjust(I,[low_in high_in],[low_out high_out],gamma) maps intensity
values in I to new values in J, where gamma specifies the shape of the curve describing
the relationship between the values in I and J.

 imadjust

1-1075

J = imadjust(RGB,[low_in high_in], ___) maps the values in truecolor image
RGB to new values in J. You can apply the same mapping or unique mappings for each
color channel.

newmap = imadjust(cmap,[low_in high_in], ___) maps the values in colormap
cmap to new values in newmap. You can apply the same mapping or unique mappings for
each color channel.

Examples

Adjust Contrast of Grayscale Image

Read a low-contrast grayscale image into the workspace and display it.

I = imread('pout.tif');
imshow(I)

1 Functions — Alphabetical List

1-1076

Adjust the contrast of the image so that 1% of the data is saturated at low and high
intensities, and display it.

J = imadjust(I);
figure
imshow(J)

 imadjust

1-1077

Adjust Contrast of Grayscale Image on GPU

Read an image into a gpuArray and then pass the gpuArray to imadjust.

I = gpuArray(imread('pout.tif'));
figure
imshow(I)

J = imadjust(I);
figure
imshow(J)

1 Functions — Alphabetical List

1-1078

Adjust Contrast of Grayscale Image Specifying Contrast Limits

Read a low-contrast grayscale image into the workspace and display it.

I = imread('pout.tif');
imshow(I);

Adjust the contrast of the image, specifying contrast limits.

K = imadjust(I,[0.3 0.7],[]);
figure
imshow(K)

 imadjust

1-1079

Adjust Contrast of Grayscale Image Specifying Contrast Limits on GPU

Read an image into a gpuArray and then pass the gpuArray to imadjust.

I = gpuArray(imread('pout.tif'));
figure
imshow(I)

K = imadjust(I,[0.3 0.7],[]);
figure
imshow(K)

1 Functions — Alphabetical List

1-1080

Adjust Contrast of Color Image

Read an RGB image into the workspace and display it.

RGB = imread('football.jpg');
imshow(RGB)

Adjust the contrast of the RGB image, specifying contrast limits.

RGB2 = imadjust(RGB,[.2 .3 0; .6 .7 1],[]);
figure
imshow(RGB2)

 imadjust

1-1081

Adjust Contrast of RGB Image on GPU

Read an RGB image into a gpuArray and then pass the gpuArray to imadjust,
specifying contrast limits for the input image. Each color channel has different contrast
limits.

RGB = gpuArray(imread('football.jpg'));
RGB2 = imadjust(RGB,[.2 .3 0; .6 .7 1],[]);
figure
imshow(RGB)
figure
imshow(RGB2)

1 Functions — Alphabetical List

1-1082

Standard Deviation Based Image Stretching

Read an image into the workspace, and display it.

I = imread('pout.tif');
imshow(I)

Calculate the standard deviation and the image mean for stretching.

n = 2;
Idouble = im2double(I);
avg = mean2(Idouble);
sigma = std2(Idouble);

Adjust the contrast based on the standard deviation.

J = imadjust(I,[avg-n*sigma avg+n*sigma],[]);

 imadjust

1-1083

Display the adjusted image.

imshow(J)

Input Arguments
I — Grayscale image
m-by-n numeric matrix | gpuArray

Grayscale image, specified as an m-by-n numeric matrix.

To perform contrast adjustment using a GPU, specify I as a gpuArray that contains an m-
by-n numeric matrix.

1 Functions — Alphabetical List

1-1084

Data Types: single | double | int16 | uint8 | uint16

RGB — Truecolor image
m-by-n-by-3 numeric array | gpuArray

Truecolor image, specified as an m-by-n-by-3 numeric array.

To perform contrast adjustment using a GPU, specify RGB as a gpuArray that contains an
m-by-n-by-3 numeric array.
Data Types: single | double | int16 | uint8 | uint16

cmap — Colormap
c-by-3 numeric matrix | gpuArray

Colormap, specified as a c-by-3 numeric matrix representing c colors.

To perform contrast adjustment using a GPU, specify cmap as a gpuArray that contains a
c-by-3 numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

[low_in high_in] — Contrast limits for input image
[0 1] (default) | 2-element numeric vector | 2-by-3 numeric matrix

Contrast limits for input image, specified in one of the following forms:

 imadjust

1-1085

Contrast Limits

Input Type Value Description
grayscale 1-by-2 vector of the

form [low_in
high_in]

Specifies the contrast limits in the input
grayscale image that you want to map to
values in the output image. Values must be
in the range [0 1.0]. The value low_in
must be less than the value high_in.

RGB or colormap 2-by-3 matrix of the
form
[low_RGB_triplet
;
high_RGB_triplet
]

Specifies the contrast limits in the input
RGB image or colormap that you want to
map to values in the output image or
colormap. Each row in the array is an RGB
color triplet. Values must be in the range [0
1]. The value low_RGB_triplet must be
less than the value high_RGB_triplet.

RGB or colormap 1-by-2 vector of the
form [low_in
high_in]

Specifies the contrast limits in the input
RGB image that you want to map to values
in the output image. Each value must be in
the range [0 1.0]. The value low_in
must be less than the value high_in. If you
specify a 1-by-2 vector with an RGB image
or colormap, then imadjust applies the
same adjustment to each color plane or
channel.

all types [] If you specify an empty matrix ([]), then
imadjust uses the default limits [0 1].

imadjust clips value below low_in and above high_in: Values below low_in map to
low_out and values above high_in map to high_out.
Data Types: single | double

[low_out high_out] — Contrast limits for the output image
[0 1] (default) | 2-element numeric vector | 2-by-3 numeric matrix

Contrast limits for output image, specified in one of the following forms:

1 Functions — Alphabetical List

1-1086

Contrast Limits

Input Type Value Description
grayscale 1-by-2 vector of the

form [low_out
high_out]

Specifies the contrast limits of the output
grayscale image. Each value must be in the
range [0 1].

RGB or colormap 2-by-3 matrix of the
form
[low_RGB_triplet
;
high_RGB_triplet
]

Specifies the contrast limits of the output
RGB image or colormap. Each row in the
array is an RGB color triplet. Values must
be in the range [0 1].

RGB or colormap 1-by-2 vector of the
form [low_out
high_out]

Specifies the contrast limits in the output
image. Each value must be in the range [0
1]. If you specify a 1-by-2 vector with an
RGB image or colormap, then imadjust
applies the same adjustment to each plane
or channel.

all types [] If you specify an empty matrix ([]), then
imadjust uses the default limits [0 1].

If high_out is less than low_out, then imadjust reverses the output image, as in a
photographic negative.
Data Types: single | double

gamma — Shape of the curve describing relationship of input and output values
1 (default) | nonnegative scalar | 1-by-3 numeric vector

Shape of curve describing relationship of input and output values, specified as a
nonnegative scalar or a 1-by-3 numeric vector.

• If gamma is less than 1, then imadjust weights the mapping toward higher (brighter)
output values.

• If gamma is greater than 1, then imadjust weights the mapping toward lower (darker)
output values.

• If gamma is a 1-by-3 vector, then imadjust applies a unique gamma to each color
component or channel.

• If you omit the argument, then gamma defaults to 1 (linear mapping).

 imadjust

1-1087

Data Types: double

Output Arguments
J — Adjusted image
grayscale image | RGB image | gpuArray

Adjusted image, returned as a grayscale or RGB image. J has the same size and class as
the input grayscale image I or truecolor image RGB.

If contrast adjustment is performed using a GPU, then J is returned as a gpuArray
containing a grayscale or RGB image.
Data Types: single | double | int16 | uint8 | uint16

newmap — Adjusted colormap
c-by-3 numeric matrix | gpuArray

Adjusted colormap, returned as an c-by-3 numeric matrix of the same class as the input
colormap, map.

If contrast adjustment is performed using a GPU, then newmap is returned as a gpuArray
containing a c-by-3 numeric matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imadjust supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imadjust
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for

1 Functions — Alphabetical List

1-1088

which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, imadjust does not support indexed images.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
brighten | histeq | stretchlim

Introduced before R2006a

 imadjust

1-1089

imadjustn
Adjust intensity values in N-D volumetric image

Syntax
J = imadjustn(V)
J = imadjustn(V,[low_in high_in],[low_out high_out])
J = imadjustn(V,[low_in high_in],[low_out high_out],gamma)

Description
J = imadjustn(V) maps the values in the N-D volumetric intensity image V to new
values in J. imadjustn increases the contrast of the output volumetric image J.

By default, imadjustn saturates the bottom 1% and the top 1% of all pixel values. This
syntax is equivalent to imadjustn(V,stretchlim(V(:))).

J = imadjustn(V,[low_in high_in],[low_out high_out]) maps the values in V
to new values in J such that values between low_in and high_in map to values between
low_out and high_out. imadjustn clips values below low_in and above high_in.
Values below low_in map to low_out and values above high_in map to high_out. If
you omit the [low_out high_out] argument, in which case, imadjustn uses the
default [0 1].

J = imadjustn(V,[low_in high_in],[low_out high_out],gamma) maps the
values of V to new values in J, where gamma specifies the shape of the curve describing
the relationship between the values in V and J. If gamma is less than 1, imadjustn
weights the mapping toward higher (brighter) output values. If gamma is greater than 1,
imadjustn weights the mapping toward lower (darker) output values.

If high_out is less than low_out, imadjustn reverses the output image volume, as in a
photographic negative.

Examples

1 Functions — Alphabetical List

1-1090

Scale Intensity of 3-D Volume of MRI Data

Load a 3-D image into the workspace, then save the image as data type double.

load mristack;
V1 = im2double(mristack);

Display cross-sections of the image.

figure
slice(V1,size(V1,2)/2,size(V1,1)/2,size(V1,3)/2)
colormap gray
shading interp

 imadjustn

1-1091

Adjust the image intensity values. imadjustn maps input values between 0.2 and 0.8 to
the default output range of [0, 1]. imadjustn clips input values below 0.2 and above 0.8.

V2 = imadjustn(V1,[0.2 0.8],[]);

Display cross-sections of the contrast-adjusted image.

figure
slice(V2,size(V2,2)/2,size(V2,1)/2,size(V2,3)/2)
colormap gray
shading interp

1 Functions — Alphabetical List

1-1092

Input Arguments
V — Volumetric intensity image
real, nonsparse, N-D, numeric array

Volumetric intensity image, specified as a real, nonsparse, N-D, numeric array.
Data Types: single | double | int16 | uint8 | uint16

[low_in high_in] — Range of values in input image
[0 1] (default) | 2-element vector

Range of values in the input image, specified as a 2-element vector of the form [low_in
high_in], with values in the range [0, 1]. Before adjusting intensity values, imadjustn
converts the input image to class double (using im2double), rescaling values to the
range [0,1]. low_in and high_in correspond to the specified input range after
conversion to double.

You can use an empty matrix ([]) for [low_in high_in] to specify the default of [0
1].
Data Types: double

[low_out high_out] — Range of values in output image
[0 1] (default) | 2-element vector

Range of values in output image, specified as a 2-element vector of the form [low_out
high_out], with values in the range [0, 1]. Before adjusting intensity values, imadjustn
converts the input image to class double (using im2double), rescaling values to the
range [0,1]. low_out and high_out correspond to the specified output range after
conversion to double. After adjusting intensity values, imadjustn converts the image to
the data type of the input image.

You can omit the argument or use an empty matrix ([]) for [low_out high_out] to
specify the default of [0 1].
Data Types: double

gamma — Shape of curve describing relationship between values in V and J
1 (default) | numeric scalar

Shape of curve describing relationship between values in V and J, specified as a numeric
scalar. If the value is less than 1, imadjustn weights the mapping toward higher

 imadjustn

1-1093

(brighter) output values. If the value is greater than 1, imadjustn weights the mapping
toward lower (darker) output values. If you omit the argument, gamma defaults to 1
(linear mapping).
Data Types: double

Output Arguments
J — Volume with adjusted intensity values
N-D volumetric intensity image

Volume with adjusted intensity values, returned as an N-D volumetric intensity image.
The output volume has the same class as the input image.

See Also
decorrstretch | histeq | imhistmatchn | stretchlim

Introduced in R2017b

1 Functions — Alphabetical List

1-1094

ImageAdapter class
Interface for image I/O

Description
ImageAdapter is an abstract class that defines custom region-based reading and writing
of images in arbitrary image file formats. You can use classes that inherit from the
ImageAdapter interface with the blockproc function to perform file-based block
processing.

To write an Image Adapter class for a particular file format, you must be able to:

• Query the size of the file on disk
• Read a rectangular block of data from the file

To use this class, you must inherit from the ImageAdapter class. Type the following
syntax as the first line of your class definition file:

classdef MyAdapter < ImageAdapter
 ...
end

Classes that inherit from ImageAdapter must implement the readRegion and close
methods to support basic region-based reading of images. The optional writeRegion
method allows for incremental, region-based writing of images. Image Adapter classes
that do not implement the writeRegion method are read-only.

The ImageAdapter class is a handle class.

Class Attributes
Abstract

true
HandleCompatible

true

 ImageAdapter class

1-1095

For information on class attributes, see “Class Attributes” (MATLAB).

Properties
ImageSize — Image size
[] (default) | 2-element vector of positive integers | 3-element vector of positive integers

Image size, specified as a 2-element vector of positive integers [m n], or a 3-element
vector of positive integers [m n p], where m is the number of rows, n is the number of
columns, and p is the number of channels of the image.

When you construct a new class that inherits from ImageAdapter, set the ImageSize
property in your class constructor.
Example: [1920 1080]

Attributes:

GetAccess
public

SetAccess
protected

Colormap — Colormap
[] (default) | c-by-3 numeric matrix

Colormap for indexed images, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row of the matrix is a 3-element RGB triplet that specifies the red,
green, and blue components of a single color.

When you construct a new class that inherits from ImageAdapter, set the Colormap
property in your class constructor.

Attributes:

GetAccess
public

SetAccess
protected

1 Functions — Alphabetical List

1-1096

Methods

Public Methods
<infotypegroup type="method"> close readRegion writeRegion </infotypegroup>

See Also
blockproc

Topics
“Compute Statistics for Large Images”
“Abstract Classes” (MATLAB)
“Perform Block Processing on Image Files in Unsupported Formats”

Introduced in R2010a

 ImageAdapter class

1-1097

close
Class: ImageAdapter

Close ImageAdapter object

Syntax
close(adapter)

Description
close(adapter) closes the ImageAdapter object and performs any necessary clean-
up, such as closing file handles.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes (MATLAB).

Tips
• When you construct a class that inherits from the ImageAdapter class, you must

implement this method.

1 Functions — Alphabetical List

1-1098

• blockproc does not call the close method. If your image adapter opens file handles
or requires other class clean-up responsibilities, then you must call the close method
explicitly in your image processing pipeline.

See Also
ImageAdapter

Introduced in R2010a

 close

1-1099

readRegion
Class: ImageAdapter

Read region of image

Syntax
data = readRegion(adapter,region_start, region_size)

Description
data = readRegion(adapter,region_start, region_size) reads an image
region of size region_size with top-left pixel at coordinate region_start.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

region_start — Top-left coordinates of region
2-element vector of positive integers

Top-left coordinates of the region to read, specified as a 2-element vector of positive
integers of the form [row column].

region_size — Size of region
2-element vector of positive integers

Size of the region to read, specified as a 2-element vector of positive integers of the form
[numrows numcolumns].

1 Functions — Alphabetical List

1-1100

Output Arguments
data — Image data
numeric array

Image data, returned as a numeric array of size region_size.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes (MATLAB).

Tips
• When you construct a class that inherits from the ImageAdapter class, you must

implement this method.

See Also
ImageAdapter

Topics
“Compute Statistics for Large Images”
“Perform Block Processing on Image Files in Unsupported Formats”

Introduced in R2010a

 readRegion

1-1101

writeRegion
Class: ImageAdapter

Write block of data to region of image

Syntax
writeRegion(adapter,region_start,region_data)

Description
writeRegion(adapter,region_start,region_data) writes a contiguous block of
data region_data to the region of the image with top-left pixel at coordinate
region_start.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

region_start — Top-left coordinates of region
2-element vector of positive integers

Top-left coordinates of the region to write, specified as a 2-element vector of positive
integers of the form [row column].

region_data — Image data
numeric array

Image data, specified as a numeric array.

1 Functions — Alphabetical List

1-1102

Tips
• When you construct a class that inherits from the ImageAdapter class, you can

optionally implement this method to enable incremental, region-based writing of
images. Image adapter classes that do not implement the writeRegion method are
read-only.

See Also
ImageAdapter

Introduced in R2010a

 writeRegion

1-1103

imageinfo
Image Information tool

Use the imageinfo function to create an Image Information tool. The tool displays
information about the basic attributes and metadata of the target image in a separate
figure.

Syntax
imageinfo
imageinfo(h)
imageinfo(filename)
imageinfo(info)
imageinfo(himage,filename)
imageinfo(himage,info)
htool = imageinfo(___)

1 Functions — Alphabetical List

1-1104

Description
imageinfo creates an Image Information tool associated with the image in the current
figure. The tool displays information about the basic attributes of the target image in a
separate figure.

imageinfo(h) creates an Image Information tool associated with h, where h is a handle
to a figure, axes, or image object.

imageinfo(filename) creates an Image Information tool containing image metadata
from the graphics file filename. The image does not have to be displayed in a figure
window.

imageinfo(info) creates an Image Information tool containing the image metadata in
the structure info.

imageinfo(himage,filename) creates an Image Information tool containing
information about the basic attributes of the image specified by the handle himage and
the image metadata from the graphics file filename.

imageinfo(himage,info) creates an Image Information tool containing information
about the basic attributes of the image specified by the handle himage and the image
metadata in the structure info.

htool = imageinfo(___) returns a handle to the Image Information tool figure.

Examples

Open Image Information Tool

imageinfo('peppers.png')

h = imshow('bag.png');
info = imfinfo('bag.png');
imageinfo(h,info);

 imageinfo

1-1105

imshow('canoe.tif');
imageinfo;

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle, imageinfo uses the first image returned by
findobj(h,'Type','image').

filename — File name
character vector | string scalar

File name, specified as a character vector. filename can be any file type that has been
registered with an information function in the file formats registry, imformats, so its
information can be read by imfinfo. filename can also be a DICOM, NITF, Interfile, or
Analyze file.

info — Image metadata
structure

Image metadata, specified as a structure returned by the functions imfinfo,
dicominfo, nitfinfo, interfileinfo, or analyze75info. info can also be a user-
created structure.

himage — Handle to image object
handle

Handle to an image graphics object, specified as a handle.

Output Arguments
htool — Handle to Image Information tool figure
handle

Handle to Image Information tool figure, returned as a handle.

1 Functions — Alphabetical List

1-1106

Tips
• The table lists the basic image attribute information included in the Image Information

tool display. Note that the tool contains either four or six fields, depending on the type
of image.

Attribute Name Value
Width (columns) Number of columns in the image
Height (rows) Number of rows in the image
Class Data type used by the image, such as 'uint8'.

Note For single or int16 images, imageinfo returns a
'Class' value of 'double', because the image object
converts the CData of these images to double.

Image type One of the image types identified by the Image Processing
Toolbox software: 'intensity' 'truecolor', 'binary', or
'indexed'.

Minimum
intensity or index

For grayscale images, this value represents the lowest intensity
value of any pixel.

For indexed images, this value represents the lowest index
value into a color map.

This field is not included for 'binary' or 'truecolor'
images.

Maximum
intensity or index

For grayscale images, this value represents the highest
intensity value of any pixel.

For indexed images, this value represents the highest index
value into a color map.

This field is not included for 'binary' or 'truecolor'
images.

• imageinfo gets information about image attributes by querying the image object's
CData. The image object converts the CData for single or int16 images to class
double. In these cases, imageinfo(H) displays a'Class' attribute of 'double',
even though the image is of class single or int16. For example,

 imageinfo

1-1107

h = imshow(ones(10,'int16'));
class(get(h,'CData'))

See Also
analyze75info | dicominfo | imattributes | imfinfo | imformats | imtool |
interfileinfo | nitfinfo

Introduced before R2006a

1 Functions — Alphabetical List

1-1108

imagemodel
Image Model object

Syntax
imgmodel = imagemodel(himage)

Description
imgmodel = imagemodel(himage) creates an image model object associated with a
target image. The target image himage is a handle to an image object or an array of
handles to image objects. imagemodel returns an image model object or, if himage is an
array of image objects, an array of image model objects. imagemodel works by querying
the image object's CData.

API Functions
An image model object stores information about an image such as class, type, display
range, width, height, minimum intensity value, and maximum intensity value.

The image model object supports methods that you can use to access this information, get
information about the pixels in an image, and perform special text formatting. Brief
descriptions of these methods follow.

Methods
imagemodel supports the following methods. Type methods imagemodel to see a list of
methods, or type help imagemodel/methodname for more information about a specific
method.

getClassType — Return class of image

imageclass= getClassType(imgmodel) returns the class associated with the
imagemodel, imgmodel. The return value, imageclass is a character vector, such as

 imagemodel

1-1109

'uint8', specifying the class of the image object's CData. imgmodel is expected to
contain only one imagemodel object.

getDisplayRange — Return display range of intensity image

disp_range = getDisplayRange(imgmodel), where imgmodel is a valid image
model and disp_range is an array of doubles such as [0 255], returns a double array
containing the minimum and maximum values of the display range for an intensity image.
For image types other than intensity, the value returned is an empty array.

getImageHeight — Return number of rows

height = getImageHeight(imgmodel), where imgmodel is a valid image model and
height is a double scalar, returns a double scalar containing the number of rows.

getImageType — Return image type

str = getImageType(imgmodel) returns the type of image associated with the
imagemodel,imgmodel. The return value, str, is one of the following: 'intensity',
'truecolor', 'binary', or 'indexed'.

getImageWidth — Return number of columns

width = getImageWidth(imgmodel), where imgmodel is a valid image model and
width is a double scalar, returns a double scalar containing the number of columns.

getMinIntensity — Return minimum value in image

minval = getMinIntensity(imgmodel), where imgmodel is a valid image model
and minval is a numeric value, returns the minimum value in the image calculated as
min(Image(:)). For an intensity image, the value returned is the minimum intensity. For
an indexed image, the value returned is the minimum index. For any other image type,
the value returned is an empty array. The class of minval depends on the class of the
target image.

getMaxIntensity — Return maximum value in image

maxval = getMaxIntensity(imgmodel), where imgmodel is a valid image model
and maxval is a numeric value, returns the maximum value in the image calculated as
max(Image(:)). For an intensity image, the value returned is the maximum intensity.
For an indexed image, the value returned is the maximum index. For any other image
type, the value returned is an empty array. The class of maxval depends on the class of
the target image.

1 Functions — Alphabetical List

1-1110

getNumberFormatFcn — Return handle to function that converts numeric value
into character vector

fun = getNumberFormatFcn(imgmodel) returns the handle to a function that
converts a numeric value into a character vector, where imgmodel is a valid image
model. For example, str = fun(getPixelValue(imgmodel, 100, 100)) converts
the numeric return value of the getPixelValue method into a character vector.

getPixelInfoString — Return value of specific pixel as character vector

str = getPixelInfoString(imgmodel, row, column) returns a character vector
containing the value of the pixel at the location specified by row and column, where str
is a character array, imgmodel is a valid image model and row and column are numeric
scalar values. For example, for an RGB image, the method returns a character vector such
as '[66 35 60]'.

getPixelRegionFormatFcn — Return handle to function that formats value of
pixel into character vector

fun = getPixelRegionFormatFcn(imgmodel) returns the value of the pixel as a
specially formatted character vector, where imgmodel is a valid image model and fun is
a handle to a function that accepts the location (row, column) of a pixel in the target
image. For example, when used with an RGB image, this function returns a character
vector of the form 'R:000 G:000 B:000' where 000 is the actual pixel value.

str = fun(100,100)

getPixelValue — Return value of specific pixel as numeric array

val = getPixelValue(imgmodel, row, column), where imgmodel is a valid image
model and row and column are numeric scalar values, returns the value of the pixel at
the location specified by row and column as a numeric array. The class of val depends
on the class of the target image.

getDefaultPixelInfoString — Return pixel information type as character
vector

str = getDefaultPixelInfoString(imgmodel) returns a character vector
indicating the pixel information type, where imgmodel is a valid image model. This
character vector can be used in place of actual pixel information values. Depending on
the image type, str can be the value 'Intensity','[R G B]','BW', or '<Index> [R
G B]'.

 imagemodel

1-1111

getDefaultPixelRegionString — Return type of information displayed in Pixel
Region tool

str = getDefaultPixelRegionString(imgmodel) returns a character vector
indicating the type of information displayed in the Pixel Region tool for each image type,
where imgmodel is a valid image model. This character vector can be used in place of
actual pixel values. Depending on the image type, str can be '000','R:000 G:000
B:000]', '0', or '<000> R:0.00 G:0.00 B:0.00'.

getScreenPixelRGBValue — Return screen display value of specific pixel

val = getScreenPixelRGBValue(imgmodel, row, col) returns the screen display
value of the pixel at the location specified by row and col as a double array. imgmodel is
a valid image model, row and col are numeric scalar values, and val is an array of
doubles, such as [0.2 0.5 0.3].

Examples

Create an Image Model from Image Objects

Create an image model associated with a single image object.

h = imshow('peppers.png');

1 Functions — Alphabetical List

1-1112

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 384
 ImageType: 'truecolor'
 ImageWidth: 512
 MinIntensity: []
 MaxIntensity: []

 imagemodel

1-1113

Create an image model for an array of image object handles.

figure
subplot(1,2,1)
h1 = imshow('hestain.png');
subplot(1,2,2)
h2 = imshow('coins.png');

im = imagemodel([h1 h2])

im =

1 Functions — Alphabetical List

1-1114

1x2 array of IMAGEMODEL objects.

See Also
getimagemodel

Introduced before R2006a

 imagemodel

1-1115

images.dicom.decodeUID
Get information about DICOM unique identifier

Syntax
details = images.dicom.decodeUID(UID)

Description
details = images.dicom.decodeUID(UID) returns information about the DICOM
unique identifier contained in UID. details contains the name of the UID and its type
(SOP class, transfer syntax, etc.). If UID corresponds to a transfer syntax, details also
contains the endianness, the DICOM value representation necessary for reading the
image pixels, and information about compression.

The images.dicom.decodeUID function can interpret IDs defined in the PS 3.6-1999
specification, with some additions from PS 3.6-2009.

Examples

Decode DICOM UID

Read metadata from a DICOM file and extract a UID field.

info = dicominfo('CT-MONO2-16-ankle.dcm');
uid = info.SOPClassUID;

Decode the UID.

uid_info = images.dicom.decodeUID(uid)

uid_info = struct with fields:
 Value: '1.2.840.10008.5.1.4.1.1.7'
 Name: 'Secondary Capture Image Storage'

1 Functions — Alphabetical List

1-1116

 Type: 'SOP Class'

Input Arguments
UID — DICOM unique identifier
character vector | string | cell array

DICOM unique identifier, specified as a string or character vector.
Example: uid_info =
images.dicom.decodeUID('1.2.840.10008.5.1.4.1.1.7')

Data Types: char | string | cell

Output Arguments
details — Information from UID
struct

Information from UID, returned as a struct.

See Also
dicominfo | dicomuid

Introduced in R2017b

 images.dicom.decodeUID

1-1117

images.dicom.parseDICOMDIR
Extract metadata from DICOMDIR file

Syntax
DICOMDIR = images.dicom.parseDICOMDIR(filename)

Description
DICOMDIR = images.dicom.parseDICOMDIR(filename) extracts the metadata from
the DICOMDIR file named in filename, returning the information in the structure
DICOMDIR. If filename is not a DICOMDIR file, the function returns an error.

A DICOM directory file (DICOMDIR) is a special DICOM file that serves as a directory to a
collection of DICOM files stored on removable media, such as CD/DVD ROMs. When
devices write DICOM files to removable media, they typically write a DICOMDIR file on
the disk to serve as a list of the disk contents.

Examples

Extract Metadata from DICOMDIR File

Read information about the contents of a DICOM folder into the workspace.

detailsStruct = images.dicom.parseDICOMDIR('DICOMDIR');

Input Arguments
filename — DICOMDIR file
string scalar | character vector

1 Functions — Alphabetical List

1-1118

DICOMDIR file, specified as a string scalar or character vector. filename can contain a
full path name or a relative path name to the file. The name of this file is DICOMDIR, with
no file extension.
Data Types: char | string

Output Arguments
DICOMDIR — Metadata from DICOMDIR file
struct

Metadata from DICOMDIR file, returned as a struct.

See Also
dicominfo

Introduced in R2017b

 images.dicom.parseDICOMDIR

1-1119

images.roi.AssistedFreehand class
Package: images.roi

Assisted freehand region of interest

Description
The images.roi.AssistedFreehand class creates an AssistedFreehand region-of-
interest (ROI) object. You call the draw method of the object to begin drawing the ROI
interactively by using your mouse. With assisted freehand, the line you are drawing
follows the edges in the underlying image automatically.

To create an ROI interactively, position the pointer on the image, click and release to
place the first vertex (waypoint), and then move the pointer to draw a line. The line snaps
to nearby edges in the image automatically as you draw. Click to place vertices along the
line as you draw. To finish the ROI and close the shape, double-click. To delete an ROI,
position the pointer on the ROI (not on a vertex), right-click, and select Delete Freehand
from the context menu. For more information about keyboard shortcuts, see “Tips” on
page 1-1128.

The images.roi.AssistedFreehand class is a handle class.

Creation

Description
h = images.roi.AssistedFreehand creates an instance of the
images.roi.AssistedFreehand class with default properties.

h = images.roi.AssistedFreehand(ax) creates the ROI on the axes specified by
ax.

h = images.roi.AssistedFreehand(___ ,Name,Value) modifies the appearance
or behavior of the ROI by specifying values for one or more ROI properties. You can set
properties using name-value pairs with or without specifying an axes.

1 Functions — Alphabetical List

1-1120

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified as a logical value true or false. If true (default),
images.roi.Freehand closes the ROI by connecting the last point drawn to the first
point drawn.

Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

 images.roi.AssistedFreehand class

1-1121

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.

1 Functions — Alphabetical List

1-1122

Value Description
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

Image — Image on which to draw ROI
handle to Image object

Image on which to draw ROI, specified as a handle to an Image object.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

 images.roi.AssistedFreehand class

1-1123

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
n-by-2 numeric array

Position of the ROI, specified as an n-by-2 numeric array of the form [x1 y1;...;xn
yn], where n is the total number of vertices. Each row specifies the position of a point on
the ROI edge.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Smoothing — Smooth edge of freehand ROI
1 (default) | nonnegative numeric scalar

Smooth the edge of the freehand ROI using the standard deviation of the Gaussian
smoothing kernel, specified as a nonnegative numeric scalar. The 'Smoothing' value
filters the x and y coordinates of the freehand ROI. The filter size is
2*ceil(2*Smoothing) + 1.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

1 Functions — Alphabetical List

1-1124

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

 images.roi.AssistedFreehand class

1-1125

Waypoints — Control points to reshape freehand ROI
[] (default) | n-by-1 logical vector

Control points to reshape the freehand ROI, specified as an n-by-1 logical vector, the same
length as Position. Each element of the Waypoints vector indicates if the
corresponding point in the Position array is a waypoint. Positions that are waypoints
are set to true in Waypoints. Dragging a waypoint modifies the ROI between the
specified waypoint and its immediate neighboring waypoints. When you draw the
freehand ROI, images.roi.AssistedFreehand automatically generates Waypoints at
locations of increased curvature.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions — Alphabetical List

1-1126

Event Name Trigger Event Data Event Attributes
MovingROI ROI shape or

location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

AddingWaypoint A waypoint is about
to be interactively
added to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointAdded A waypoint has been
interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

RemovingWaypoint A waypoint is about
to be interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointRemoved A waypoint has been
interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

 images.roi.AssistedFreehand class

1-1127

Examples

Create Freehand ROI Using Assisted Freehand

Read an image into the workspace and display it.

 figure;
 imshow(imread('baby.jpg'));

Create an instance of an images.roi.AssistedFreehand class. By default, the class
creates the ROI on the current axes. Note that the axes must contain an image.

h = images.roi.AssistedFreehand;

Call the draw method, specifying the AssistedFreehand object as an argument. The
pointer changes to a cross-hair shape when you move it over the image. You can being
drawing the ROI. Note how, as you move the pointer, the line you draw follows the edges
in the underlying image.

draw(h);

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

1 Functions — Alphabetical List

1-1128

Behavior Keyboard shortcut
Finish drawing (close) the ROI. Double-click, which adds a vertex at the

pointer position and draws a line to the
first vertex to close the ROI.

Right-click, which draws a line from the
last vertex to the first vertex.

Position the pointer over the first vertex
and click.

Press Enter, which draws a line from
the last vertex to the first vertex.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. No assistance (snapping
to edges) is available in this mode.

Add a vertex (waypoint). Position the pointer on an edge of the
ROI and double-click.

Position the pointer on an edge of the
ROI, right-click, and select Add
Waypoint.

Remove a vertex (waypoint). Position the pointer on a vertex, right-
click, and select Remove Waypoint.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag to move the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawassisted | images.roi.Circle | images.roi.Cuboid | images.roi.Ellipse
| images.roi.Freehand | images.roi.Line | images.roi.Point |
images.roi.Polygon | images.roi.Polyline | images.roi.Rectangle

 images.roi.AssistedFreehand class

1-1129

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1130

images.roi.Circle class
Package: images.roi

Circular region of interest

Description
The images.roi.Circle class creates a circular region-of-interest (ROI) object. You call
the draw method of the object to begin drawing the ROI interactively by using your
mouse.

To draw the ROI interactively, move the pointer over the axes, click and drag the pointer
to draw the circle. To finish drawing, release the pointer. To delete the ROI, position the
pointer over the circle, right-click, and select Delete Circle from the context menu. For
more information about interactive behaviors including keyboard shortcuts, see “Tips” on
page 1-1141.

The images.roi.Circle class is a handle class.

Creation

Description
h = images.roi.Circle creates an instance of the images.roi.Circle class with
default properties.

h = images.roi.Circle(ax) creates the ROI on the axes specified by ax.

h = images.roi.Circle(___ ,Name,Value) modifies the appearance or behavior of
the ROI by specifying values for one or more ROI properties. You can set properties using
name-value pairs with or without specifying an axes.

 images.roi.Circle class

1-1131

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Center — Center of ROI
[] (default) | 1-by2 numeric array

Center of the ROI, specified as a 1-by-2 numeric array of the form [x y]. The values x
and y are the coordinates of the center point of the ROI. The value of this property
changes automatically when you draw or move the ROI.

Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

1 Functions — Alphabetical List

1-1132

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.

 images.roi.Circle class

1-1133

Value Description
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

1 Functions — Alphabetical List

1-1134

Radius — Radius of circle
nonnegative numeric scalar

Radius of the circle, specified as a nonnegative numeric scalar. You can also set this
property by drawing or resizing the circle.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

 images.roi.Circle class

1-1135

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Vertices — Locations of points on edge of Circle
n-by-2 array

Locations of points on the edge of the ROI, returned as an n-by-2 array, where n is the
total number of vertices.

This property is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

1 Functions — Alphabetical List

1-1136

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.Circl
eMovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.Circl
eMovingEventData

NotifyAccess:
private

ListenAccess:
public

 images.roi.Circle class

1-1137

Event Name Trigger Event Data Event Attributes
ROIClicked ROI has been

clicked.
images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Circular ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions — Alphabetical List

1-1138

 images.roi.Circle class

1-1139

Create a circular ROI on the image. Use the 'Center' property to specify the location
and the 'Radius' property to specify the size. For programmatically created ROIs, if you
want the ROI drawn in a specific axes, you must specify that axes as an input argument.
Otherwise, an instance of the images.roi.Circle class is created but not displayed. In
this example, specify the current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Circle(gca,'Center',[1000 1000],'Radius',500);

1 Functions — Alphabetical List

1-1140

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

 images.roi.Circle class

1-1141

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Resize the ROI. Position the pointer over one of the
vertices on the circle and then click and
drag. The aspect ratio of the ROI
remains constant (1:1).

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawcircle | images.roi.AssistedFreehand | images.roi.Cuboid |
images.roi.Ellipse | images.roi.Freehand | images.roi.Line |
images.roi.Point | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1142

images.roi.Cuboid class
Package: images.roi

Cuboidal region of interest

Description
The images.roi.Cuboid class creates a cuboidal region-of-interest (ROI) object. You
call the draw method of the object to begin drawing the ROI interactively by using your
mouse. You can also adjust the size and position of the ROI by using the mouse. The ROI
also has a context menu that controls aspects of its appearance and behavior.

To create an ROI interactively, position the pointer over the pre-drawn ROI, move it to any
location in the figure, and click. To delete the cuboid, position the pointer over the ROI,
right-click, and select Delete Cuboid from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-1152.

The images.roi.Cuboid class is a handle class.

Creation

Description
h = images.roi.Cuboid creates an instance of the images.roi.Cuboid class with
default properties.

h = images.roi.Cuboid(ax) creates the ROI on the axes specified by ax.

h = images.roi.Cuboid(___ ,Name,Value) modifies the appearance or behavior of
the ROI by specifying values for one or more ROI properties. You can set properties using
name-value pairs with or without specifying an axes.

 images.roi.Cuboid class

1-1143

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties
Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | 1-by-6 numeric array

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is a superset of the

current axes limits and a bounding box that
surrounds the ROI (default).

1 Functions — Alphabetical List

1-1144

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,z,w,h,d] The drawing area is restricted to a region
beginning at (x,y,z), with width w, height h,
and depth d.

EdgeAlpha — Transparency of ROI edge
1 (default) | nonnegative numeric scalar

Transparency of ROI edge, specified as a nonnegative numeric scalar value in the range
[0 1]. When set to 1, the ROI edge is fully opaque. When set to 0, the ROI edge is
completely transparent.
Example: drawcuboid('EdgeAlpha',0.2)

FaceAlpha — Transparency of ROI faces
0.2 (default) | numeric scalar

Transparency of the ROI faces, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI faces are fully opaque. When the value is 0, the ROI faces
are completely transparent.

FaceAlphaOnHover — Transparency of ROI face directly underneath mouse
pointer
0.4 (default) | nonnegative numeric scalar | 'none'

Transparency of ROI face directly underneath the mouse pointer, specified as a scalar
value in the range [0 1] or 'none', to indicate no change to face transparency. When
set to 1, the face under the mouse pointer is fully opaque. When set to 0, the face is
completely transparent.
Example: drawcuboid('FaceAlphaOnHover',1)

FaceColorOnHover — Color of ROI face directly underneath mouse pointer
'none' (default) | MATLABColorSpec

Color of the ROI face directly underneath the mouse pointer, specified as a MATLAB
ColorSpec (Color Specification) or 'none'. By default, the face color does not
change on hover. When you are not hovering over a face of the ROI, the value of the ROI
Color property determines the face color. The intensities must be in the range [0,1].

 images.roi.Cuboid class

1-1145

Example: drawcuboid('FaceAlphaOnHover',1)

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LabelVisible — Visibility of the label
'on' (default) | 'off' | 'hover'

Visibility of the label, specified as one of these values:

1 Functions — Alphabetical List

1-1146

Value Description
'on' Label is visible when the ROI is visible and

the Label property is nonempty (default).
'hover' Label is visible only when the mouse is

hovering over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI edge
1 (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of the cuboid
1-by-6 numeric array

Position of the cuboid, specified as a 1-by-6 array of the form [xmin, ymin, zmin,
width, height, depth]. This property updates automatically when you draw or move
the cuboid.

Rotatable — Ability of cuboid to be rotated
'none' (default) | 'x' | 'y' | 'z' | 'all'

Ability of the cuboid to be rotated, specified as one of these values:

Value Description
'all' ROI is fully rotatable.
'x' ROI can only be rotated about the x axis
'y' ROI can only be rotated about the y axis.
'z' ROI can only be rotated about the z axis.
'none' ROI is not rotatable.

RotationAngle — Angle of ROI rotation
[0 0 0] (default) | 1-by-3 numeric array of rotation angles

 images.roi.Cuboid class

1-1147

Angle of ROI rotation, specified as a 1-by-3 numeric array of rotation angles, measured in
degrees. The rotation angles array is of the form [x_angle y_angle z_angle],
measured about the x-, y-, and z-axis, respectively. Rotation is applied about the ROI
centroid in order z, then y, then x.

The value of RotationAngle does not impact the values in the Position property.
Position represents the cuboid prior to any rotation. When you rotate the cuboid, use
the Vertices property to determine the location of the rotated cuboid.

ScrollWheelDuringDraw — Ability of scroll wheel to adjust size
'all' (default) | xresize | yresize | zresize | 'none'

Ability of the scroll wheel to adjust the size of the cuboid during interactive placement,
specified as one of these values:

Value Description
'allresize' Scroll wheel impacts all ROI dimensions.
'xresize' Scroll wheel impacts only the x dimension.
'yresize' Scroll wheel impacts only the y dimension.
'zresize' Scroll wheel impacts only the z dimension.
'none' Scroll wheel has no effect.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'

1 Functions — Alphabetical List

1-1148

Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Vertices — Locations of corners of cuboidal ROI
8-by-3 numeric array

Locations of the corners of cuboidal ROI, returned as an 8-by-3 array.

Visible — ROI visibility
'on' (default) | 'off'

 images.roi.Cuboid class

1-1149

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront draw
inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions — Alphabetical List

1-1150

Event Name Trigger Event Data Event Attributes
MovingROI ROI shape or

location is being
interactively
changed.

images.roi.Cuboi
dMovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.Cuboi
dMovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Cuboid ROI on Scatter Plot

Define vectors for 3-D scatter data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot and use view to the change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

 images.roi.Cuboid class

1-1151

Begin placing a cuboid in the axes that snaps to the nearest point from the scatter plot.
Adjust the size of the cuboid during interactive placement by using the scroll wheel.

ax = gca;
h = images.roi.Cuboid(ax);
draw(h)

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions — Alphabetical List

1-1152

Behavior Keyboard shortcut
Fine-tune ROI size while drawing. Use the scroll wheel to make small

changes to the size of the ROI while
drawing.

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Resize (reshape) the ROI. Position the pointer on one of the visible
faces of the cuboid and click and drag
the surface. You might have to rotate the
cuboid to select a surface.

If you press the Shift, dragging the
mouse moves the ROI but does not
change any of the dimensions.

Move the ROI. Position the pointer on any of the visible
surfaces of the ROI and click and drag
while pressing Shift.

Position the pointer on any visible
surface of the ROI, right-click, and
select Lock Dimensions. Click and
drag to move the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawcuboid | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Ellipse | images.roi.Freehand | images.roi.Line |
images.roi.Point | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

Introduced in R2019a

 images.roi.Cuboid class

1-1153

images.roi.Ellipse class
Package: images.roi

Elliptical region of interest

Description
The images.roi.Ellipse class creates an elliptical region-of-interest (ROI) object. You
call the draw method of the object to begin drawing the ROI interactively by using your
mouse.

To draw the ROI interactively, position the pointer over the axes and click and drag to
draw the ellipse. To finish drawing the ROI, release the pointer. To delete the ROI,
position the pointer on the ellipse, right-click, and select Delete Ellipse from the context
menu. For more information about interactive behaviors including keyboard shortcuts,
see “Tips” on page 1-609.

The images.roi.Ellipse class is a handle class.

Creation

Description
h = images.roi.Ellipse creates an instance of the images.roi.Ellipse class with
default properties.

h = images.roi.Ellipse(ax) creates the ROI on the axes specified by ax.

h = images.roi.Ellipse(___ ,Name,Value) modifies the appearance or behavior
of the ROI by specifying values for one or more ROI properties. You can set properties
using name-value pairs with or without specifying an axes.

1 Functions — Alphabetical List

1-1154

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
AspectRatio — Aspect ratio of ellipse
(1+sqrt(5))/2 (default) | positive numeric scalar

Aspect ratio of the ellipse, specified as a numeric scalar. The value of this property
changes automatically when you draw or resize the ellipse, or by setting the SemiAxes
property. The images.roi.Ellipse object calculates this value as height/width.

Center — Center of ROI
[] (default) | 1-by2 numeric array

Center of the ROI, specified as a 1-by-2 numeric array of the form [x y]. The values x
and y are the coordinates of the center point of the ROI. The value of this property
changes automatically when you draw or move the ROI.

Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this

 images.roi.Ellipse class

1-1155

context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

FixedAspectRatio — Aspect ratio remains constant during interaction
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the
value is true, the ROI maintains the aspect ratio when you draw or resize the ellipse.
When the value is false (default), you can change the aspect ratio when drawing or
resizing the ellipse. You can change the state of this property using the default context
menu.

1 Functions — Alphabetical List

1-1156

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

 images.roi.Ellipse class

1-1157

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

RotationAngle — Angle around center of ROI
0 (default) | nonnegative numeric scalar

Angle around the center of the ROI, specified as a nonnegative numeric scalar. The angle
is measured in degrees in a clockwise direction. The value of this property changes
automatically when you draw or move the ROI.

The value of RotationAngle does not impact the value of Position. The Position
property represents the initial position of the ROI, before rotation. To determine the
location of a rotated ROI, use the Vertices property.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

1 Functions — Alphabetical List

1-1158

SemiAxes — Lengths of semiaxes of ellipse
[semiaxis1 semiaxis2]

Lengths of the semiaxis of the ellipse, specified as a 1-by-2 array of the form [semiaxis1
semiaxis2]. The images.roi.Ellipse object assigns the length of the semiaxis that
is closest to the x direction to semiaxis1. Note however that the shape and orientation
of the ellipse can change through interaction. The value of this property changes
automatically when you draw or reshape the ROI.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

 images.roi.Ellipse class

1-1159

Vertices — Locations of points that lie along perimeter of ellipse
n-by-2 array

Locations of points that lie along the perimeter of the ellipse, specified as an n-by-2 array.
This property is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

1 Functions — Alphabetical List

1-1160

Event Name Trigger Event Data Event Attributes
DrawingStarted ROI is about to be

interactively drawn.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.Ellip
seMovingEventDat
a

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.Ellip
seMovingEventDat
a

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Elliptical ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 images.roi.Ellipse class

1-1161

1 Functions — Alphabetical List

1-1162

Create an elliptical ROI on the image, using the Center property to specify the location
and the SemiAxes property to specify its shape. For programmatically created ROIs, if
you want the ROI drawn in a specific axes, you must specify that axes as an input
argument. Otherwise, an instance of the images.roi.Ellipse class is created but not
displayed. In this example, specify the current axes (gca) to draw the ROI on the image in
that axes.

h = images.roi.Ellipse(gca,'Center',[1000 1000],'Semiaxes',[350 150]);

 images.roi.Ellipse class

1-1163

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions — Alphabetical List

1-1164

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Fine-tune width of ellipse as you are
drawing.

As you draw the ellipse, use the scroll
wheel to make small changes to the
width of the ellipse.

Rotate the ROI. Position the pointer near a vertex. The
pointer changes to the rotate pointer.
Click and rotate the ROI on its center.

To make the rotation snap at 15 degree
angles, press Shift as you rotate.

Maintain aspect ratio while drawing. Hold the Shift key as you draw. Creates
a circular ROI.

To lock the aspect ratio, position the
pointer on the ROI, right-click, and
select Fix Aspect Ratio from the
context menu

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. To main the aspect ratio
as you resize, hold the Shift key.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag to move the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawellipse | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Freehand | images.roi.Line |
images.roi.Point | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

 images.roi.Ellipse class

1-1165

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1166

images.roi.Freehand class
Package: images.roi

Freehand region of interest

Description
The images.roi.Freehand class creates a freehand region-of-interest (ROI) object. You
call the draw method of the object to begin drawing the ROI interactively by using your
mouse.

To create a freehand ROI interactively, position the pointer on the axes and click and drag
to draw the ROI shape. Release the pointer to close the shape. To delete a freehand ROI,
position the pointer over the ROI, right-click, and select Delete Freehand from the
context menu. For more information about interactive behaviors including keyboard
shortcuts, see “Tips” on page 1-1178.

The images.roi.Freehand class is a handle class.

Creation

Description
h = images.roi.Freehand creates an instance of the images.roi.Freehand class
with default properties.

h = images.roi.Freehand(ax) creates the ROI in the axes specified by ax.

h = images.roi.Freehand(___ ,Name,Value) modifies the appearance and
behavior of the ROI using one or more name-value pairs to specify properties. You can set
properties using name-value pairs with or without specifying ax.

 images.roi.Freehand class

1-1167

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified as a logical value true or false. If true (default),
images.roi.Freehand closes the ROI by connecting the last point drawn to the first
point drawn.

Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

1 Functions — Alphabetical List

1-1168

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.

 images.roi.Freehand class

1-1169

Value Description
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Multiclick — Control freehand drawing style during interactive placement
false (default) | true

Control the freehand drawing style during interactive placement, specified as the logical
value true or false. When the value is false (the default), a single click and drag

1 Functions — Alphabetical List

1-1170

gesture completes the freehand ROI. When the value is true, multiple click and drag
gestures can be combined with straight edges to make a more complex freehand ROI
shape.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
n-by-2 numeric array

Position of the ROI, specified as an n-by-2 numeric array of the form [x1 y1;...;xn
yn], where n is the number of points. Each row specifies the position of a point defining
the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Smoothing — Smooth ROI during interactive placement
1 (default) | positive numeric scalar

Smooth ROI during interactive placement, specified as a positive numeric scalar. Filter
the x and y coordinates of the ROI after interactive placement with a Gaussian smoothing

 images.roi.Freehand class

1-1171

kernel with standard deviation specified by Smoothing. The filter size is
2*ceil(2*Smoothing) + 1.

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

1 Functions — Alphabetical List

1-1172

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Waypoints — Control points used to reshape ROI
[] (default) | n-by-1 array

Control points used to reshape ROI, specified as an n-by-1 array. In the array, a row with
the value true indicates the position on the ROI edge is a waypoint. The length of the
Waypoints array must match the number of rows in the Position property. Dragging a
waypoint modifies the freehand-drawn region between the specified waypoint and its
immediate neighboring waypoints. If empty (the default), images.roi.Freehand
generates waypoints automatically at locations of increased curvature.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

 images.roi.Freehand class

1-1173

Event Name Trigger Event Data Event Attributes
DrawingFinished ROI has been

interactively drawn.
event.EventData NotifyAccess:

private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

AddingWaypoint A waypoint is about
to be interactively
added to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointAdded A waypoint has been
interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

RemovingWaypoint A waypoint is about
to be interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions — Alphabetical List

1-1174

Event Name Trigger Event Data Event Attributes
WaypointRemoved A waypoint has been

interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Examples

Create Freehand ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 images.roi.Freehand class

1-1175

1 Functions — Alphabetical List

1-1176

Create a freehand ROI on the image, using the Position property to specify the vertices
of the ROI. For programmatically created ROIs, if you want the ROI drawn in a specific
axes, you must specify that axes as an input argument. Otherwise, an instance of the
images.roi.Freehand class is created but not displayed. In this example, specify the
current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Freehand(gca,'Position',[100 150;200 250;300 350;150 450]);

 images.roi.Freehand class

1-1177

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions — Alphabetical List

1-1178

Behavior Keyboard shortcut
Finish drawing (close) the ROI. Right-click.

Position pointer over the first vertex and
click.

Press Enter.
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Add a new vertex (waypoint) to the ROI. Position the pointer on the edge of the
ROI and double-click.

Position the pointer on the edge of the
ROI, right-click, choose Add Waypoint
from the context menu.

Remove a vertex (waypoint) from the
ROI.

Position the pointer on a vertex, right-
click, choose Remove Waypoint from
the context menu.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag.

Add a new vertex to the polygon and
then click and drag.

Move the ROI. Position the pointer on the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawfreehand | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Line |
images.roi.Point | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

 images.roi.Freehand class

1-1179

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1180

images.roi.Line class
Package: images.roi

Line region of interest

Description
The images.roi.Line class creates a linear region-of-interest (ROI) object. You call the
draw method of the object to begin drawing the ROI interactively by using your mouse.

To create a linear ROI interactively, position the pointer where you want to start drawing
and then click and drag to draw the line. Release the pointer to finish the line. To delete
the line, position the pointer over the line, right-click, and select Delete Line from the
context menu. For more information about interactive behaviors including keyboard
shortcuts, see “Tips” on page 1-1190.

The images.roi.Line class is a handle class.

Creation

Description
h = images.roi.Line creates an instance of the images.roi.Line class with default
properties.

h = images.roi.Line(ax) creates the ROI on the axes specified by ax.

h = images.roi.Line(___ ,Name,Value) modifies the appearance or behavior of
the ROI by specifying values for one or more ROI properties. You can set properties using
name-value pairs with or without specifying an axes.

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

 images.roi.Line class

1-1181

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

1 Functions — Alphabetical List

1-1182

Value Description
[x,y,w,h] The drawing area is restricted to a

rectangular region beginning at (x,y), and
extending to width w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

 images.roi.Line class

1-1183

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
[] (default) | 2-by-2 numeric array

Position of the ROI, specified as a 2-by-2 array of the form [x1 y1; x2 y2], where each
row specifies the respective end-point of the line segment. You can also set this property
by drawing or moving the line.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

1 Functions — Alphabetical List

1-1184

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).

 images.roi.Line class

1-1185

Value Description
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

1 Functions — Alphabetical List

1-1186

Event Name Trigger Event Data Event Attributes
ROIMoved ROI shape or

location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Linear ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 images.roi.Line class

1-1187

1 Functions — Alphabetical List

1-1188

Create a linear ROI on the image, using the Position property to specify the ROI
location. For programmatically created ROIs, if you want the ROI drawn in a specific axes,
you must specify that axes as an input argument. Otherwise, an instance of the
images.roi.Line class is created but not displayed. In this example, specify the current
axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Line(gca,'Position',[100 150;400 650]);

 images.roi.Line class

1-1189

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions — Alphabetical List

1-1190

Behavior Keyboard shortcut
Make drawn line snap to 15 degree
angles.

Hold the Shift key while drawing.

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Resize the ROI. Position pointer over either endpoint
and then click and drag to resize the
ROI. Hold the Shift key while resizing to
snap the line drawn at 15 degree angles.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Then
click and drag the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawline | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Freehand |
images.roi.Point | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

Topics
“ROI Creation Overview”

Introduced in R2018b

 images.roi.Line class

1-1191

images.roi.Point class
Package: images.roi

Point region of interest

Description
The images.roi.Point class creates a point region-of-interest (ROI) object. You call the
draw method of the object to begin drawing the ROI interactively by using your mouse.

To create a point ROI interactively, position the pointer where you want the ROI and then
click and release to draw it. To delete the ROI, position the pointer over the point, right-
click, and then choose Delete Point from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-1201.

The images.roi.Point class is a handle class.

Creation

Description
h = images.roi.Point creates an instance of the images.roi.Point class with
default properties.

h = images.roi.Point(ax) creates the ROI in the axes specified by ax.

h = images.roi.Point(___ ,Name,Value) modifies the appearance and behavior of
the ROI using one or more name-value pairs to specify properties. You can set properties
using name-value pairs with or without specifying ax.

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

1 Functions — Alphabetical List

1-1192

Parent of ROI, specified as an Axes object.

Properties

Public Properties
Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

 images.roi.Point class

1-1193

Value Description
[x,y,w,h] The drawing area is restricted to a

rectangular region beginning at (x,y), and
extending to width w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

1 Functions — Alphabetical List

1-1194

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
1-by-2 numeric array

Position of the ROI, specified as a 1-by-2 numeric array of the form [x y], where x and y
specify the location of the point. You can modify this property by drawing or moving the
point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

 images.roi.Point class

1-1195

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).

1 Functions — Alphabetical List

1-1196

Value Description
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront draw </
infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

 images.roi.Point class

1-1197

Event Name Trigger Event Data Event Attributes
ROIMoved ROI shape or

location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Point ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

1 Functions — Alphabetical List

1-1198

 images.roi.Point class

1-1199

Create a point ROI on the image, using the 'Position' property to specify the location.
For programmatically created ROIs, if you want the ROI drawn in a specific axes, you
must specify that axes as an input argument. Otherwise, an instance of the
images.roi.Point class is created but not displayed. In this example, specify the
current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Point(gca,'Position',[400 650]);

1 Functions — Alphabetical List

1-1200

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

 images.roi.Point class

1-1201

Behavior Keyboard shortcut
Stop drawing. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Move the ROI. Position the pointer over the ROI. The
pointer changes to a circle. Click and
drag to move the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawpoint | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Freehand |
images.roi.Line | images.roi.Polygon | images.roi.Polyline |
images.roi.Rectangle

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1202

images.roi.Polygon class
Package: images.roi

Polygonal region of interest

Description
The images.roi.Polygon class defines a polygonal region-of-interest (ROI) over an
image. You call the draw method of the object to begin drawing the ROI interactively by
using your mouse.

To draw the ROI interactively, position the pointer over the axes, click and drag the
pointer to draw the ROI. As you draw the line, click to create a vertex. Double-click to
finish drawing and close the polygon. The ROI supports a right-click context menu that
lets you add a vertex, delete a vertex, or delete the entire ROI, depending on where you
right-click. To delete the ROI, position the pointer on the ROI, right-click, and choose
Delete Polygon from the context menu. For more information about interactive
behaviors including keyboard shortcuts, see “Tips” on page 1-1213.

The images.roi.Polygon class is a handle class.

Creation

Description
h = images.roi.Polygon creates an instance of the images.roi.Polygon object
with default properties.

h = images.roi.Polygon(ax) creates the ROI in the axes specified by ax.

h = images.roi.Polygon(___ ,Name,Value) modifies the appearance and behavior
of the ROI using one or more name-value pairs to specify properties. You can set
properties using name-value pairs with or without specifying ax.

 images.roi.Polygon class

1-1203

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

1 Functions — Alphabetical List

1-1204

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

 images.roi.Polygon class

1-1205

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
n-by-2 numeric array

Position of the ROI, specified as an n-by-2 numeric array of the form [x1 y1; ...;xn
yn], where each row specifies the position of a vertex of the polygon.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this

1 Functions — Alphabetical List

1-1206

property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is
set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

 images.roi.Polygon class

1-1207

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Vertices — Locations of points on the edge of ROI
n-by-2 array

Locations of points on the edge of the ROI, specified as an n-by-2 array. This property is
read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

1 Functions — Alphabetical List

1-1208

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

AddingVertex A vertex is about to
be interactively
added to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

 images.roi.Polygon class

1-1209

Event Name Trigger Event Data Event Attributes
VertexAdded A vertex has been

interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

DeletingVertex A vertex is about to
be interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

VertexDeleted A vertex has been
interactively
removed from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Examples

Create Polygonal ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

1 Functions — Alphabetical List

1-1210

 images.roi.Polygon class

1-1211

Create a polygonal ROI on the image, using the Position property to specify the
vertices of the ROI. Note that you must specify the axes where you want to draw the ROI
as the first argument.

h = images.roi.Polygon(gca,'Position',[100 150; 200 250; 300 350; 150 450]);

1 Functions — Alphabetical List

1-1212

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

 images.roi.Polygon class

1-1213

Behavior Keyboard shortcut
Make drawn line snap at 15 degree
angles.

Hold the Shift key while drawing.

Finish drawing (close) the ROI. Double-click, which adds a new vertex at
the pointer position and draws a line to
the first vertex to close the polygon.

Press Enter, which adds a new vertex at
the pointer position and draws a line to
the first vertex to close the polygon.

Right-click, which does not add a new
vertex but closes the polygon from the
previous vertex.

Position pointer over the first vertex and
click.

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Add a new vertex to the ROI. Position the pointer over the edge of the
ROI and double-click.

Position the pointer over the edge of the
ROI, right-click, and select Add Vertex
from the context menu.

Remove the most recently added vertex
but keep drawing.

Press Backspace. The function redraws
the line from the previous vertex to the
current position of the pointer. You can
only back up to the first vertex you drew.

1 Functions — Alphabetical List

1-1214

Behavior Keyboard shortcut
Resize (reshape) the ROI Position pointer over a vertex and then

click and drag.

Add a new vertex to the polygon and
then click and drag.

Remove a vertex. The ROI redraws the
line connecting the two neighboring
vertices.

Move the ROI. Position the pointer over the ROI. Hover
over the edge of the polygon (not on a
vertex). The pointer changes to the fleur
shape. Click and drag to move the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawpolygon | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Freehand |
images.roi.Line | images.roi.Point | images.roi.Polyline |
images.roi.Rectangle

Topics
“ROI Creation Overview”

Introduced in R2018b

 images.roi.Polygon class

1-1215

images.roi.Polyline class
Package: images.roi

Polyline region of interest

Description
The images.roi.Polyline class creates a polyline region-of-interest (ROI) object. You
call the draw method of the object to begin drawing the ROI interactively by using your
mouse.

To create a polyline ROI interactively, position the pointer over the axes and click and
drag to draw the line. As you draw, click to place vertices along the line. Double-click to
finish drawing the polyline. To delete the ROI, position the pointer over the line, right-
click, and select Delete Polyline from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-1226.

The images.roi.Polyline class is a handle class.

Creation

Description
h = images.roi.Polyline creates an instance of the images.roi.Polyline class
with default properties.

h = images.roi.Polyline(ax, ___) creates the ROI in the axes specified by ax.

h = images.roi.Polyline(___ ,Name,Value) modifies the appearance and
behavior of the ROI using one or more name-value pairs to specify properties. You can set
properties using name-value pairs with or without specifying ax.

1 Functions — Alphabetical List

1-1216

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

Value Description
'auto' The drawing area is the current axes limits

(default).

 images.roi.Polyline class

1-1217

Value Description
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

1 Functions — Alphabetical List

1-1218

Value Description
'reshape' The ROI can be reshaped but not

translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
[] (default) | n-by-2 numeric array

Position of ROI, specified as a n-by-2 array of the form [x1 y1; x2 y2], where n is the
total number of vertices. Each row specifies the respective end-point of a line segment.
You can also set this property by drawing or moving the line.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is

 images.roi.Polyline class

1-1219

set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Visible — ROI visibility
'on' (default) | 'off'

1 Functions — Alphabetical List

1-1220

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

 images.roi.Polyline class

1-1221

Event Name Trigger Event Data Event Attributes
MovingROI ROI shape or

location is being
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.ROIMo
vingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

AddingVertex A vertex is about to
be interactively
added to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

VertexAdded A vertex has been
interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

DeletingVertex A vertex is about to
be interactively
deleted from the
ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

VertexDeleted A vertex has been
interactively deleted
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions — Alphabetical List

1-1222

Examples

Create Polyline ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

 images.roi.Polyline class

1-1223

1 Functions — Alphabetical List

1-1224

Create a polyline ROI on the image, using properties to specify the location of vertices.
For programmatically created ROIs, if you want the ROI drawn in a specific axes, you
must specify that axes as an input argument. Otherwise, an instance of the
images.roi.Polyline class is created but not displayed. In this example, specify the
current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Polyline(gca,'Position',[100 150; 200 250; 300 350; 150 450]);

 images.roi.Polyline class

1-1225

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions — Alphabetical List

1-1226

Behavior Keyboard shortcut
Make drawn line snap at 15 degree
angles.

Hold the Shift key while drawing.

Finish drawing the ROI. Double-click, which adds a final new
vertex at the pointer position.

Right-click, which adds a final new
vertex at the pointer position.

Press Enter, which adds a final new
vertex at the pointer position..

Stop drawing the ROI. Press Esc. The function returns a valid
ROI object with an empty Position
field.

Add a new vertex to the ROI. Position the pointer over the polygon
and double-click. You can also position
the pointer over the ROI, right-click, and
choose Add Vertex.

Remove a vertex from the ROI. Position the pointer over the ROI, right-
click, and choose Delete Vertex.

Remove the most recently added vertex
but keep drawing.

Press Backspace. The function redraws
the line from the previous vertex to the
current position of the pointer. You can
only back up to the first vertex you drew.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag.

Add a new vertex and then click and
drag.

Remove a vertex and the shape of the
ROI adjusts.

Move the ROI. Position the pointer over the line, not on
a vertex. The pointer changes to the
fleur shape. Click and drag the polygon.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

 images.roi.Polyline class

1-1227

See Also
drawpolyline | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Freehand |
images.roi.Line | images.roi.Point | images.roi.Polygon |
images.roi.Rectangle

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1228

images.roi.Rectangle class
Package: images.roi

Rectangular region of interest

Description
The images.roi.Rectangle class creates a rectangular region-of-interest (ROI) object.
You call the draw method of the object to begin drawing the ROI interactively by using
your mouse.

To draw the ROI interactively, position the pointer and then click and drag. Release the
pointer to finish the ROI. To delete the ROI, position the pointer on the rectangle, right-
click, and choose Delete Rectangle from the context menu. For more information about
interactive behaviors including keyboard shortcuts, see “Tips” on page 1-1239.

The images.roi.Rectangle class is a handle class.

Creation

Description
h = images.roi.Rectangle creates an instance of the images.roi.Rectangle
class with default properties.

h = images.roi.Rectangle(ax) creates an ROI in the axes specified by ax.

h = images.roi.Rectangle(___ ,Name,Value) modifies the appearance and
behavior of the ROI using one or more name-value pairs to specify properties. You can set
properties using name-value pairs with or without specifying ax.

Input Arguments
ax — Parent of ROI
gca (default) | Axes object

 images.roi.Rectangle class

1-1229

Parent of the ROI, specified as an Axes object.

Properties

Public Properties
AspectRatio — Aspect ratio of rectangle
1 (default) | positive numeric scalar

Aspect ratio of the rectangle, specified as a positive numeric scalar. The value of this
property changes automatically when you draw or resize the rectangle. The
images.roi.Rectangle object calculates this value as height/width

Color — ROI color
blue (default) | ColorSpec

ROI color, specified as a MATLAB ColorSpec (Color Specification).
Example: 'green'
Example: 'g'
Example: [0 1 0]

Deletable — ROI can be interactively deleted via context menu
true (default) | false

ROI can be interactively deleted via a context menu, specified as true or false. When
the value is true (default), you can delete the ROI via the context menu. To disable this
context menu item, set this property to false. When the value is set to false, you can
still delete the ROI by calling the delete function specifying the handle to the ROI as the
input.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the
values in this table.

1 Functions — Alphabetical List

1-1230

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and

ROIs can be drawn or dragged to extend
beyond the axes limits.

[x,y,w,h] The drawing area is restricted to a
rectangular region beginning at (x,y), and
extending to width w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | numeric scalar

Transparency of the ROI face, specified as a numeric scalar value in the range [0 1].
When the value is 1, the ROI face is fully opaque. When the value is 0, the ROI face is
completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI
face captures mouse clicks. When false, the ROI face does not capture mouse clicks.

FixedAspectRatio — Aspect ratio remains constant during interaction
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the
value is true, the ROI maintains the aspect ratio when you draw or resize the rectangle.
When the value is false (default), you can change the aspect ratio when drawing or
resizing the rectangle. You can change the state of this property using the default context
menu.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of
the values in this table.

 images.roi.Rectangle class

1-1231

Value Description
'on' The object handle is always visible

(default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within

callbacks or functions invoked by callbacks,
but not from within functions invoked from
the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag

points are visible.
'translate' The ROI can be translated (moved) within

the drawing area but not reshaped. This
value is not available for use with
images.roi.Point objects.

'reshape' The ROI can be reshaped but not
translated. This value is not available for
use with images.roi.Point objects or
images.roi.Rectangle objects.

Label — ROI label
'' (default) | character vector | string

ROI label, specified as a character vector or string. By default, the ROI has no label ('').

LineWidth — Width of ROI edge
three times the number of points per screen pixel (default) | positive numeric scalar

Width of the ROI edge, specified as a positive numeric scalar in points. The default value
is three times the number of points per screen pixel.

1 Functions — Alphabetical List

1-1232

Parent — ROI parent
Axes object

ROI parent, specified as an Axes object. A UIAxes cannot be the parent of the ROI.

Position — Position of ROI
1-by-4 numeric array

Position of the ROI, specified as a 1-by-4 numeric array of the form [xmin, ymin,
width, height]. xmin and ymin specify the location of the upper left corner of the
rectangle. width and height specify the extent to the rectangle in two dimensions.

Rotatable — Ability of the rectangle to be rotated
false (default) | true

Ability of the rectangle to be rotated, specified as true or false. When the value is
false (default), the rectangle cannot be rotated. When the value is true, you can rotate
the rectangle by clicking near the markers at the corners.

RotationAngle — Angle around center of rectangle
0 (default) | numeric scalar

Angle around the center of the rectangle, specified as a numeric scalar. The angle is
measured in degrees in a clockwise direction. The value of this property changes
automatically when you draw or move the ROI.

The value of RotationAngle does not impact the values in Position. The Position
property represents the initial position of the ROI, before rotation. To determine the
location of a rotated ROI, use the Vertices property.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set
this property interactively. For example, clicking on the ROI selects the ROI and sets this
property to true. Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI
and sets the value of this property to false.

SelectedColor — Color of ROI when selected
'none' (default) | ColorSpec

Color of the ROI when selected, specified as a MATLAB ColorSpec (Color
Specification). The intensities must be in the range [0,1]. If 'SelectedColor' is

 images.roi.Rectangle class

1-1233

set to 'none', then the value of Color defines the color of the ROI for all states, selected
or not.
Example: 'green'
Example: 'g'
Example: [0 1 0]

StripeColor — Color of ROI stripe
'none' (default) | ColorSpec value

Color of the ROI stripe, specified as a MATLAB ColorSpec (Color Specification)
value. By default, the edge of an ROI is solid colored. If you specify StripeColor, the
ROI edge is striped. The striping consists of a combination of the value specified by
'Color' and this value.
Example: 'green'
Example: 'g'
Example: [0 1 0]

Tag — Tag to associate with the ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string. Use the tag value
to find the ROI object in a hierarchy of objects using the findobj function.

UIContextMenu — Context menu
ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a custom
context menu when you right-click the ROI. You can create a custom context menu by
using the uicontextmenu function and then configuring context menu properties.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can
specify a scalar, vector, matrix, cell array, string, character array, table, or structure.
MATLAB does not use this data.

Vertices — Locations of points on edge of rectangle
n-by-2 array

1 Functions — Alphabetical List

1-1234

Locations of points on the edge of the ROI, specified as an n-by-2 array.

This property is read-only.

Visible — ROI visibility
'on' (default) | 'off'

ROI visibility, specified as one of the values in this table.

Value Description
'on' Display the ROI (default).
'off' Hide the ROI without deleting it. You still

can access the properties of an invisible
ROI.

Methods

Public Methods
<infotypegroup type="method"> beginDrawingFromPoint bringToFront
createMask draw inROI </infotypegroup>

Events
Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

 images.roi.Rectangle class

1-1235

Event Name Trigger Event Data Event Attributes
DrawingFinished ROI has been

interactively drawn.
event.EventData NotifyAccess:

private

ListenAccess:
public

MovingROI ROI shape or
location is being
interactively
changed.

images.roi.Recta
ngleMovingEventD
ata

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or
location has been
interactively
changed.

images.roi.Recta
ngleMovingEventD
ata

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been
clicked.

images.roi.ROICl
ickedEventData

NotifyAccess:
private

ListenAccess:
public

Examples

Create Rectangular ROI Non-interactively

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions — Alphabetical List

1-1236

 images.roi.Rectangle class

1-1237

Create a rectangular ROI on the image, using the Position parameter to specify its
location and size. The example also specifies that the edge of the rectangle is a striped
line. For programmatically created ROIs, if you want the ROI drawn in a specific axes, you
must specify that axes as an input argument. Otherwise, an instance of the
images.roi.Rectangle class is created but not displayed. In this example, specify the
current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Rectangle(gca,'Position',[500,500,1000,1000],'StripeColor','r');

1 Functions — Alphabetical List

1-1238

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

 images.roi.Rectangle class

1-1239

Behavior Keyboard shortcut
Stop drawing the ROI. Press Esc. The function returns a valid

ROI object with an empty Position
field.

Resize (reshape) the ROI. Position pointer over a vertex and then
click and drag. The rectangle has
vertices at each corner and at the
midpoint of each side. To preserve the
aspect ratio while resizing, press the
Shift key. To lock the aspect ratio, use
the Fix Aspect Ratio in the right-click
context menu.

Move the ROI. Position the pointer over the ROI. The
pointer changes to the fleur shape. Click
and drag the ROI.

• For information about using an ROI in an app created with App Designer, see “Using
ROIs in Apps Created with App Designer”.

See Also
drawrectangle | images.roi.AssistedFreehand | images.roi.Circle |
images.roi.Cuboid | images.roi.Ellipse | images.roi.Freehand |
images.roi.Line | images.roi.Point | images.roi.Polygon |
images.roi.Polyline

Topics
“ROI Creation Overview”

Introduced in R2018b

1 Functions — Alphabetical List

1-1240

images.roi.CircleMovingEventData class
Package: images.roi

Event data passed when the circle ROI is moving

Description
The images.roi.CircleMovingEventData class is the class passed to listeners when
a Circle ROI is moving. When the ROI class triggers an event using the notify handle
class method, MATLAB assigns values to the properties of an
images.roi.CircleMovingEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.CircleMovingEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an images.roi.CircleMovingEventData
object when called to trigger an event. images.roi.CircleMovingEventData accepts
no input arguments.

 images.roi.CircleMovingEventData class

1-1241

Properties

Public Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

1 Functions — Alphabetical List

1-1242

PreviousCenter — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentCenter — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousRadius — Radius before change in size
numeric scalar

Radius before change in size, specified as a numeric scalar.

 images.roi.CircleMovingEventData class

1-1243

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentRadius — Radius after change in size
numeric scalar

Radius after change in size, specified as a numeric scalar.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Examples

Access Event Data

This callback function gets the event source object handle and the event name and other
properties from the images.roi.CircleMovingEventData object passed to it when
the event is triggered.

1 Functions — Alphabetical List

1-1244

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRadius = evtData.PreviousRadius;
 currentRadius = evtData.CurrentRadius;
end

See Also
images.roi.Circle

Introduced in R2018b

 images.roi.CircleMovingEventData class

1-1245

images.roi.CuboidMovingEventData class
Package: images.roi

Event data passed when the cuboid ROI is moving

Description
The images.roi.CuboidMovingEventData class is the class passed to listeners when
a Cuboid ROI is moving. When the ROI class triggers an event using the notify handle
class method, MATLAB assigns values to the properties of an
images.roi.CuboidMovingEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.CuboidMovingEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an images.roi.CuboidMovingEventData
object when called to trigger an event. images.roi.CuboidMovingEventData accepts
no input arguments.

1 Functions — Alphabetical List

1-1246

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousPosition — Position before ROI moved
1-by-6 numeric array

 images.roi.CuboidMovingEventData class

1-1247

Position before ROI moved, specified as a 1-by-6 numeric array of the form [x y z w h
d].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentPosition — Position after ROI moved
1-by-6 numeric array

Position after ROI moved, specified as a 1-by-6 numeric array of the form [x y z w h
d].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousRotationAngle — Orientation before ROI rotated
1-by-3 numeric array

Orientation before ROI rotated, specified as a 1-by-3 numeric array, measured in degrees.

1 Functions — Alphabetical List

1-1248

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentRotationAngle — Orientation after ROI rotated
1-by-3 numeric array

Orientation after ROI rotated, specified as a 1-by-3 numeric array, measured in degrees.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other
properties from the images.roi.CuboidMovingEventData object passed to it when
the event is triggered.

 images.roi.CuboidMovingEventData class

1-1249

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRotationAngle = evtData.PreviousRotationAngle;
 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
images.roi.Rectangle

Introduced in R2019a

1 Functions — Alphabetical List

1-1250

images.roi.EllipseMovingEventData class
Package: images.roi

Event data passed when the ellipse ROI is moving

Description
The images.roi.EllipseMovingEventData class is the class passed to listeners when
an Ellipse ROI is moving. When the ROI class triggers an event using the notify handle
class method, MATLAB assigns values to the properties of an
images.roi.EllipseMovingEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.EllipseMovingEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an images.roi.EllipseMovingEventData
object when called to trigger an event. images.roi.EllipseMovingEventData
accepts no input arguments.

 images.roi.EllipseMovingEventData class

1-1251

Properties

Public Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of event, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

1 Functions — Alphabetical List

1-1252

PreviousCenter — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentCenter — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousSemiAxes — Lengths of semiaxes before ROI was reshaped
two-element numeric vector

Lengths of semiaxes before ROI was reshaped, specified as a two-element numeric vector.

 images.roi.EllipseMovingEventData class

1-1253

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentSemiAxes — Lengths of semiaxes after ROI was reshaped
two-element numeric vector

Lengths of semiaxes after ROI was reshaped, specified as a two-element numeric vector.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousRotationAngle — Orientation of ROI before rotation
numeric scalar

Orientation of ROI before rotation, specified as a numeric scalar, measured in degrees.
Attributes:

GetAccess
public

SetAccess
private

1 Functions — Alphabetical List

1-1254

GetObservable
true

SetObservable
true

CurrentRotationAngle — Orientation of ROI after rotation
numeric scalar

Position after ROI moved, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Examples

Access Event Data

This callback function gets the event source object handle and the event name and other
properties from the images.roi.EllipseMovingEventData object passed to it when
the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousSemiAxes = evtData.PreviousRadius;
 currentSemiAxes = evtData.CurrentRadius;
 previousRotationAngle = evtData.PreviousRotationAngle;

 images.roi.EllipseMovingEventData class

1-1255

 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
images.roi.Ellipse

Introduced in R2018b

1 Functions — Alphabetical List

1-1256

images.roi.RectangleMovingEventData class
Package: images.roi

Event data passed when the rectangle ROI is moving

Description
The images.roi.RectangleMovingEventData class is the class passed to listeners
when a Rectangle ROI is moving. When the ROI class triggers an event using the notify
handle class method, MATLAB assigns values to the properties of an
images.roi.RectangleMovingEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.RectangleMovingEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an
images.roi.RectangleMovingEventData object when called to trigger an event.
images.roi.RectangleMovingEventData accepts no input arguments.

 images.roi.RectangleMovingEventData class

1-1257

Properties

Public Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

1 Functions — Alphabetical List

1-1258

PreviousPosition — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentPosition — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousRotationAngle — Orientation before ROI moved
numeric scalar

Orientation before ROI moved, specified as a numeric scalar, measured in degrees.

 images.roi.RectangleMovingEventData class

1-1259

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentRotationAngle — Orientation after ROI moved
numeric scalar

Orientation after ROI moved, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other
properties from the images.roi.RectangleMovingEventData object passed to it
when the event is triggered.

1 Functions — Alphabetical List

1-1260

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRotationAngle = evtData.PreviousRotationAngle;
 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
images.roi.Rectangle

Introduced in R2018b

 images.roi.RectangleMovingEventData class

1-1261

images.roi.ROIClickedEventData class
Package: images.roi

Event data passed when ROI is clicked

Description
The images.roi.ROIClickedEventData class is the class passed to listeners when a
region-of-interest (ROI) is clicked. When the ROI class triggers an event using the notify
handle class method, MATLAB assigns values to the properties of an
images.roi.ROIClickedEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.ROIClickedEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an images.roi.ROIClickedEventData
object when called to trigger an event. images.roi.ROIClickedEventData does not
accept input arguments.

1 Functions — Alphabetical List

1-1262

Properties
Public Properties
Source — Event source
object

Event source object, specified as an ROI object of one of the following types:

images.roi.AssistedFreehand images.roi.Line
images.roi.Circle images.roi.Point
images.roi.Cuboid images.roi.Polygon
images.roi.Ellipse images.roi.Polyline
images.roi.Freehand images.roi.Rectangle

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
private

 images.roi.ROIClickedEventData class

1-1263

GetObservable
true

SetObservable
true

SelectionType — Type of selection
character vector

Type of selection, specified as one of the following character vectors.

SelectionType Value Description
'left' Left mouse-click
'right' Right mouse-click
'double' Double-click
'shift' Shift-left mouse-click
'ctrl' Control-left mouse-click

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

SelectedPart — Part of ROI that was clicked
character vector

Part of the ROI that was clicked, specified as one of the character vectors in this table.

SelectedPart Value Description
'edge' Clicked edge of ROI.

1 Functions — Alphabetical List

1-1264

SelectedPart Value Description
'face' Clicked face of ROI.
'label' Clicked ROI label.
'marker' Clicked marker used to reshape the ROI.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

CurrentSelected — ROI is currently selected
logical scalar

ROI is currently selected, specified as a logical scalar. Returns 1 when the ROI is selected,
otherwise, 0. To deselect an ROI, use Ctrl-click.

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

PreviousSelected — ROI was previously selected
logical scalar

 images.roi.ROIClickedEventData class

1-1265

ROI was previously selected, specified as a logical scalar. Returns 1 when the ROI was
already selected and 0 when the ROI was not previously selected.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other
properties from the images.roi.ROIClickedEventData object passed to it when the
event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 selectionType = evtData.SelectionType;
 selectedPart = evtData.SelectedPart;
 currselected = evtData.CurrentSelected;
 prevselected = evtData.PreviousSelected;
end

See Also
addlistener | images.roi.ROIMovingEventData | notify

Topics
“Use Wait Function After Drawing ROI”

1 Functions — Alphabetical List

1-1266

Introduced in R2018b

 images.roi.ROIClickedEventData class

1-1267

images.roi.ROIMovingEventData class
Package: images.roi

Event data passed when ROI is moving

Description
The images.roi.ROIMovingEventData class is the class passed to listeners when a
region-of-interest (ROI) is moving. When the ROI class triggers an event using the
notify handle class method, MATLAB assigns values to the properties of an
images.roi.ROIMovingEventData object and passes that object to the listener
callback function (the event handler).

The images.roi.ROIMovingEventData class is a handle class.

Class Attributes
ConstructOnLoad

true
HandleCompatible

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The notify handle class method creates an images.roi.ROIMovingEventData object
when called to trigger an event. images.roi.ROIMovingEventData does not accept
input arguments. Subclasses of event.EventData cannot pass arguments to the
superclass constructor.

1 Functions — Alphabetical List

1-1268

Properties

Public Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

EventName — Name of event
character vector

Name of the event, specified as a character vector.
Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

 images.roi.ROIMovingEventData class

1-1269

PreviousPosition — Position before ROI moved
two-element numeric vector

Position before the ROI moved, specified as a two-element numeric vector of the form [x
y].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

CurrentPosition — Position after ROI moved
two-element numeric vector

Position after the ROI moved, specified as a two-element numeric vector of the form [x
y].

Attributes:

GetAccess
public

SetAccess
private

GetObservable
true

SetObservable
true

Data Types: char

1 Functions — Alphabetical List

1-1270

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other
properties from the images.roi.ROIMovingEventData object passed to it when the
event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousPosition = evtData.PreviousPosition;
 currentPosition = evtData.CurrentPosition;
end

See Also
images.roi.AssistedFreehand | images.roi.Circle | images.roi.Ellipse |
images.roi.Freehand | images.roi.Line | images.roi.Point |
images.roi.Polygon | images.roi.Polyline | images.roi.Rectangle

Introduced in R2018b

 images.roi.ROIMovingEventData class

1-1271

beginDrawingFromPoint
Package: images.roi

Begin drawing ROI from specified point

Syntax
beginDrawingFromPoint(ROI,[x y])
beginDrawingFromPoint(ROI,[x y z])
beginDrawingFromPoint(ROI,[x y z],s)
beginDrawingFromPoint(ROI,[x y z],pos)

Description
beginDrawingFromPoint(ROI,[x y]) enters interactive mode to draw the shape for
object ROI. The drawing starts at location (x,y) in the axes. This method is intended to be
used within the ButtonDownFcn callback of an Image or Axes object.

beginDrawingFromPoint(ROI,[x y z]) enters interactive mode to draw a cuboidal
ROI (images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes.

beginDrawingFromPoint(ROI,[x y z],s) enters interactive mode to draw a
cuboidal ROI (images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes,
snapping to the nearest location to the mouse from the Scatter object s.

beginDrawingFromPoint(ROI,[x y z],pos) enters interactive mode to draw a
cuboidal ROI (images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes,
snapping to the nearest location to the mouse from the position specified by pos.

Examples

1 Functions — Alphabetical List

1-1272

Draw Line ROI When Button Pressed

Create a new script called sampleDrawLine.m. Inside the script, copy and paste this
code, then save the file.

hIm = imshow(imread('coins.png'));
hIm.ButtonDownFcn = @(~,~) buttonPressedCallback(hIm.Parent);

function buttonPressedCallback(hAx)
 cp = hAx.CurrentPoint;
 cp = [cp(1,1) cp(1,2)];
 obj = images.roi.Line('Parent',hAx,'Color',rand([1,3]));
 beginDrawingFromPoint(obj,cp);
end

Return to the MATLAB command window. Run the script by entering the command:

sampleDrawLine

The code opens a figure window containing an image of coins. Each time you click the
mouse over the figure, the script executes the callback function,
buttonPressedCallback. The callback function begins drawing a new ROI starting
from the pixel you clicked.

Draw Cuboid ROI When Button Pressed

In the editor, open a file called cuboidExample.m. Copy and paste this code into the file
and then save it.

function cuboidExample
 [x,y,z] = sphere(16);
 X = [x(:)*.5 x(:)*.75 x(:)];
 Y = [y(:)*.5 y(:)*.75 y(:)];
 Z = [z(:)*.5 z(:)*.75 z(:)];

 % Specify the size and color of each marker.
 S = repmat([1 .75 .5]*10,numel(x),1);
 C = repmat([1 2 3],numel(x),1);

 % Create a 3-D scatter plot
 figure
 hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');

 beginDrawingFromPoint

1-1273

 view(-60,60);

 % Begin drawing cuboids when a scatter
 % point is clicked
 hScatter.ButtonDownFcn = @(~,~) buttonPressedCallback(hScatter.Parent);

 function buttonPressedCallback(hAx)
 cp = hAx.CurrentPoint;
 cp = cp(1,1:3);
 obj = images.roi.Cuboid('Parent',hAx,'Color',rand([1,3]));
 obj.beginDrawingFromPoint(cp);
 end
 end

Return to the MATLAB command window and run the function by entering the command:

cuboidExample

The code opens a figure window containing a scatter plot. Each time you click the mouse
over the scatter plot, the function executes the callback function,
buttonPressedCallback, and draws a new cuboidal ROI at the pixel you clicked.

1 Functions — Alphabetical List

1-1274

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

images.roi.AssistedFreehand images.roi.Line
images.roi.Circle images.roi.Point
images.roi.Cuboid images.roi.Polygon
images.roi.Ellipse images.roi.Polyline

 beginDrawingFromPoint

1-1275

images.roi.Freehand images.roi.Rectangle

[x y] — Starting point in axes
numeric array

Starting point in the axes, specified as a numeric array.

[x y z] — Starting point in 3-D axes
numeric array

Starting point in 3-D axes, specified as a numeric array.

s — Scatter plot
Scatter object

Scatter plot, specified as a matlab.graphics.chart.primitive.Scatter object.

pos — Starting point in 3-D axes
N-by-3 numeric array

Starting point in 3-D axes, specified as an N-by-3 numeric array. Each row in pos
represents a 3-D spatial location of a potential placement position.

See Also
draw | drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpoint | drawpolygon | drawpolyline | drawrectangle

Introduced in R2018b

1 Functions — Alphabetical List

1-1276

bringToFront
Class: images.roi.AssistedFreehand, images.roi.Circle, images.roi.Ellipse,
images.roi.Freehand, images.roi.Line, images.roi.Point, images.roi.Polygon,
images.roi.Polyline, images.roi.Rectangle
Package: images.roi

Bring ROI to the front of the Axes stacking order

Syntax
bringToFront(ROI)

Description
bringToFront(ROI) moves the specified ROI to the front of the front-to-back visual
stacking order of Axes children.

Use the bringToFront method when you want to bring a single ROI to the front of the
visual stacking order. For other restacking behaviors, use the uistack function.

Examples

Change Stacking Order of ROIs

Read an image into the workspace and display it.

I = imread('coins.png');
imshow(I)

 bringToFront

1-1277

Create a circular ROI on the image, specifying where you want to place the circle and
how wide to make the circle. To make it easy to see the changes to the stacking order,
make the ROI opaque and specify the color black.

roi = images.roi.Circle(gca,'Center',[166 123],'Radius',50);
roi.FaceAlpha = 1.0;
roi.Color = 'black';

1 Functions — Alphabetical List

1-1278

Create another circular ROI, specifying the same center point but make this ROI bigger.
Again, to make the stacking order easy to see, make the ROI opaque and specify a
different color, in this case, blue. This new ROI completely covers the first ROI.

roi2 = images.roi.Circle(gca,'Center',[166 123],'Radius',100);
roi2.FaceAlpha = 1.0;
roi2.Color = 'blue';

 bringToFront

1-1279

Bring the original ROI to the front by using the bringToFront function.

bringToFront(roi)

1 Functions — Alphabetical List

1-1280

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

images.roi.AssistedFreehand images.roi.Line
images.roi.Circle images.roi.Point
images.roi.Cuboid images.roi.Polygon
images.roi.Ellipse images.roi.Polyline
images.roi.Freehand images.roi.Rectangle

 bringToFront

1-1281

See Also
draw | drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawline | drawpoint | drawpolygon | drawpolyline | drawrectangle | uistack

Topics
“ROI Creation Overview”

Introduced in R2019a

1 Functions — Alphabetical List

1-1282

createMask
Package: images.roi

Create binary mask image from ROI

Syntax
bw = createMask(ROI)
bw = createMask(ROI,m,n)
bw = createMask(ROI,I)

Description
bw = createMask(ROI) returns a binary mask image with pixels inside the ROI set to
true and pixels outside the ROI set to false.

bw = createMask(ROI,m,n) returns a binary mask image that is size [m,n].

bw = createMask(ROI,I) returns a binary mask image that is the size of the image I.

Examples

Create Mask From Ellipse ROI

Read image into the workspace and display it.

I = imread('pears.png');
imshow(I)

 createMask

1-1283

Draw an elliptical ROI on the image, using the Center parameter to specify the location
of the ellipse and theSemiAxes parameter to specify the shape of the ellipse. The
example also specifies that the edge of the ellipse is a striped line.

h = drawellipse('Center',[447 204],'SemiAxes',[78 72], ...
 'RotationAngle',287,'StripeColor','m');

1 Functions — Alphabetical List

1-1284

Get a binary mask from the ROI. Pixels inside the ROI are true and pixels outside the
ROI are false. Display the mask.

mask = createMask(h);
imshow(mask)

 createMask

1-1285

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

images.roi.AssistedFr
eehand

images.roi.Freehand images.roi.Polyline

images.roi.Circle images.roi.Line images.roi.Rectangle
images.roi.Ellipse images.roi.Polygon

1 Functions — Alphabetical List

1-1286

m — Row dimension of mask image
positive integer

Row dimension of the mask image, specified as a positive integer.

n — Column dimension of mask image
positive integer

Column dimension of the mask image, specified as a positive integer.

I — Input image
numeric array

Input image, specified as a numeric array.

Output Arguments
bw — Binary mask image
logical array

Binary mask image, returned as a logical array.
Data Types: logical

Tips
• If you specify a mask size that does not match the size of the image associated with

the ROI object, then createMask crops or zero-pads the mask to the specified size.
The image associated with the ROI object is ROI.Parent.Children(2,1).CData.

See Also
drawassisted | drawcircle | drawellipse | drawfreehand | drawline |
drawpolygon | drawpolyline | drawrectangle | inROI

Introduced in R2018b

 createMask

1-1287

draw
Package: images.roi

Begin drawing ROI interactively

Syntax
draw(ROI)
draw(ROI,s)
draw(ROI,pos)

Description
draw(ROI) enters interactive mode to draw the shape for object ROI in the current axes
(gca).

draw(ROI,s) enters interactive mode to draw the shape for an images.roi.Cuboid
object, snapping the ROI to the nearest location to the mouse from the Scatter object s.

draw(ROI,pos) enters interactive mode to draw the shape for the images.roi.Cuboid
object, snapping to the nearest location to the mouse from the position specified by pos.
Specify pos as an N-by-3 numeric array where each row represents the (x,y,z) location of
a potential placement position.

Examples

Draw ROI Interactively
Read an image into the workspace and display it.

I = imread('wagon.jpg');
figure
imshow(I);

1 Functions — Alphabetical List

1-1288

 draw

1-1289

Draw a triangular ROI on the image interactively. To improve the visibility of the ROI
edge, specify a thick line width and bright cyan color of the ROI edge.

p = drawpolygon('LineWidth',7,'Color','cyan');

1 Functions — Alphabetical List

1-1290

 draw

1-1291

Get the coordinates of the vertices.

p.Position

ans =

 284.7500 725.5000
 331.2500 871.0000
 359.7500 707.5000

The spokes of the wheels define many other triangles. Suppose you want to get the
vertices of a second triangle. You can use the draw function to start over and begin
drawing a new polygonal ROI interactively. The line width and color parameters of the
ROI are preserved.

draw(p)

1 Functions — Alphabetical List

1-1292

 draw

1-1293

p.Position

ans =

 398.7500 710.5000
 377.7500 865.0000
 461.7500 734.5000

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

images.roi.AssistedFreehand images.roi.Line
images.roi.Circle images.roi.Point
images.roi.Cuboid images.roi.Polygon
images.roi.Ellipse images.roi.Polyline
images.roi.Freehand images.roi.Rectangle

s — Scatter plot
Scatter object

Scatter plot, specified as a matlab.graphics.chart.primitive.Scatter object.

pos — Position of ROI
N-by-3 numeric array

Position of ROI, specified as an N-by-3 numeric array where each row represents the
(x,y,z) location of a potential placement position.

See Also
beginDrawingFromPoint | drawassisted | drawcircle | drawcuboid |
drawellipse | drawfreehand | drawline | drawpoint | drawpolygon |
drawpolyline | drawrectangle

1 Functions — Alphabetical List

1-1294

Introduced in R2018b

 draw

1-1295

inROI
Package: images.roi

Query if points are located in ROI

Syntax
tf = inROI(ROI,x,y)
tf = inROI(ROI,x,y,z)

Description
tf = inROI(ROI,x,y) returns a logical array, tf, that indicates whether points with
coordinates (x,y) are inside or outside the ROI.

tf = inROI(ROI,x,y,z) returns a logical array, tf, that indicates whether points with
coordinates (x,y,z) are inside or outside the images.roi.Cuboid ROI.

Examples

Query Points Inside Rectangular ROI

Read an image into the workspace and display it.

I = imread('trailer.jpg');
figure
imshow(I)

Draw a rectangular ROI on the image, using the Position argument to specify the
position of the rectangle as [xmin,ymin,width,height].

h = drawrectangle('Position',[190 308 682 276],'StripeColor','r');

1 Functions — Alphabetical List

1-1296

Specify the x- and y-coordinates of three points. The last point is the upper left corner of
the rectangular ROI.

xcoords = [335 335 190];
ycoords = [200 400 308];

Query if the three points are inside the ROI.

tf = inROI(h,xcoords,ycoords)

tf = 3x1 logical array

 0
 1
 1

 inROI

1-1297

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

images.roi.AssistedFreehand images.roi.Freehand
images.roi.Circle images.roi.Polygon
images.roi.Cuboid images.roi.Rectangle
images.roi.Ellipse

x — X-coordinates of query points
numeric scalar or vector

X-coordinates of the query points, specified as a numeric scalar or vector.

y — Y-coordinates of query points
numeric scalar or vector

Y-coordinates of the query points, specified as a numeric scalar or vector.

z — Z-coordinates of query points
numeric scalar or vector

Y-coordinates of the query points, specified as a numeric scalar or vector.

Output Arguments
tf — Status of query points
logical array

Status of query points, returned as a logical array. The array is the same length as the
input arrays x, y, and z. Elements of the logical array set to true indicate that the
corresponding query point is inside the ROI. Elements that are false indicate the point
is not inside the ROI.

1 Functions — Alphabetical List

1-1298

See Also
createMask | drawassisted | drawcircle | drawcuboid | drawellipse |
drawfreehand | drawpolygon | drawrectangle

Introduced in R2018b

 inROI

1-1299

imapplymatrix
Linear combination of color channels

Syntax
Y = imapplymatrix(M,X)
Y = imapplymatrix(M,X,C)
Y = imapplymatrix(___ ,output_type)

Description
Y = imapplymatrix(M,X) computes the linear combination of the rows of M with the
color channels of X.

Y = imapplymatrix(M,X,C) computes the linear combination of the rows of M with the
color channels of X, adding the corresponding constant value C to each combination.

Y = imapplymatrix(___ ,output_type) returns the result of the linear combination
in an array of type output_type.

Examples

Compute Linear Combination of Color Channels

This example shows how to create a grayscale image by computing the linear combination
of three colors channels.

Read a truecolor image into the workspace.

RGB = imread('peppers.png');

Create a coefficient matrix

M = [0.30, 0.59, 0.11];

1 Functions — Alphabetical List

1-1300

Compute the linear combination of the RGB channels using the coefficient matrix.

gray = imapplymatrix(M, RGB);

Display the original image and the grayscale conversion.

imshowpair(RGB,gray,'montage')

Input Arguments
M — Weighting coefficients for each color channel
q-by-p numeric array

Weighting coefficients for each color channel, specified as a q-by-p numeric array. p is the
length of the third dimension of X. In other words, p=size(X,3). q is in the range [1,p].
Data Types: double

X — Input image
m-by-n-by-p numeric array

Input image, specified as an m-by-n-by-p numeric array.

 imapplymatrix

1-1301

C — Constant to add to each channel
q-element numeric vector

Constant to add to each channel during the linear combination, specified as q-element
numeric vector, where q is the number of rows in M.
Data Types: double

output_type — Output data type
'double' | 'single' | 'uint8' | 'uint16' | 'uint32' | 'int8' | 'int16' |
'int32'

Output data type, specified as one of the following: 'double', 'single', 'uint8',
'uint16', 'uint32', 'int8', 'int16', or 'int32'.
Data Types: char | string

Output Arguments
Y — Output image
numeric array

Output image comprised of the linear combination of the rows of M with the color
channels of X, returned as a numeric array. If output_type is not specified, the data type
of Y is the same as the data type of X.

See Also
imlincomb | immultiply

Introduced in R2011b

1 Functions — Alphabetical List

1-1302

imattributes
Information about image attributes

Syntax
attrs = imattributes
attrs = imattributes(img)
attrs = imattributes(imgmodel)

Description
attrs = imattributes returns information about an image in the current figure. If the
current figure does not contain an image, then imattributes returns an empty array.

attrs = imattributes(img) returns information about the image specified by image
object img. The imattributes function gets the image attributes by querying the image
object's CData.

attrs = imattributes(imgmodel) returns information about the image represented
by the image model object, imgmodel.

Examples

Retrieve Attributes of Grayscale Image

Read a grayscale image into the workspace.

h = imshow('liftingbody.png');

 imattributes

1-1303

Get the image attributes.

attrs = imattributes(h)

attrs = 6x2 cell array
 {'Width (columns)' } {'512' }

1 Functions — Alphabetical List

1-1304

 {'Height (rows)' } {'512' }
 {'Class' } {'uint8' }
 {'Image type' } {'intensity'}
 {'Minimum intensity'} {'0' }
 {'Maximum intensity'} {'255' }

Retrieve Attributes of Truecolor Image

h = imshow('gantrycrane.png');

im = imagemodel(h);
attrs = imattributes(im)

attrs = 4x2 cell array
 {'Width (columns)'} {'400' }

 imattributes

1-1305

 {'Height (rows)' } {'264' }
 {'Class' } {'uint8' }
 {'Image type' } {'truecolor'}

Input Arguments
img — Image
image object

Image, specified as an image object.

imgmodel — Image model
imagemodel object

Image model, specified as an imagemodel object.

Output Arguments
attrs — Image attributes
cell array of character vectors

Image attributes, returned as a cell array of character vectors. The cell array has size 4-
by-2 for binary and truecolor images and size 6-by-2 for grayscale (intensity) and indexed
images. The first column of the cell array contains the name of the attribute. The second
column contains the value of the attribute.

The table lists these attributes in the order they appear in the cell array.

Attribute Name Value
'Width
(columns)'

Number of columns in the image.

'Height (rows)' Number of rows in the image.
'Class' Data type used by the image, such as uint8.
'Image type' One of the image types identified by the Image Processing Toolbox

software: 'intensity, 'truecolor', 'binary', or 'indexed'.

1 Functions — Alphabetical List

1-1306

Attribute Name Value
'Minimum
intensity'

• For intensity images, this value represents the lowest intensity
value of any pixel.

• For indexed images, this value represents the lowest index value
into a color map.

This attribute is not included for 'binary' or 'truecolor'
images.

'Maximum
intensity'

• For intensity images, this value represents the highest intensity
value of any pixel.

• For indexed images, this value represents the highest index value
into a color map.

This attribute is not included for 'binary' or 'truecolor'
images.

See Also
imagemodel

Introduced before R2006a

 imattributes

1-1307

imbilatfilt
Bilateral filtering of images with Gaussian kernels

Syntax
J = imbilatfilt(I)
J = imbilatfilt(I,degreeOfSmoothing)
J = imbilatfilt(I,degreeOfSmoothing,spatialSigma)
J = imbilatfilt(___ ,Name,Value)

Description
J = imbilatfilt(I) applies an edge-preserving Gaussian bilateral filter to the
grayscale or RGB image, I.

J = imbilatfilt(I,degreeOfSmoothing) specifies the amount of smoothing. When
degreeOfSmoothing is a small value, imbilatfilt smooths neighborhoods with small
variance (uniform areas) but does not smooth neighborhoods with large variance, such as
strong edges. When the value of degreeOfSmoothing increases, imbilatfilt smooths
both uniform areas and neighborhoods with larger variance.

J = imbilatfilt(I,degreeOfSmoothing,spatialSigma) also specifies the
standard deviation, spatialSigma, of the spatial Gaussian smoothing kernel. Larger
values of spatialSigma increase the contribution of more distant neighboring pixels,
effectively increasing the neighborhood size.

J = imbilatfilt(___ ,Name,Value) uses name-value pairs to change the behavior
of the bilateral filter.

Examples

1 Functions — Alphabetical List

1-1308

Smooth Grayscale Image Using Bilateral Filtering

Read and display a grayscale image. Observe the horizontal striation artifact in the sky
region.

I = imread('cameraman.tif');
imshow(I)

Inspect a patch of the image from the sky region. Compute the variance of the patch,
which approximates the variance of the noise.

patch = imcrop(I,[170, 35, 50 50]);
imshow(patch)

 imbilatfilt

1-1309

patchVar = std2(patch)^2;

Filter the image using bilateral filtering. Set the degree of smoothing to be larger than
the variance of the noise.

DoS = 2*patchVar;
J = imbilatfilt(I,DoS);
imshow(J)
title(['Degree of Smoothing: ',num2str(DoS)])

1 Functions — Alphabetical List

1-1310

The striation artifact is reduced, but not eliminated. To improve the smoothing, increase
the value of spatialSigma to 2 so that distant neighboring pixels contribute more to the
Gaussian smoothing kernel. This effectively increases the spatial extent of the bilateral
filter.

K = imbilatfilt(I,DoS,2);
imshow(K)
title(['Degree of Smoothing: ',num2str(DoS),', Spatial Sigma: 2'])

 imbilatfilt

1-1311

The stration artifact in the sky is successfully removed. The sharpness of strong edges
such as the silhouette of the man, and textured regions such as the grass in the
foreground of the image, have been preserved.

Smooth Color Image Using Bilateral Filtering

Read an RGB image.

imRGB = imread('coloredChips.png');
imshow(imRGB)

1 Functions — Alphabetical List

1-1312

Convert the image to the L*a*b colorspace, so that the bilateral filter smooths
perceptually similar colors.

imLAB = rgb2lab(imRGB);

Extract an L*a*b patch that contains no sharp edges. Compute the variance in the
Euclidean distance from the origin, in the L*a*b space.

patch = imcrop(imLAB,[34,71,60,55]);
patchSq = patch.^2;
edist = sqrt(sum(patchSq,3));
patchVar = std2(edist).^2;

 imbilatfilt

1-1313

Filter the image in the L*a*b* color space using bilateral filtering. Set the
DegreeOfSmoothing value to be higher than the variance of the patch.

DoS = 2*patchVar;
smoothedLAB = imbilatfilt(imLAB,DoS);

Convert the image back to the RGB color space, and display the smoothed image.

smoothedRBG = lab2rgb(smoothedLAB,'Out','uint8');
montage({imRGB,smoothedRBG})
title(['Original Image vs. Filtered Image with Degree of Smoothing: ',num2str(DoS)])

The colors of the chips and black pen appear more uniform, but the horizontal grains in
the table are still visible. Increase the spatial extent of the filter so that the effective
neighborhood of the filter spans the space between the horizontal grains (this distance is
approximately seven pixels). Also increase the DegreeOfSmoothing to smooth these
regions more aggressively.

DoS2 = 4*patchVar;
smoothedLAB2 = imbilatfilt(imLAB,DoS2,7);
smoothedRBG2 = lab2rgb(smoothedLAB2,'Out','uint8');
montage({imRGB,smoothedRBG2})
title(['Original Image vs. Filtered Image with Degree of Smoothing: ',num2str(DoS),' and Spatial Sigma: 7'])

1 Functions — Alphabetical List

1-1314

The color of the wooden table is more uniform with the larger neighborhood and larger
degree of smoothing. The edge sharpness of the chips and pen is preserved.

Input Arguments
I — Image to filter
2-D grayscale image | 2-D color image

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 2-D color image of
size m-by-n-by-3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

degreeOfSmoothing — Degree of smoothing
positive number

Degree of smoothing, specified as a positive number. The default value of
degreeOfSmoothing depends on the data type of image I, and is calculated as
0.01*diff(getrangefromclass(I)).^2. For example, the default degree of
smoothing is 650.25 for images of data type uint8, and the default is 0.01 for images of
data type double with pixel values in the range [0, 1].

 imbilatfilt

1-1315

spatialSigma — Standard deviation of spatial Gaussian smoothing kernel
1 (default) | positive number

Standard deviation of spatial Gaussian smoothing kernel, specified as a positive number.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imbilatfilt(I,'NeighborhoodSize',7) performs bilateral filtering on
image I using a 7-by-7 pixel neighborhood.

NeighborhoodSize — Neighborhood size
odd-valued positive integer

Neighborhood size, specified as the comma-separated pair consisting of
'NeighborhoodSize' and an odd-valued positive integer. By default, the neighborhood
size is 2*ceil(2*SpatialSigma)+1 pixels
Example: 'NeighborhoodSize',7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Padding — Padding
'replicate' (default) | 'symmetric' | numeric scalar

Padding, specified as the comma-separated pair consisting of 'Padding' and one of
these values.

Value Description
'replicate' Input array values outside the bounds of

the array are assumed to equal the nearest
array border value.

'symmetric' Input array values outside the bounds of
the array are computed by mirror-reflecting
the array across the array border.

1 Functions — Alphabetical List

1-1316

Value Description
numeric scalar, x Input image values outside the bounds of

the image are assigned the value x.

Example: 'Padding','symmetric'
Example: 'Padding',128
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and data type as the input
image, I.

Tips
• The value of degreeOfSmoothing corresponds to the variance of the Range Gaussian

kernel of the bilateral filter [1]. The Range Gaussian is applied on the Euclidean
distance of a pixel value from the values of its neighbors.

• To smooth perceptually close colors of an RGB image, convert the image to the CIE
L*a*b space using rgb2lab before applying the bilateral filter. To view the results,
convert the filtered image to RGB using lab2rgb.

• Increasing spatialSigma increases NeighborhoodSize, which increases the filter
execution time. You can specify a smaller NeighborhoodSize to trade accuracy for
faster execution time.

References
[1] Tomasi, C., and R. Manduchi. "Bilateral Filtering for Gray and Color Images".

Proceedings of the 1998 IEEE® International Conference on Computer Vision.
Bombay, India. Jan 1998, pp. 836–846.

 imbilatfilt

1-1317

See Also
imdiffusefilt | imfilter | imgaussfilt | imguidedfilter | imnlmfilt |
locallapfilt | nlfilter

Introduced in R2018a

1 Functions — Alphabetical List

1-1318

imbinarize
Binarize 2-D grayscale image or 3-D volume by thresholding

Syntax
BW = imbinarize(I)
BW = imbinarize(I,method)
BW = imbinarize(I,T)
BW = imbinarize(I,'adaptive',Name,Value)

Description
BW = imbinarize(I) creates a binary image from 2-D or 3-D grayscale image I by
replacing all values above a globally determined threshold with 1s and setting all other
values to 0s. By default, imbinarize uses Otsu's method, which chooses the threshold
value to minimize the intraclass variance of the thresholded black and white pixels [1].
imbinarize uses a 256-bin image histogram to compute Otsu's threshold. To use a
different histogram, see otsuthresh.

BW = imbinarize(I,method) creates a binary image from image I using the
thresholding method specified by method: 'global' or 'adaptive'.

BW = imbinarize(I,T) creates a binary image from image I using the threshold value
T. T can be a global image threshold, specified as a scalar luminance value, or a locally
adaptive threshold, specified as a matrix of luminance values.

BW = imbinarize(I,'adaptive',Name,Value) creates a binary image from image I
using name-value pairs to control aspects of adaptive thresholding.

Examples

Binarize Image Using Global Threshold

Read grayscale image into the workspace.

 imbinarize

1-1319

I = imread('coins.png');

Convert the image into a binary image.

BW = imbinarize(I);

Display the original image next to the binary version.

figure
imshowpair(I,BW,'montage')

Binarize Image Using Locally Adaptive Thresholding

Read grayscale image into workspace.

I = imread('rice.png');

Convert grayscale image to binary image.

BW = imbinarize(I, 'adaptive');

Display original image along side binary version.

1 Functions — Alphabetical List

1-1320

figure
imshowpair(I,BW,'montage')

Binarize Images with Darker Foreground Than Background

Read a grayscale image into the workspace and display it.

I = imread('printedtext.png');
figure
imshow(I)
title('Original Image')

 imbinarize

1-1321

Convert the image to a binary image using adaptive thresholding. Use the
ForegroundPolarity parameter to indicate that the foreground is darker than the
background.

BW = imbinarize(I,'adaptive','ForegroundPolarity','dark','Sensitivity',0.4);

Display the binary version of the image.

figure
imshow(BW)
title('Binary Version of Image')

1 Functions — Alphabetical List

1-1322

Binarize 3-D Volume Using Global Thresholding

Load 3-D grayscale intensity data into the workspace.

load mristack;
V = mristack;

View the 3-D volume.

figure
slice(double(V),size(V,2)/2,size(V,1)/2,size(V,3)/2)
colormap gray
shading interp

 imbinarize

1-1323

Convert the intensity volume into a 3-D binary volume.

J = imbinarize(V);

View the 3-D binary volume.

figure
slice(double(J),size(J,2)/2,size(J,1)/2,size(J,3)/2)
colormap gray
shading interp

1 Functions — Alphabetical List

1-1324

Input Arguments
I — Input image
2-D grayscale image | 3-D grayscale volume

Input image, specified as a 2-D grayscale image or a 3-D grayscale volume. imbinarize
expects pixel values of data type double and single to be in the range [0, 1]. You can
use the rescale function to adjust pixel values to the expected range.

 imbinarize

1-1325

Note imbinarize interprets an RGB image as a volumetric grayscale image and does
not binarize each channel separately. To produce a binary image from an RGB image, first
convert the image to a grayscale image using rgb2gray.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

method — Method used to binarize image
'global' (default) | 'adaptive'

Method used to binarize image, specified as one of the following values.

Values Meaning
'global' Calculate global image threshold using Otsu's method. See graythresh

for more information about Otsu’s method.
'adaptive' Calculate locally adaptive image threshold chosen using local first-order

image statistics around each pixel. See adaptthresh for details. If the
image contains Infs or NaNs, the behavior of imbinarize for the
'adaptive' method is undefined. Propagation of Infs or NaNs might
not be localized to the neighborhood around Inf and NaN pixels.

Data Types: char | string

T — Threshold
numeric scalar | numeric array

Threshold luminance value, specified as a numeric scalar or numeric array with values in
the range [0, 1].

• If T is a numeric scalar, then imbinarize interprets T as a global image threshold.
Use graythresh or otsuthresh to compute a global image threshold.

• If T is a numeric array, then imbinarize interprets T as a locally adaptive threshold.
Use adaptthresh to compute a locally adaptive threshold.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Functions — Alphabetical List

1-1326

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: BW = imbinarize(I,'adaptive','Sensitivity',0.4);

Sensitivity — Sensitivity factor for adaptive thresholding
0.50 (default) | number in the range [0, 1]

Sensitivity factor for adaptive thresholding, specified as the comma-separated pair
consisting of 'Sensitivity' and a number in the range [0, 1]. A high sensitivity value
leads to thresholding more pixels as foreground, at the risk of including some background
pixels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ForegroundPolarity — Determine which pixels are considered foreground
pixels
'bright' (default) | 'dark'

Determine which pixels are considered foreground pixels for adaptive thresholding,
specified as the comma-separated pair consisting of 'ForegroundPolarity' and one of
the following values.

Value Meaning
'bright' The foreground is brighter than the background.
'dark' The foreground is darker than the background

Data Types: char | string

Output Arguments
BW — Output binary image
logical matrix | logical array

Output binary image, returned as a logical matrix or logical array of the same size as I.
Data Types: logical

 imbinarize

1-1327

Tips
• To produce a binary image from an indexed image, first convert the image to a

grayscale image using ind2gray.

Algorithms
The 'adaptive' method binarizes the image using a locally adaptive threshold.
imbinarize computes a threshold for each pixel using the local mean intensity around
the neighborhood of the pixel. This technique is also called Bradley's method [2]. The
'adaptive' method also uses a neighborhood size of approximately 1/8th of the size of
the image (computed as 2*floor(size(I)/16)+1). To use a different first order local
statistic or a different neighborhood size, see adaptthresh.

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE

Transactions on Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

[2] Bradley, D., G. Roth, "Adapting Thresholding Using the Integral Image," Journal of
Graphics Tools. Vol. 12, No. 2, 2007, pp.13–21.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imbinarize supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imbinarize
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

1 Functions — Alphabetical List

1-1328

• When generating code, all character vector input arguments must be compile-time
constants.

See Also
Image Segmenter | adaptthresh | graythresh | otsuthresh

Introduced in R2016a

 imbinarize

1-1329

imbothat
Bottom-hat filtering

Syntax
J = imbothat(I,SE)
J = imbothat(I,nhood)

Description
J = imbothat(I,SE) performs morphological bottom-hat filtering on the grayscale or
binary image I, returning the filtered image, J. Bottom-hat filtering computes the
morphological closing of the image (using imclose) and then subtracts the original
image from the result. SE is a single structuring element object returned by the strel or
offsetstrel functions.

You optionally can perform the bottom-hat filtering using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

J = imbothat(I,nhood) bottom-hat filters the image I, where nhood is a matrix of 0s
and 1s that specifies the structuring element neighborhood. This is equivalent to the
syntax imbothat(I,strel(nhood)). The imbothat function determines the center
element of the neighborhood by floor((size(nhood)+1)/2).

Examples

Enhance Contrast Using Bottom-hat and Top-hat Filtering

Read image into the workspace and display it.

I = imread('pout.tif');
imshow(I)

1 Functions — Alphabetical List

1-1330

Create a disk-shaped structuring element.

se = strel('disk',3);

Add the original image I to the top-hat filtered image, and then subtract the bottom-hat
filtered image.

J = imsubtract(imadd(I,imtophat(I,se)),imbothat(I,se));
figure
imshow(J)

 imbothat

1-1331

Enhance Contrast Using Bottom Hat Filtering on a GPU

Read the image into a gpuArray.

 original = gpuArray(imread('pout.tif'));

Create a disk-shaped structuring element, needed for morphological processing.

se = strel('disk',3);

Add the original image I to the top-hat filtered image, and then subtract the bottom-hat
filtered image.

1 Functions — Alphabetical List

1-1332

contrastFiltered = ...
 (original+imtophat(original,se))-imbothat(original,se);

Input Arguments
I — Input image
grayscale image | binary image | gpuArray

Input image, specified as a grayscale image or binary image. I can have any dimension,
and must be real and nonsparse.

To perform the bottom-hat filtering using a GPU, specify I as a gpuArray that contains
an image of type uint8 or logical.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the
image I is data type logical, the structuring element must be flat.

If you perform the bottom-hat filtering using a GPU, then SE must be flat and two-
dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Bottom-hat filtered image
grayscale image | binary image | gpuArray

Bottom-hat filtered image, returned as a grayscale image or binary image. J has the same
class as input image I.

 imbothat

1-1333

If the filtering is performed using a GPU, then J is returned as a gpuArray that contains
a grayscale or binary image of the same class as I.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imbothat supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imbothat
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, the image input argument, I, must be 2-D or 3-D and the
structuring element input argument, SE, must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical and the structuring element must
be flat and two-dimensional.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imclose | imdilate | imerode | imopen | imtophat

1 Functions — Alphabetical List

1-1334

Objects
offsetstrel | strel

Introduced before R2006a

 imbothat

1-1335

imboxfilt
2-D box filtering of images

Syntax
B = imboxfilt(A)
B = imboxfilt(A,filterSize)
B = imboxfilt(___ ,Name,Value)

Description
B = imboxfilt(A) filters image A with a 2-D, 3-by-3 box filter. A box filter is also called
a mean filter.

B = imboxfilt(A,filterSize) filters image A with a 2-D box filter with size specified
by filterSize.

B = imboxfilt(___ ,Name,Value) filters image A with a 2-D box filter where Name-
Value pairs control aspects of the filtering.

Examples

Compute Mean Filter Over Specified Neighborhood

Read image into the workspace.

A = imread('cameraman.tif');

Perform the mean filtering using an 11-by-11 filter.

localMean = imboxfilt(A,11);

Display the original image and the filtered image, side-by-side.

imshowpair(A,localMean,'montage')

1 Functions — Alphabetical List

1-1336

Compute Local Area Sums Over Specified Neighborhood

Read image into the workspace.

A = imread('cameraman.tif');

Change the data type of the image to double to avoid integer overflow.

A = double(A);

Filter image, calculating local area sums, using a 15-by-15 box filter. To calculate local
area sums, rather than the mean, set the NormalizationFactor parameter to 1.

localSums = imboxfilt(A, 15, 'NormalizationFactor',1);

Display the original image and the filtered image, side-by-side.

imshowpair(A,localSums,'montage')

 imboxfilt

1-1337

Input Arguments
A — Image to be filtered
real, nonsparse array of any dimension

Image to be filtered, specified as a real, nonsparse array of any dimension.

If A contains Infs or NaNs, the behavior of imboxfilt is undefined. This can happen
when integral image based filtering is used. To restrict the propagation of Infs and NaNs
in the output, consider using imfilter instead.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

filterSize — Size of box filter
3 -by-3 (default) | scalar or 2-element vector of positive, odd integers

Size of box filter, specified as a scalar or 2-element vector of positive, odd integers. If
filterSize is scalar, the box filter is square.

1 Functions — Alphabetical List

1-1338

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: A = imread('cameraman.tif'); B =
imboxfilt(A,5,'Padding','circular');

Padding — Padding pattern
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Padding pattern, specified as one of the following values or a numeric scalar. If you
specify a scalar value, input image pixels outside the bounds of the image are implicitly
assumed to have the scalar value.

Value Description
'circular' Input image values outside the bounds of the image are computed

by implicitly assuming the input image is periodic.
'replicate' Input image values outside the bounds of the image are assumed

equal to the nearest image border value.
'symmetric' Input image values outside the bounds of the image are computed

by mirror-reflecting the array across the array border.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^2, if scalar, and 1/prod(filterSize), if vector (default) | numeric
scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter—the pixels in the
output image are the local means of the image over the neighborhood determined by
filterSize. To get local area sums, set 'NormalizationFactor' to 1. To avoid

 imboxfilt

1-1339

overflow in such circumstances, consider using double precision images by converting the
input image to class double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
real, nonsparse matrix

Filtered image, returned as a real, nonsparse matrix, the same size as the input image.

Algorithms
imboxfilt performs filtering using either convolution-based filtering or integral image
filtering, using an internal heuristic to determine which filtering approach to use.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imboxfilt supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imboxfilt
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, all character vector input arguments must be compile-time
constants.

1 Functions — Alphabetical List

1-1340

See Also
imboxfilt3 | imfilter | integralBoxFilter

Introduced in R2015b

 imboxfilt

1-1341

imboxfilt3
3-D box filtering of 3-D images

Syntax
B = imboxfilt3(A)
B = imboxfilt3(A,filterSize)
B = imboxfilt3(___ ,Name,Value)

Description
B = imboxfilt3(A) filters the 3-D image A with a 3-D box filter, 3-by-3-by-3 in size.

B = imboxfilt3(A,filterSize) filters 3-D image A with a 3-D box filter with size
specified by filterSize.

B = imboxfilt3(___ ,Name,Value) filters 3-D image A where Name-Value pairs
control aspects of the filtering.

Examples

Compute Mean Filter in MRI Volume

Load 3-D image data into the workspace.

volData = load('mri');
vol = squeeze(volData.D);

Filter the image with a 3-D box filter.

localMean = imboxfilt3(vol,[5 5 3]);

1 Functions — Alphabetical List

1-1342

Input Arguments
A — Image to be filtered
real, nonsparse 3-D array

Image to be filtered, specified as a real, nonsparse 3-D array.

If A contains Infs or NaNs, the behavior of imboxfilt3 is undefined. This can happen
when integral image based filtering is used. To restrict the propagation of Infs and NaNs
in the output, consider using imfilter instead.
Example: B = imboxfilt3(A);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

filterSize — Size of box filter
(default) | scalar or 3-element vector of positive, odd integers

Size of box filter, specified as a scalar or 3-element vector of positive, odd integers. If
filterSize is scalar, the filter is a cube.
Example: B = imboxfilt3(A,5);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = imboxfilt3(A,5,'padding','circular');

Padding — Padding pattern
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Padding pattern, specified as one of the following values or a numeric scalar. If you
specify a scalar value, input image pixels outside the bounds of the image are implicitly
assumed to have the scalar value.

 imboxfilt3

1-1343

Value Description
'circular' Input image values outside the bounds of the image are computed

by implicitly assuming the input image is periodic.
'replicate' Input image values outside the bounds of the image are assumed

equal to the nearest image border value.
'symmetric' Input image values outside the bounds of the image are computed

by mirror-reflecting the array across the array border.

Example: B = imboxfilt3(A,5,'padding','circular');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^3, if scalar, and 1/prod(filterSize), if vector (default) | numeric
scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter—the pixels in the
output image are the local means of the image. To get local area sums, set
'NormalizationFactor' to 1. To avoid overflow in such circumstances, consider using
double precision images by converting the input image to class double.
Example: B = imboxfilt3(A,5,'NormalizationFactor',1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
real, nonsparse 3-D array

Filtered image, returned as a real, nonsparse 3-D array.

1 Functions — Alphabetical List

1-1344

Algorithms
imboxfilt performs filtering using either convolution-based filtering or integral image
filtering, using an internal heuristic to determine which filtering approach to use.

See Also
imboxfilt | imfilter | integralBoxFilter3

Introduced in R2015b

 imboxfilt3

1-1345

imclearborder
Suppress light structures connected to image border

Syntax
J = imclearborder(I)
J = imclearborder(I,conn)

Description
J = imclearborder(I) suppresses structures in image I that are lighter than their
surroundings and that are connected to the image border. Use this function to clear the
image border. For grayscale images, imclearborder tends to reduce the overall
intensity level in addition to suppressing border structures. The output image, J, is
grayscale or binary, depending on the input.

J = imclearborder(I,conn) specifies the pixel connectivity, conn.

Examples

Impact of Connectivity on Clearing the Border

Create a simple binary image.

BW = [0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 1 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0];

1 Functions — Alphabetical List

1-1346

Clear pixels on the border of the image using 4-connectivity. Note that imclearborder
does not clear the pixel at (5,2) because, with 4-connectivity, it is not considered
connected to the border pixel at (4,1).

BWc1 = imclearborder(BW,4)

BWc1 = 9×9

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Now clear pixels on the border of the image using 8-connectivity. imclearborder clears
the pixel at (5,2) because, with 8-connectivity, it is considered connected to the border
pixel (4,1).

BWc2 = imclearborder(BW,8)

BWc2 = 9×9

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale or binary image
numeric array | logical array

 imclearborder

1-1347

Grayscale or binary image, specified as a numeric or logical array.
Example: I = imread('pout.tif');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

1 Functions — Alphabetical List

1-1348

Value Meaning
18-connected Pixels are connected if their faces or

edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges,
or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imclearborder uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Note A pixel on the edge of the input image might not be considered to be a border pixel
if you specify a nondefault connectivity. For example, if conn = [0 0 0; 1 1 1; 0 0
0], elements on the first and last row are not considered to be border pixels because,
according to that connectivity definition, they are not connected to the region outside the
image.

Data Types: double | logical

 imclearborder

1-1349

Output Arguments
J — Processed image
numeric array | logical array

Processed grayscale or binary image, returned as numeric or logical array, depending on
the input image you specify.

Algorithms
imclearborder uses morphological reconstruction where:

• Mask image is the input image.
• Marker image is zero everywhere except along the border, where it equals the mask

image.

References
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer, 1999,

pp. 164-165.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imclearborder supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imclearborder generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

1 Functions — Alphabetical List

1-1350

• Supports only up to 3-D inputs.
• The optional second input argument, conn, must be a compile-time constant.

See Also
conndef

Introduced before R2006a

 imclearborder

1-1351

imclose
Morphologically close image

Syntax
J = imclose(I,SE)
J = imclose(I,nhood)

Description
J = imclose(I,SE) performs morphological closing on the grayscale or binary image
I, returning the closed image, J. SE is a single structuring element object returned by the
strel or offsetstrel functions. The morphological close operation is a dilation
followed by an erosion, using the same structuring element for both operations.

You optionally can perform the morphological closing using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

J = imclose(I,nhood) closes the image I, where nhood is a matrix of 0s and 1s that
specifies the structuring element neighborhood. This is equivalent to the syntax
imclose(I,strel(nhood)). The imclose function determines the center element of
the neighborhood by floor((size(nhood)+1)/2).

Examples

Use Morphological Closing to Fill Gaps in an Image

Read a binary image into the workspace and display it.

originalBW = imread('circles.png');
imshow(originalBW);

1 Functions — Alphabetical List

1-1352

Create a disk-shaped structuring element. Use a disk structuring element to preserve the
circular nature of the object. Specify a radius of 10 pixels so that the largest gap gets
filled.

se = strel('disk',10);

Perform a morphological close operation on the image.

closeBW = imclose(originalBW,se);
figure, imshow(closeBW)

 imclose

1-1353

Perform Morphological Closing Using a GPU

Use morphological closing to join the circles in an image together by filling in the gaps
between them and by smoothing their outer edges.

Read the image into the workspace and view it.

originalBW = imread('circles.png');
imshow(originalBW);

Create a disk-shaped structuring element. Use a disk structuring element to preserve the
circular nature of the object. Specify a radius of 10 pixels so that the largest gap gets
filled.

se = strel('disk',10);

Perform a morphological close operation on the image on a GPU.

1 Functions — Alphabetical List

1-1354

closeBW = imclose(gpuArray(originalBW),se);
figure
imshow(closeBW)

Input Arguments
I — Input image
grayscale image | binary image | gpuArray

Input image, specified as a grayscale image or binary image of any dimension.

To perform the closing using a GPU, specify I as a gpuArray that contains an image of
type uint8 or logical.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the
image I is data type logical, then the structuring element must be flat.

If you perform the closing using a GPU, then SE must be flat and two-dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Closed image
grayscale image | binary image | gpuArray

Closed image, returned as a grayscale image or binary image. J has the same class as
input image I.

 imclose

1-1355

If the closing is performed using a GPU, then J is returned as a gpuArray that contains a
grayscale or binary image of the same class as I.

Compatibility Considerations

imclose pads image border
Behavior changed in R2017a

Starting in R2017a, imclose pads the input image border by half the size of the
structuring element. Padding the image removes border artifacts when there are
foreground pixels near the boundary of the input image.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imclose supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imclose generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the input image I must be 2-D or 3-D.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-1356

• gpuArray input must be of type uint8 or logical and the structuring element must
be flat and two-dimensional.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imdilate | imerode | imopen

Objects
offsetstrel | strel

Introduced before R2006a

 imclose

1-1357

imcolormaptool
Choose Colormap tool

Use the imcolormaptool function to create a Choose Colormap tool. The Choose
Colormap tool is an interactive colormap selection tool that allows you to change the
colormap of a figure by selecting a colormap from a list of MATLAB colormap functions or
workspace variables, or by entering a custom MATLAB expression.

Choose Colormap Tool

Syntax
imcolormaptool
imcolormaptool(h)
htool = imcolormaptool(___)

1 Functions — Alphabetical List

1-1358

Description
imcolormaptool launches the Choose Colormap tool in a separate figure, which is
associated with the current figure.

imcolormaptool(h) launches the Choose Colormap tool using h as the target figure. h
must contain either a grayscale or an indexed image.

htool = imcolormaptool(___) returns a handle to the Choose Colormap tool figure,
htool.

Examples

Open Choose Colormap Tool
h = figure;
imshow('cameraman.tif');
imcolormaptool(h);

Input Arguments
h — Handle to graphics object
handle

Handle to a figure or axes, specified as a handle.

Output Arguments
htool — Handle to Choose Colormap tool figure
handle

Handle to Choose Colormap tool figure, returned as a handle.

See Also
colormap | imshow | imtool

 imcolormaptool

1-1359

Introduced in R2009a

1 Functions — Alphabetical List

1-1360

imcomplement
Complement image

Syntax
J = imcomplement(I)

Description
J = imcomplement(I) computes the complement on page 1-1368 of the image I and
returns the result in J.

You optionally can compute the image complement using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Create the Complement of a uint8 Array
X = uint8([255 10 75; 44 225 100]);
X2 = imcomplement(X)

X2 = 2x3 uint8 matrix

 0 245 180
 211 30 155

Reverse Black and White in a Binary Image
bw = imread('text.png');
bw2 = imcomplement(bw);
imshowpair(bw,bw2,'montage')

 imcomplement

1-1361

Create the Complement of an Intensity Image

I = imread('cameraman.tif');
J = imcomplement(I);
imshowpair(I,J,'montage')

1 Functions — Alphabetical List

1-1362

Create the Complement of a Color Image

Read a color image into the workspace.

rgb = imread('yellowlily.jpg');
imshow(rgb)

 imcomplement

1-1363

1 Functions — Alphabetical List

1-1364

Display the complement of the image.

c = imcomplement(rgb);
imshow(c)

 imcomplement

1-1365

1 Functions — Alphabetical List

1-1366

Each color channel of the resulting image is the complement of the corresponding color
channel in the original image. Regions that were dark, such as dirt, become light. In the
original image, the leaves appear green, and petals appear yellow because of a mixture of
red and green signals. In the complement image, the leaves appear purple because the
red and blue signals are larger than the green signal. The flower petals appear blue
because the blue signal is larger than the red and green channels.

Create the Complement of Intensity Image on a GPU

I = imread('glass.png');
J = imcomplement(gpuArray(I));
imshowpair(I,J,'montage')

Input Arguments
I — Input image
RGB image | grayscale image | binary image | gpuArray

Input image, specified as an RGB, grayscale, or binary image.

To perform the computation using a GPU, specify I as a gpuArray that contains an RGB,
grayscale, or binary image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Output Arguments
J — Image complement
RGB image | grayscale image | binary image | gpuArray

Image complement, specified as an RGB, grayscale, or binary image. J has the same size
and class as the input image, I.

If the image complement is computed using a GPU, then J is returned as a gpuArray
containing an RGB, grayscale, or binary image.

 imcomplement

1-1367

Definitions

Image Complement
In the complement of a binary image, zeros become ones and ones become zeros. Black
and white are reversed.

In the complement of a grayscale or color image, each pixel value is subtracted from the
maximum pixel value supported by the class (or 1.0 for double-precision images). The
difference is used as the pixel value in the output image. In the output image, dark areas
become lighter and light areas become darker. For color images, reds become cyan,
greens become magenta, blues become yellow, and vice versa.

Tips
• If I is a grayscale or RGB image of class double, you can use the expression 1-I

instead of this function.
• If I is a binary image, you can use the expression ~I instead of this function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imcomplement supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

• imcomplement does not support int64 and uint64 data types.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Functions — Alphabetical List

1-1368

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
imabsdiff | imadd | imdivide | imlincomb | immultiply | imsubtract

Introduced before R2006a

 imcomplement

1-1369

imcontour
Create contour plot of image data

Syntax
imcontour(I)
imcontour(I,levels)
imcontour(I,V)
imcontour(x,y, ___)
imcontour(___ ,LineSpec)
[C,h] = imcontour(___)

Description
imcontour(I) draws a contour plot of the grayscale image I, choosing the number of
levels and the values of levels automatically. imcontour automatically sets up the axes so
their orientation and aspect ratio match the image.

imcontour(I,levels) specifies the number, levels, of equally spaced contour levels
in the plot.

imcontour(I,V) draws contour lines at the data values specified in vector V. The
number of contour levels is equal to length(V).

imcontour(x,y, ___) uses the vectors x and y to specify the image x- and y
coordinates.

imcontour(___ ,LineSpec) draws the contours using the line type and color specified
by LineSpec. Marker symbols are ignored.

[C,h] = imcontour(___) returns the contour matrix, C, and the handle, h, to the
contour patches drawn onto the current axes.

Examples

1 Functions — Alphabetical List

1-1370

Create Contour Plot of Image Data

This example shows how to create a contour plot of an image.

Read grayscale image and display it. The example uses an example image of grains of
rice.

I = imread('rice.png');
imshow(I)

Create a contour plot of the image using imcontour .

figure;
imcontour(I,3)

 imcontour

1-1371

Input Arguments
I — Grayscale image
m-by-n matrix

Grayscale image, specified as an m-by-n matrix.
Data Types: single | double | int16 | uint8 | uint16 | logical

levels — Number of contour levels
numeric scalar

1 Functions — Alphabetical List

1-1372

Number of contour levels, specified as a numeric scalar.

V — Value of contour levels
numeric vector

Value of contour levels, specified as a numeric vector with length greater than or equal to
two. Use V = [v v] to compute a single contour at level v.

x — Image x values
2-element numeric vector | n-element numeric vector

Image x values, specified as one of the following:

• 2-element numeric vector of the form [xmin xmax] — Image extent in the x direction.
• n-element numeric vector — x-coordinate of each column.

y — Image y values
2-element numeric vector | m-element numeric vector

Image y values, specified as one of the following:

• 2-element numeric vector of the form [ymin ymax] — Image extent in the y direction.
• m-element numeric vector — y-coordinate of each row.

LineSpec — Line specification
LineSpec

Line specification, specified as a LineSpec.

Output Arguments
C — Contour matrix
numeric matrix

Contour matrix, returned as a matrix with two rows. The matrix is defined according to
the ContourMatrix property of the Contour object, h.

h — Contour patches
handle

Contour patches, returned as a handle to a Contour object.

 imcontour

1-1373

See Also
Functions
LineSpec | clabel | contour

Properties
Contour

Introduced before R2006a

1 Functions — Alphabetical List

1-1374

imcontrast
Adjust Contrast tool

Use the imcontrast function to create an Adjust Contrast tool. The Adjust Contrast tool
is an interactive contrast and brightness adjustment tool that you can use to adjust the
black-to-white mapping used to display a grayscale image. For more information about
using the tool, see “Tips” on page 1-1377.

Syntax
imcontrast
imcontrast(h)
htool = imcontrast(___)

Description
imcontrast creates an Adjust Contrast tool in a separate figure that is associated with
the grayscale image in the current figure, called the target image.

imcontrast(h) creates the Adjust Contrast tool associated with the image specified by
the handle h.

 imcontrast

1-1375

htool = imcontrast(___) returns the handle htool to the Adjust Contrast tool
figure.

Examples

Adjust the Contrast of the Current Image

Read an image into the workspace. Adjust the contrast of the current image.

imshow('pout.tif')
imcontrast

Adjust Image Contrast, Specifying Figure Handle

Read an image into the workspace and define the handle of the figure as h1. Open a
second figure window and define the handle of that figure as h2. Adjust the contrast of
the first figure by specifying h1 in the call to imcontrast.

h1 = figure;
imshow('pout.tif');
h2 = figure;
imshow('coins.png');
imcontrast(h1)

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle, imcontrast uses the first image returned by
findobj(H,'Type','image').

1 Functions — Alphabetical List

1-1376

Output Arguments
htool — Handle to Adjust Contrast tool figure
handle

Handle to Adjust Contrast tool figure, returned as a handle.

Tips
The Adjust Contrast tool presents a scaled histogram of pixel values (overly represented
pixel values are truncated for clarity). Dragging on the left red bar in the histogram
display changes the minimum value. The minimum value, and any pixel value less than
the minimum, display as black. Dragging on the right red bar in the histogram changes
the maximum value. The maximum value, and any value greater than the maximum,
display as white. Values in between the red bars display as intermediate shades of gray.

Together the minimum and maximum values create a "window". Stretching the window
reduces contrast. Shrinking the window increases contrast. Changing the center of the
window changes the brightness of the image. It is possible to manually enter the
minimum, maximum, width, and center values for the window. Changing one value
automatically updates the other values and the image.

• Click and drag the mouse within the target image to interactively change the window
values. Dragging the mouse horizontally from left to right changes the window width
(i.e., contrast). Dragging the mouse vertically up and down changes the window center
(i.e., brightness). Holding down the Ctrl key before clicking and dragging the mouse
accelerates the rate of change; holding down the Shift key before clicking and
dragging the mouse slows the rate of change. Keys must be pressed before clicking
and dragging.

• When you use the tool, imcontrast adjusts the contrast of the displayed image by
modifying the axes CLim property. To modify the actual pixel values in the target
image, click the Adjust Data button. This button is unavailable until you make a
change to the contrast of the image.

• The Adjust Contrast tool can handle grayscale images of class double and single
with data ranges beyond the default display range, which is [0 1]. For these images,
imcontrast sets the histogram limits to fit the image data range, with padding at the
upper and lower bounds.

 imcontrast

1-1377

See Also
imadjust | imtool | stretchlim

Topics
“Adjust Image Contrast in Image Viewer App”

Introduced before R2006a

1 Functions — Alphabetical List

1-1378

imcrop
Crop image

Syntax
J = imcrop
J = imcrop(I)
J = imcrop(X,cmap)
J = imcrop(h)

J = imcrop(I,rect)
J = imcrop(X,cmap,rect)

J = imcrop(x,y, ___)
[J,rect2] = imcrop(___)
[x2,y2, ___] = imcrop(___)

Description
J = imcrop creates an interactive Crop Image tool associated with the image displayed
in the current figure. With this syntax and the other interactive syntaxes, the Crop Image
tool blocks the MATLAB command line until you complete the operation. imcrop returns
the cropped image, J.

For more information about using the Crop Image tool, see “Interactive Behavior” on
page 1-1388.

J = imcrop(I) displays the image I in a figure window and creates an interactive Crop
Image tool associated with the image. I can be a grayscale image, a truecolor image, or a
logical array.

J = imcrop(X,cmap) displays the indexed image X in a figure using the colormap
cmap, and creates an interactive Crop Image tool associated with that image. imcrop
returns the cropped indexed image, J, which also has the colormap cmap.

 imcrop

1-1379

J = imcrop(h) creates an interactive Crop Image tool associated with the image
specified by the handle h.

J = imcrop(I,rect) crops the image I according to rect, which specifies the size and
position of the crop rectangle as [xmin ymin width height], in terms of spatial
coordinates. The cropped image includes all pixels in the input image that are completely
or partially enclosed by the rectangle.

The width and height specified by rect do not always correspond exactly with the size of
the output image. For example, suppose rect is [20 20 40 30], using the default
spatial coordinate system. The upper left corner of the specified rectangle is the center of
the pixel with spatial (x,y) coordinates (20,20). The lower right corner of the rectangle is
the center of the pixel with spatial (x,y) coordinates (60,50). The resulting output image
has size 31-by-41 pixels, not 30-by-40 pixels.

J = imcrop(X,cmap,rect) crops the indexed image X with colormap cmap according
to the vector rect, which specifies the size and position of the crop rectangle.

J = imcrop(x,y, ___) crops the image using a non-default coordinate system, where
x and y specify the image limits in the world coordinate system.

[J,rect2] = imcrop(___) also returns the position of the cropping rectangle in
rect2.

[x2,y2, ___] = imcrop(___) also returns the image limits in x2 and y2.

Examples

Crop Image Using Crop Image Interactive Tool

Read image into the workspace.

I = imread('cameraman.tif');

Open Crop Image tool associated with this image. Specify a variable in which to store the
cropped image. The example includes the optional return value rect in which imcrop
returns the four-element position vector of the rectangle you draw.

[J, rect] = imcrop(I);

1 Functions — Alphabetical List

1-1380

When you move the cursor over the image, it changes to a cross-hairs . The Crop
Image tool blocks the MATLAB command line until you complete the operation.

Using the mouse, draw a rectangle over the portion of the image that you want to crop.

Perform the crop operation by double-clicking in the crop rectangle or selecting Crop
Image on the context menu.

 imcrop

1-1381

The Crop Image tool returns the cropped area in the return variable, J. The variable rect
is the four-element position vector describing the crop rectangle you specified.

whos

Name Size Bytes Class Attributes

 I 256x256 65536 uint8
 J 121x126 15246 uint8
 rect 1x4 32 double

1 Functions — Alphabetical List

1-1382

Crop Image By Specifying Crop Rectangle

Read image into the workspace.

I = imread('circuit.tif');

Crop image, specifying crop rectangle.

I2 = imcrop(I,[75 68 130 112]);

Display original image and cropped image.

subplot(1,2,1)
imshow(I)
title('Original Image')
subplot(1,2,2)
imshow(I2)
title('Cropped Image')

 imcrop

1-1383

Crop Indexed Image Specifying Crop Rectangle

Load indexed image with its associated map into the workspace.

load trees

Crop indexed image, specifying crop rectangle.

X2 = imcrop(X,map,[30 30 50 75]);

Display original image and cropped image.

1 Functions — Alphabetical List

1-1384

subplot(1,2,1)
imshow(X,map)
title('Original Image')
subplot(1,2,2)
imshow(X2,map)
title('Cropped Image')

Input Arguments
I — Image to be cropped
numeric array

 imcrop

1-1385

Image to be cropped, specified as a numeric array. If you specify rect as an input
argument, then I can also be logical. Otherwise, imcrop calls imshow and accepts
whatever image classes imshow accepts.
Data Types: single | double | int8 | int16 | uint8 | uint16 | logical

X — Indexed image to be cropped
array of integers

Indexed image to be cropped, specified as an array of integers. If you specify rect as an
input argument, then I can also be logical. Otherwise, imcrop calls imshow and accepts
any image class that. imshow accepts.
Data Types: single | double | int8 | int16 | uint8 | uint16 | logical

cmap — Colormap associated with indexed image
c-by-3 numeric matrix

Colormap associated with indexed image, specified as an c-by-3 numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

rect — Size and position of the crop rectangle
4-element numeric vector

Size and position of the crop rectangle in spatial coordinates, specified as a 4-element
numeric vector of the form [xmin ymin width height].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle, imcrop uses the first image returned by
findobj(H,'Type','image').

x, y — Image limits in world coordinates
2-element numeric vector

1 Functions — Alphabetical List

1-1386

Image limits in world coordinates along the x- or y-dimension, specified as a 2-element
numeric vector of the form [min max]. The values of x and y set the image XData and
YData. The data type of x and y must match.

The second element of x and y must be greater than the first element. imcrop does not
support coordinate systems with inverted axes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
J — Cropped image
numeric array

Cropped image, returned as a numeric array.

• If you specify an input image, then the output image has the same class as the input
image.

• If you do not specify an input image, then the output image generally has the same
class as the input image assigned by imcrop. However, if the input image is int16 or
single, then the output image is double.

rect2 — Size and position of the crop rectangle
4-element numeric vector

Size and position of the crop rectangle, returned as a 4-element numeric vector of the
form [xmin ymin width height].

x2, y2 — Image limits
2-element numeric vector

Image limits in the x or y direction, returned as a 2-element numeric vector of the form
[min max]. If you specify image limits x and y, then x2 and y2 are equal to these values.
Otherwise, x2 and y2 are equal to the original image XData and YData.

 imcrop

1-1387

Additional Capabilities

Interactive Behavior
The Crop Image tool is a moveable, resizeable rectangle that you can position over the
image and perform the crop operation interactively using the mouse.

When the Crop Image tool is active in a figure, the pointer changes to cross hairs
when you move it over the target image. Using the mouse, you specify the crop rectangle
by clicking and dragging the mouse. You can move or resize the crop rectangle using the
mouse. When you are finished sizing and positioning the crop rectangle, create the
cropped image by double-clicking the left mouse button. You can also choose Crop Image
from the context menu. The following figure illustrates the Crop Image tool with the
context menu displayed.

Crop rectangle

Resize
handle

Crop Image tool
context menu

1 Functions — Alphabetical List

1-1388

Interactive Behavior Description
Delete the Crop Image tool. Press Backspace, Escape or Delete, or right-click inside

the crop rectangle and select Cancel from the context
menu.

Note: If you delete the ROI, the function returns empty
values.

Resize the Crop Image tool. Select any of the resize handles on the crop rectangle. The
pointer changes to a double-headed arrow . Click and
drag the mouse to resize the crop rectangle.

Move the Crop Image tool. Move the pointer inside the boundary of the crop rectangle.

The pointer changes to a fleur shape . Click and drag
the mouse to move the rectangle over the image.

Change the color used to
display the crop rectangle.

Right-click inside the boundary of the crop rectangle and
select Set Color from the context menu.

Crop the image. Double-click the left mouse button or right-click inside the
boundary of the crop rectangle and select Crop Image
from the context menu.

Retrieve the coordinates of
the crop rectangle.

Right-click inside the boundary of the crop rectangle and
select Copy Position from the context menu. imcrop
copies a 4-element position vector ([xmin ymin width
height]) to the clipboard.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imcrop supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

 imcrop

1-1389

• The interactive syntaxes are not supported, including:

• J = imcrop
• J = imcrop(I)
• X2 = imcrop(X,cmap)
• J = imcrop(h)

• Indexed images are not supported, including the non-interactive syntax X2 =
imcrop(X,cmap,rect);

See Also
imrect | zoom

Introduced before R2006a

1 Functions — Alphabetical List

1-1390

imdiffuseest
Estimate parameters for anisotropic diffusion filtering

Syntax
[gradientThreshold,numberOfIterations] = imdiffuseest(I)
[gradientThreshold,numberOfIterations] = imdiffuseest(I,Name,Value)

Description
[gradientThreshold,numberOfIterations] = imdiffuseest(I) estimates the
gradient threshold and number of iterations required to filter the grayscale image I using
anisotropic diffusion.

[gradientThreshold,numberOfIterations] = imdiffuseest(I,Name,Value)
uses name-value pairs to change the behavior of the anisotropic diffusion algorithm.

Examples

Estimate Parameters for Anisotropic Diffusion Filtering

Read a grayscale image, then apply strong Gaussian noise to it. Display the noisy image.

I = imread('pout.tif');
Inoisy = imnoise(I,'gaussian',0,0.005);
imshow(Inoisy)
title('Noisy Image')

 imdiffuseest

1-1391

Estimate the gradient threshold and number of iterations needed to perform anisotropic
diffusion filtering of the image.

[gradThresh,numIter] = imdiffuseest(Inoisy)

gradThresh = 1x5 uint8 row vector

 64 50 39 34 29

numIter = 5

Filter the noisy image by using anisotropic diffusion with the estimated parameters.

Idiffuseest = imdiffusefilt(Inoisy,'GradientThreshold', ...
 gradThresh,'NumberOfIterations',numIter);

1 Functions — Alphabetical List

1-1392

For comparison, also filter the noisy image by using anisotropic diffusion with the default
parameters. The default gradient threshold is 25.5 because the data type of the image is
uint8, and the default number of iterations is 5.

Idiffusedef = imdiffusefilt(Inoisy);

Visually compare the two filtered images.

 montage({Idiffusedef,Idiffuseest},'ThumbnailSize',[])
 title(['Anisotropic Diffusion Filtering Using ' ...
 'Default Parameters (Left) vs. Estimated Parameters (Right)'])

Some noise remains in the image that was filtered using default parameters. The noise is
almost completely absent from the image that was filtered using estimated parameters.
The sharpness of edges in both images, especially high-contrast edges such as the trellis
and white collar, is preserved.

 imdiffuseest

1-1393

Input Arguments
I — Image
2-D grayscale image

Image to be filtered, specified as a 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imdiffuseest(I,'Connectivity','minimal') estimates parameters
required for anisotropic diffusion on image I, using minimal connectivity.

Connectivity — Connectivity
'maximal' (default) | 'minimal'

Connectivity of a pixel to its neighbors, specified as the comma-separated pair consisting
of 'Connectivity' and 'maximal' or 'minimal'. Maximal connectivity considers
eight nearest neighbors and minimal connectivity considers four nearest neighbors.

ConductionMethod — Conduction method
'exponential' (default) | 'quadratic'

Conduction method, specified as the comma-separated pair consisting of
'ConductionMethod' and 'exponential' or 'quadratic'. Exponential diffusion
favors high-contrast edges over low-contrast edges. Quadratic diffusion favors wide
regions over smaller regions.

Output Arguments
gradientThreshold — Gradient threshold
numeric vector

Gradient threshold, returned as a numeric vector of the same data type as the input
image, I. The length of the vector is equal to numberOfIterations.

1 Functions — Alphabetical List

1-1394

numberOfIterations — Number of iterations
positive integer

Number of iterations to use in the diffusion process, returned as a positive integer.

References
[1] Perona, P., and J. Malik. "Scale-space and edge detection using anisotropic diffusion."

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 7,
July 1990, pp. 629–639.

[2] Tsiotsios, C., and M. Petrou. "On the choice of the parameters for anisotropic diffusion
in image processing." Pattern Recognition. Vol. 46, No. 5, May 2013, pp. 1369–
1381.

See Also
imdiffusefilt

Introduced in R2018a

 imdiffuseest

1-1395

imdiffusefilt
Anisotropic diffusion filtering of images

Syntax
J = imdiffusefilt(I)
J = imdiffusefilt(I,Name,Value)

Description
J = imdiffusefilt(I) applies anisotropic diffusion filtering to image I and returns
the result in J.

J = imdiffusefilt(I,Name,Value) uses name-value pairs to change the behavior of
the anisotropic diffusion algorithm.

Examples

Perform Edge-Preserving Smoothing Using Anisotropic Diffusion

Read an image into the workspace and display it.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

1 Functions — Alphabetical List

1-1396

Smooth the image using anisotropic diffusion. For comparison, also smooth the image
using Gaussian blurring. Adjust the standard deviation sigma of the Gaussian smoothing
kernel so that textured regions, such as the grass, are smoothed a similar amount for both
methods.

Idiffusion = imdiffusefilt(I);
sigma = 1.2;
Igaussian = imgaussfilt(I,sigma);

Display the results.

montage({Idiffusion,Igaussian},'ThumbnailSize',[])
title('Smoothing Using Anisotropic Diffusion (Left) vs. Gaussian Blurring (Right)')

 imdiffusefilt

1-1397

Anisotropic diffusion preserves the sharpness of edges better than Gaussian blurring.

Perform Edge-Aware Noise Reduction Using Anisotropic Diffusion

Read a grayscale image, then apply strong Gaussian noise to it. Display the noisy image.

I = imread('pout.tif');
noisyImage = imnoise(I,'gaussian',0,0.005);
imshow(noisyImage)
title('Noisy Image')

1 Functions — Alphabetical List

1-1398

Compute the structural similarity index (SSIM) to measure the quality of the noisy image.
The closer the SSIM value is to 1, the better the image agrees with the noiseless
reference image.

n = ssim(I,noisyImage);
disp(['The SSIM value of the noisy image is ',num2str(n),'.'])

The SSIM value of the noisy image is 0.26556.

Reduce the noise using anisotropic diffusion. First, try the default parameters for the
anisotropic diffusion filter, and display the result.

B = imdiffusefilt(noisyImage);
imshow(B)
title('Anisotropic Diffusion with Default Parameters')

 imdiffusefilt

1-1399

nB = ssim(I,B);
disp(['The SSIM value using default anisotropic diffusion is ',num2str(nB),'.'])

The SSIM value using default anisotropic diffusion is 0.65665.

The image is still degraded by noise, so refine the filter. Choose the quadratic conduction
method because the image is characterized more by wide homogenous regions than by
high-contrast edges. Estimate the optimal gradient threshold and number of iterations by
using the imdiffuseest function. Display the resulting image.

[gradThresh,numIter] = imdiffuseest(noisyImage,'ConductionMethod','quadratic');
C = imdiffusefilt(noisyImage,'ConductionMethod','quadratic', ...
 'GradientThreshold',gradThresh,'NumberOfIterations',numIter);
imshow(C)
title('Anisotropic Diffusion with Estimated Parameters')

1 Functions — Alphabetical List

1-1400

nC = ssim(I,C);
disp(['The SSIM value using quadratic anisotropic diffusion is ',num2str(nC),'.'])

The SSIM value using quadratic anisotropic diffusion is 0.88135.

Noise is less apparent in the resulting image. The SSIM value, which is closer to 1,
confirms that the quality of the image has improved.

Perform 3-D Edge-Aware Noise Reduction

Load a noisy 3-D grayscale MRI volume.

load mristack

 imdiffusefilt

1-1401

Perform edge-aware noise reduction on the volume using anisotropic diffusion. To prevent
over-smoothing the low-contrast features in the brain, decrease the number of iterations
from the default number, 5. The tradeoff is that less noise is removed.

diffusedImage = imdiffusefilt(mristack,'NumberOfIterations',3);

To compare the noisy image and the filtered image in detail, display the tenth slice of
both.

imshowpair(mristack(:,:,10),diffusedImage(:,:,10),'montage')
title('Noisy Image (Left) vs. Anisotropic-Diffusion-Filtered Image (Right)')

Calculate the Naturalness Image Quality Evaluator (NIQE) score averaged over all slices
in the volume. The NIQE score provides a quantitative measure of image quality that does
not require a reference image. Lower NIQE scores reflect better perceptual image quality.

nframes = size(mristack,3);
m = 0;
d = 0;
for i = 1:nframes
 m = m + niqe(mristack(:,:,i));

1 Functions — Alphabetical List

1-1402

 d = d + niqe(diffusedImage(:,:,i));
end
mAvg = m/nframes;
dAvg = d/nframes;
disp(['The NIQE score of the noisy volume is ',num2str(mAvg),'.'])

The NIQE score of the noisy volume is 5.7794.

disp(['The NIQE score using anisotropic diffusion is ',num2str(dAvg),'.'])

The NIQE score using anisotropic diffusion is 4.1391.

The NIQE score is consistent with the observation of reduced noise in the filtered image.

Input Arguments
I — Image to filter
2-D grayscale image | 3-D grayscale volume

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 3-D grayscale
volume of size m-by-n-by-k.

Note To apply anisotropic diffusion filtering to a color image, use imdiffusefilt on
each color channel independently.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
imdiffusefilt(I,'NumberOfIterations',4,'Connectivity','minimal')
performs anisotropic diffusion on image I, using 4 iterations and minimal connectivity.

 imdiffusefilt

1-1403

GradientThreshold — Gradient threshold
numeric scalar | numeric vector

Gradient threshold, specified as the comma-separated pair consisting of
'GradientThreshold' and a numeric scalar or a numeric vector of length
NumberOfIterations. The value of GradientThreshold controls the conduction
process by classifying gradient values as an actual edge or as noise. Increasing the value
of GradientThreshold smooths the image more. The default value is 10% of the
dynamic range of the image. You can use the imdiffuseest function to estimate a
suitable value of GradientThreshold.

NumberOfIterations — Number of iterations
5 (default) | positive integer

Number of iterations to use in the diffusion process, specified as the comma-separated
pair consisting of 'NumberOfIterations' and a positive integer. You can use the
imdiffuseest function to estimate a suitable value of NumberOfIterations.

Connectivity — Connectivity
'maximal' (default) | 'minimal'

Connectivity of a pixel to its neighbors, specified as the comma-separated pair consisting
of 'Connectivity' and one of these values:

• 'maximal' — Considers 8 nearest neighbors for 2-D images, and 26 nearest
neighbors for 3-D images

• 'minimal' — Considers 4 nearest neighbors for 2-D images, and 6 nearest neighbors
for 3-D images

ConductionMethod — Conduction method
'exponential' (default) | 'quadratic'

Conduction method, specified as the comma-separated pair consisting of
'ConductionMethod' and 'exponential' or 'quadratic'. Exponential diffusion
favors high-contrast edges over low-contrast edges. Quadratic diffusion favors wide
regions over smaller regions.

1 Functions — Alphabetical List

1-1404

Output Arguments
J — Diffusion-filtered image
numeric array

Diffusion-filtered image, returned as a numeric array of the same size and data type as
the input image, I.

References
[1] Perona, P., and J. Malik. "Scale-space and edge detection using anisotropic diffusion."

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 7,
July 1990, pp. 629–639.

[2] Gerig, G., O. Kubler, R. Kikinis, and F. A. Jolesz. "Nonlinear anisotropic filtering of MRI
data." IEEE Transactions on Medical Imaging. Vol. 11, No. 2, June 1992, pp. 221–
232.

See Also
imdiffuseest | imfilter | imgaussfilt | imguidedfilter | imnlmfilt |
locallapfilt

Introduced in R2018a

 imdiffusefilt

1-1405

imdilate
Dilate image

Syntax
J = imdilate(I,SE)
J = imdilate(I,nhood)
J = imdilate(___ ,packopt)
J = imdilate(___ ,shape)

Description
J = imdilate(I,SE) dilates the grayscale, binary, or packed binary image I, returning
the dilated image, J. SE is a structuring element object or array of structuring element
objects, returned by the strel or offsetstrel functions.

You optionally can perform the dilation using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = imdilate(I,nhood) dilates the image I, where nhood is a matrix of 0s and 1s
that specifies the structuring element neighborhood. imdilate determines the center
element of the neighborhood by floor((size(nhood)+1)/2).

This syntax is equivalent to imdilate(I,strel(nhood)).

J = imdilate(___ ,packopt) specifies whether I is a packed binary image.

This syntax is not supported on a GPU.

J = imdilate(___ ,shape) specifies the size of the output image.

Examples

1 Functions — Alphabetical List

1-1406

Dilate Image with Vertical Line Structuring Element

Read a binary image into the workspace.

BW = imread('text.png');

Create a vertical line shaped structuring element.

se = strel('line',11,90);

Dilate the image with a vertical line structuring element and compare the results.

BW2 = imdilate(BW,se);
imshow(BW), title('Original')

figure, imshow(BW2), title('Dilated')

 imdilate

1-1407

Dilate Grayscale Image with Rolling Ball

Read a grayscale image into the workspace.

originalI = imread('cameraman.tif');

Create a nonflat ball-shaped structuring element.

se = offsetstrel('ball',5,5);

Dilate the image.

dilatedI = imdilate(originalI,se);

Display the original image and the dilated image.

imshowpair(originalI,dilatedI,'montage')

1 Functions — Alphabetical List

1-1408

Determine Domain of Composition of Structuring Elements

Create two flat, line-shaped structuring elements, one at 0 degrees and the other at 90
degrees.

se1 = strel('line',3,0)

se1 =
strel is a line shaped structuring element with properties:

 Neighborhood: [1 1 1]
 Dimensionality: 2

se2 = strel('line',3,90)

se2 =
strel is a line shaped structuring element with properties:

 imdilate

1-1409

 Neighborhood: [3x1 logical]
 Dimensionality: 2

Dilate the scalar value 1 with both structuring elements in sequence, using the 'full'
option.

composition = imdilate(1,[se1 se2],'full')

composition = 3×3

 1 1 1
 1 1 1
 1 1 1

Dilate Points in 3D Space Using Spherical Structuring Elements

Create a logical 3D volume with two points.

BW = false(100,100,100);
BW(25,25,25) = true;
BW(75,75,75) = true;

Dilate the 3D volume using a spherical structuring element.

se = strel('sphere',25);
dilatedBW = imdilate(BW,se);

Visualize the dilated image volume.

figure
isosurface(dilatedBW, 0.5)

1 Functions — Alphabetical List

1-1410

Input Arguments
I — Input image
grayscale image | binary image | packed binary image | gpuArray

Input image, specified as a grayscale image, binary image, or packed binary image of any
dimension.

To perform the dilation using a GPU, specify I as a gpuArray that contains an image of
type uint8 or logical.

 imdilate

1-1411

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel
objects

Structuring element, specified as a scalar strel object or offsetstrel object. SE can
also be an array of strel object or offsetstrel objects, in which case imdilate
performs multiple dilations of the input image, using each structuring element in
succession.

imdilate performs grayscale dilation for all images except images of data type
logical. In this case, the structuring element must be flat and imdilate performs
binary dilation.

If you perform the dilation using a GPU, then SE must be flat and two-dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

packopt — Indicator of packed binary image
'notpacked' (default) | 'packed'

Indicator of packed binary image, specified as one of the following.

Value Description
'notpacked' I is treated as a normal array.
'ispacked' I is treated as a packed binary image as produced by bwpack. I

must be a 2-D uint32 array and SE must be a flat 2-D
structuring element. The value of shape must be 'same'.

Note The packopt argument is not supported on a GPU.

Data Types: char | string

1 Functions — Alphabetical List

1-1412

shape — Size of output image
'same' (default) | 'full'

Size of the output image, specified as one of the following.

Value Description
'same' The output image is the same size as the input image. If the value of

packopt is 'ispacked', then shape must be 'same'.
'full' Compute the full dilation.

Data Types: char | string

Output Arguments
J — Dilated image
grayscale image | binary image | packed binary image | gpuArray

Dilated image, returned as a grayscale image, binary image, or packed binary image. If
the input image I is packed binary, then J is also packed binary. J has the same class as
I.

If the dilation is performed using a GPU, then J is returned as a gpuArray that contains a
grayscale or binary image of the same class as I.

Definitions

Binary Dilation
The binary dilation of A by B, denoted A ⨁ B, is defined as the set operation:

A⊕ B = z B z∩ A ≠ ∅ ,

where B is the reflection of the structuring element B. In other words, it is the set of pixel
locations z, where the reflected structuring element overlaps with foreground pixels in A
when translated to z. Note that some applications use a definition of dilation in which the
structuring element is not reflected.

 imdilate

1-1413

For more information about binary dilation, see [1] on page 1-1414.

Grayscale Dilation
In the general form of grayscale dilation, the structuring element has a height. The
grayscale dilation of A(x, y) by B(x, y) is defined as:

A⊕ B x, y = max A(x− x′, y − y′) + B(x′, y′) x′, y′ ∈ DB ,

where DB is the domain of the structuring element B and A(x, y) is assumed to be –∞
outside the domain of the image. To create a structuring element with nonzero height
values, use the syntax strel(nhood,height), where height gives the height values
and nhood corresponds to the structuring element domain, DB.

Most commonly, grayscale dilation is performed with a flat structuring element (B(x,y) =
0). Grayscale dilation using such a structuring element is equivalent to a local-maximum
operator:

A⊕ B x, y = max A(x− x′, y − y′) (x′, y′) ∈ DB .

All of the strel syntaxes except for strel(nhood,height),
strel('arbitrary',nhood,height), and strel('ball', ...) produce flat
structuring elements.

Algorithms
imdilate automatically takes advantage of the decomposition of a structuring element
object (if it exists). Also, when performing binary dilation with a structuring element
object that has a decomposition, imdilate automatically uses binary image packing to
speed up the dilation.

Dilation using bit packing is described in [3].

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using

MATLAB, Gatesmark Publishing, 2009.

[2] Haralick, R. M., and L. G. Shapiro, Computer and Robot Vision, Vol. I, Addison-Wesley,
1992, pp. 158-205.

1 Functions — Alphabetical List

1-1414

[3] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image
Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 54, Number 3, pp.
254-258, May 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imdilate supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imdilate
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• The input image, I, must be 2-D or 3-D.
• The structuring element argument SE must be a single element—arrays of structuring

elements are not supported. To obtain the same result as that obtained using an array
of structuring elements, call the function sequentially.

• When the target is MATLAB Host Computer, the packopt and shape arguments
must be compile-time constants. When the target is any other platform, the packopt
syntax is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical and the structuring element SE
must be flat and two-dimensional.

 imdilate

1-1415

• The packopt argument is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Functions
bwpack | bwunpack | conv2 | filter2 | imclose | imerode | imopen

Objects
offsetstrel | strel

Introduced before R2006a

1 Functions — Alphabetical List

1-1416

imdisplayrange
Display Range tool

Use the imdisplayrange function to create a Display Range tool. The Display Range
tool shows the display range of the grayscale image or images in the figure.

Syntax
imdisplayrange
imdisplayrange(h)
imdisplayrange(hparent,himage)
htool = imdisplayrange(___)

Description
imdisplayrange creates a Display Range tool in the current figure.

imdisplayrange(h) creates a Display Range tool in the figure specified by the handle
h.

imdisplayrange(hparent,himage) creates a Display Range tool in hparent that
shows the display range of himage.

htool = imdisplayrange(___) returns a handle to the Display Range tool uipanel.

Examples

Create Display Range Tool
Display an image and include the Display Range tool.

 imdisplayrange

1-1417

imshow('bag.png');
imdisplayrange;

Import a 16-bit DICOM image and display it with its default range and scaled range in the
same figure.

dcm = dicomread('CT-MONO2-16-ankle.dcm');
subplot(1,2,1), imshow(dcm);
subplot(1,2,2), imshow(dcm,[]);
imdisplayrange;

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. Axes,
uipanel, or figure objects must contain at least one image object.

hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Display Range tool, specified as a
handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

Output Arguments
htool — Handle to Display Range tool
handle

Handle to Display Range tool uipanel, returned as a handle.

1 Functions — Alphabetical List

1-1418

Tips
• The Display Range tool is a uipanel object, positioned in the lower-right corner of the
figure. It contains the label Display range: followed by the display range values for
the image.

• For an indexed, truecolor, or binary image, the display range is not applicable and is
set to empty ([]).

• The Display Range tool can work with multiple images in a figure. When the pointer is
not in an image in a figure, the Display Range tool displays [black white].

See Also
imtool

Introduced before R2006a

 imdisplayrange

1-1419

imdistline
Distance tool

Description
An imdistline object is a type of imline that encapsulates a Distance tool, which
consists of an interactive line over an image, paired with a text label that displays the
distance between the line endpoints.

You can adjust the size and position of the line by using the mouse. The line also has a
context menu that controls aspects of its appearance and behavior. For more information,
see “Usage” on page 1-1654.

Creation

Syntax
h = imdistline
h = imdistline(hparent)
h = imdistline(___ ,x,y)

Description
h = imdistline creates a Distance tool on the current axes. The function returns h, a
handle to an imdistline object.

h = imdistline(hparent) creates a draggable Distance tool on the object specified
by hparent.

h = imdistline(___ ,x,y) creates a Distance tool with endpoints at the positions
specified by x and y.

1 Functions — Alphabetical List

1-1420

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

x — x-coordinates of endpoints
2-element numeric vector

x-coordinates of endpoints, specified as a 2-element numeric vector.
Example: h = imdistline(gca,[10 100],[20 40]); sets the first endpoint at the
(x, y) coordinate (10, 20) and the second endpoint at the coordinate (100, 40).

y — y-coordinates of endpoints
2-element numeric vector

y-coordinates of endpoints, specified as a 2-element numeric vector.
Example: h = imdistline(gca,[10 100],[20 40]); sets the first endpoint at the
(x, y) coordinate (10, 20) and the second endpoint at the coordinate (100, 40).

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage
To move the Distance tool, position the pointer over the line, the shape changes to the

fleur, . Click and drag the line using the mouse. To resize the Distance tool, move the
pointer over either of the endpoints of the line, the shape changes to the pointing finger,

. Click and drag the endpoint of the line using the mouse.

 imdistline

1-1421

The line also supports a context menu that allows you to control various aspects of its
functioning and appearance. Right-click the line to access the context menu.

Distance Tool Behavior Context Menu Item
Export endpoint and
distance data to the
workspace

Select Export to Workspace from the context menu.

Toggle the distance label on/
off.

Select Show Distance Label from the context menu.

Specify horizontal and
vertical drag constraints

Select Constrain Drag from the context menu.

Change the color used to
display the line.

Select Set Color from the context menu.

Delete the Distance tool
object

Select Delete from the context menu.

Object Functions
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getAngleFromHorizontal Return angle between Distance tool and horizontal axis
getColor Get color used to draw ROI object
getDistance Return distance between endpoints of Distance tool
getLabelHandle Return handle to text label of Distance tool
getLabelTextFormatter Return format of text label of Distance tool
getLabelVisible Return visibility of text label of Distance tool

1 Functions — Alphabetical List

1-1422

getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setLabelTextFormatter Set format used to display text label of Distance tool
setLabelVisible Set visibility of text label of Distance tool
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

Note Each function that accepts an imline also accepts an imdistline. These objects
define position in the same way.

Examples
Insert Distance Tool into an Image
Insert a Distance tool into an image. Use makeConstrainToRectFcn to specify a drag
constraint function that prevents the Distance tool from being dragged outside the extent
of the image. Right-click the Distance tool and explore the context menu options.
imshow('pout.tif');
h = imdistline;
fcn = makeConstrainToRectFcn('imline',...
 get(gca,'XLim'),get(gca,'YLim'));
setDragConstraintFcn(h,fcn);

Position Endpoints of Distance Tool
Position endpoints of the Distance tool at the specified locations.

imshow('pout.tif');
h = imdistline(gca,[10 100],[10 100]);

Delete the Distance tool.

 imdistline

1-1423

delete(h)

Use Distance Tool with Spatial Referencing
Use the Distance tool with XData and YData of associated image in non-pixel units. This
example requires the boston.tif image from the Mapping Toolbox™ software, which
includes material copyrighted by GeoEye™, all rights reserved.
start_row = 1478;
end_row = 2246;
meters_per_pixel = 1;
rows = [start_row meters_per_pixel end_row];
start_col = 349;
end_col = 1117;
cols = [start_col meters_per_pixel end_col];
img = imread('boston.tif','PixelRegion',{rows,cols});
figure;
hImg = imshow(img);
title('1 meter per pixel');

Specify the initial position of distance tool on Harvard Bridge.
hline = imdistline(gca,[271 471],[108 650]);
setLabelTextFormatter(hline,'%02.0f meters');

Repeat the process but work with a 2 meter per pixel sampled image. Verify that the same
distance is obtained.
meters_per_pixel = 2;
rows = [start_row meters_per_pixel end_row];
cols = [start_col meters_per_pixel end_col];
img = imread('boston.tif','PixelRegion',{rows,cols});
figure;
hImg = imshow(img);
title('2 meters per pixel');

Convert XData and YData to meters using conversion factor.
XDataInMeters = get(hImg,'XData')*meters_per_pixel;
YDataInMeters = get(hImg,'YData')*meters_per_pixel;

Set XData and YData of the image to reflect desired units.
set(hImg,'XData',XDataInMeters,'YData',YDataInMeters);
set(gca,'XLim',XDataInMeters,'YLim',YDataInMeters);

Specify the initial position of distance tool on Harvard Bridge.
hline = imdistline(gca,[271 471],[108 650]);
setLabelTextFormatter(hline,'%02.0f meters');

1 Functions — Alphabetical List

1-1424

Tips
• If you use imdistline with an axes that contains an image object, and do not specify

a drag constraint function, users can drag the line outside the extent of the image.
When used with an axes created by the plot function, the axes limits automatically
expand to accommodate the movement of the line.

See Also
imline | imroi | makeConstrainToRectFcn

Introduced before R2006a

 imdistline

1-1425

imdivide
Divide one image into another or divide image by constant

Syntax
Z = imdivide(X,Y)

Description
Z = imdivide(X,Y) divides each element in the array X by the corresponding element
in array Y and returns the result in the corresponding element of the output array Z.

If X is an integer array, elements in the output that exceed the range of integer type are
truncated, and fractional values are rounded.

Examples

Divide Two uint8 Arrays

This example shows how to divide two uint8 arrays.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);

Divide each element in X by the corresponding element in Y. Note that fractional values
greater than or equal to 0.5 are rounded up to the nearest integer.

Z = imdivide(X,Y)

Z = 2x3 uint8 matrix

 5 0 2
 1 5 2

1 Functions — Alphabetical List

1-1426

Divide each element in Y by the corresponding element in X. Note that when dividing by
zero, the output is truncated to the range of the integer type.

W = imdivide(Y,X)

W = 2x3 uint8 matrix

 0 255 1
 1 0 1

Divide Image Background

Read a grayscale image into the workspace.

I = imread('rice.png');

Estimate the background.

background = imopen(I,strel('disk',15));

Divide out the background from the image.

J = imdivide(I,background);

Display the original image and the processed image.

imshow(I)

 imdivide

1-1427

figure
imshow(J,[])

1 Functions — Alphabetical List

1-1428

Divide an Image by a Constant Factor

Read an image into the workspace.

I = imread('rice.png');

Divide each value of the image by a constant factor of 2.

J = imdivide(I,2);

Display the original image and the processed image.

imshow(I)

 imdivide

1-1429

figure
imshow(J)

1 Functions — Alphabetical List

1-1430

Input Arguments
X — First array
real, nonsparse, numeric or logical array

First array (dividend), specified as a real, nonsparse, numeric or logical array of any
dimension.

Y — Second array
real, nonsparse, numeric or logical array

Second array (divisor) to be divided from X, specified as a real, nonsparse, numeric or
logical array. Y either has the same size and class as X, or Y is a scalar of type double.

 imdivide

1-1431

Output Arguments
Z — Quotient
numeric array

Quotient, returned as a numeric array of the same size as X. Z is the same class as X
unless X is logical, in which case Z is data type double. If X is an integer array, elements
of the output that exceed the range of the integer type are truncated, and fractional
values are rounded.

See Also
imabsdiff | imadd | imcomplement | imlincomb | immultiply | imsubtract

Introduced before R2006a

1 Functions — Alphabetical List

1-1432

imellipse
Create draggable ellipse

Note imellipse is not recommended. Use drawellipse instead.

Description
An imellipse object encapsulates an interactive ellipse over an image.

You can adjust the size and position of the ellipse by using the mouse. The ellipse also has
a context menu that controls aspects of its appearance and behavior. For more
information, see “Usage” on page 1-1435.

Creation

Syntax
h = imellipse
h = imellipse(hparent)
h = imellipse(hparent,position)
h = imellipse(___ ,Name,Value)

Description
h = imellipse begins interactive placement of an ellipse on the current axes, and
returns an imellipse object.

h = imellipse(hparent) begins interactive placement of an ellipse on the object
specified by hparent.

h = imellipse(hparent,position) creates a draggable ellipse at the position
position on the object specified by hparent.

 imellipse

1-1433

h = imellipse(___ ,Name,Value) specifies name-value pairs that control the
behavior of the ellipse.

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

position — Position of ellipse
4-element vector

Position of the ellipse as defined by a bounding rectangle, specified as a 4-element vector
of the form [xmin ymin width height]. The initial size of the bounding rectangle is
width-by-height, and the upper-left corner of the rectangle is at the (x,y) coordinate
(xmin,ymin).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the ellipse can be dragged. See the
help for the setPositionConstraintFcn function for information about valid function
handles.

Properties
Deletable — ROI can be deleted
true (default) | false

1 Functions — Alphabetical List

1-1434

ROI can be deleted, specified as true or false.
Data Types: logical

Usage
When you call imellipse with an interactive syntax, the pointer changes to a cross hairs

 when over an image. Click and drag the mouse to specify the size and position of the
ellipse. The ellipse also supports a context menu that you can use to control aspects of its
appearance and behavior. Right-click on the ellipse to access this context menu.

The table lists the interactive behavior supported by imellipse.

 imellipse

1-1435

Interactive Behavior Description
Moving the entire ellipse. Move the pointer inside the ellipse. The pointer changes to

a fleur shape . Click and drag the mouse to move the
ellipse.

Resizing the ellipse. Move the pointer over a resizing handle on the ellipse. The
pointer changes to a double-ended arrow shape . Click
and drag the mouse to resize the ellipse.

Changing the color used to
display the ellipse.

Move the pointer inside the ellipse. Right-click and select
Set Color from the context menu.

Retrieving the current
position of the ellipse.

Move the pointer inside the ellipse. Right-click and select
Copy Position from the context menu. imellipse copies a
four-element position vector [xmin ymin width height]
to the clipboard.

Preserving the current
aspect ratio of the ellipse
during resizing.

Move the pointer inside the ellipse. Right-click and select
Fix Aspect Ratio from the context menu.

Deleting the ellipse Move the pointer inside the ellipse. Right-click and select
Delete from the context menu. To remove this option from
the context menu, set the Deletable property to false: h =
imellipse(); h.Deletable = false;

Object Functions
Each imellipse object supports a number of methods. Type methods imellipse to
see a complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
getVertices Return vertices on perimeter of ellipse ROI object
removeNewPositionCallback Remove new-position callback from ROI object

1 Functions — Alphabetical List

1-1436

resume (Not recommended) Resume execution of MATLAB
command line

setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setFixedAspectRatioMode Preserve aspect ratio when resizing ROI object
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setResizable Set resize behavior of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

Examples

Update Title when Ellipse Moves
Create an ellipse, using callbacks to display the updated position in the title of the figure.
The example illustrates using the makeConstrainToRectFcn to keep the ellipse inside
the original XLim and YLim ranges.
imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Click and Drag to Place Ellipse
Interactively place an ellipse by clicking and dragging. Use wait to block the MATLAB
command line. Double-click on the ellipse to resume execution of the MATLAB command
line.
imshow('coins.png')
h = imellipse;
position = wait(h);

Tips
If you use imellipse with an axes that contains an image object, and do not specify a
position constraint function, users can drag the ellipse outside the extent of the image

 imellipse

1-1437

and lose the ellipse. When used with an axes created by the plot function, the axes limits
automatically expand to accommodate the movement of the ellipse.

See Also
imfreehand | imline | impoint | impoly | imrect | imroi | iptgetapi |
makeConstrainToRectFcn

Introduced in R2007b

1 Functions — Alphabetical List

1-1438

imerode
Erode image

Syntax
J = imerode(I,SE)
J = imerode(I,nhood)
J = imerode(___ ,packopt,m)
J = imerode(___ ,shape)

Description
J = imerode(I,SE) erodes the grayscale, binary, or packed binary image I, returning
the eroded image, J. SE is a structuring element object or array of structuring element
objects, returned by the strel or offsetstrel functions.

You optionally can perform the erosion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = imerode(I,nhood) erodes the image I, where nhood is a matrix of 0s and 1s that
specifies the structuring element neighborhood. The imerode function determines the
center element of the neighborhood by floor((size(nhood)+1)/2).

This syntax is equivalent to imerode(I,strel(nhood)).

J = imerode(___ ,packopt,m) specifies whether input image I is a packed binary
image. m specifies the row dimension of the original unpacked image.

This syntax is not supported on a GPU.

J = imerode(___ ,shape) specifies the size of the output image.

Examples

 imerode

1-1439

Erode Binary Image with Line Structuring Element

Read binary image into the workspace.

originalBW = imread('text.png');

Create a flat, line-shaped structuring element.

se = strel('line',11,90);

Erode the image with the structuring element.

erodedBW = imerode(originalBW,se);

View the original image and the eroded image.

figure
imshow(originalBW)

1 Functions — Alphabetical List

1-1440

figure
imshow(erodedBW)

Erode Grayscale Image with Rolling Ball

Read grayscale image into the workspace.

originalI = imread('cameraman.tif');

Create a nonflat offsetstrel object.

se = offsetstrel('ball',5,5);

Erode the image.

erodedI = imerode(originalI,se);

 imerode

1-1441

Display original image and eroded image.

figure
imshow(originalI)

figure
imshow(erodedI)

1 Functions — Alphabetical List

1-1442

Erode MRI Stack Volume Using Cubic Structuring Element

Create a binary volume.

load mristack
BW = mristack < 100;

Create a cubic structuring element.

se = strel('cube',3)

se =
strel is a cube shaped structuring element with properties:

 Neighborhood: [3x3x3 logical]
 Dimensionality: 3

 imerode

1-1443

Erode the volume with a cubic structuring element.

erodedBW = imerode(BW, se);

Input Arguments
I — Input image
grayscale image | binary image | packed binary image | gpuArray

Input image, specified as a grayscale image, binary image, or packed binary image of any
dimension.

To perform the erosion using a GPU, specify I as a gpuArray that contains an image of
type uint8 or logical.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel
objects

Structuring element, specified as a scalar strel object or offsetstrel object. SE can
also be an array of strel object or offsetstrel objects, in which case imerode
performs multiple erosions of the input image, using each structuring element in
succession.

imerode performs grayscale erosion for all images except images of data type logical.
In this case, the structuring element must be flat and imerode performs binary erosion.

If you perform the erosion using a GPU, then SE must be flat and two-dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

packopt — Indicator of packed binary image
'notpacked' (default) | 'packed'

1 Functions — Alphabetical List

1-1444

Indicator of packed binary image, specified as one of the following.

Value Description
'notpacked' I is treated as a normal array.
'ispacked' I is treated as a packed binary image as produced by bwpack. I

must be a 2-D uint32 array and SE must be a flat 2-D
structuring element. The value of shape must be 'same'.

Note The packopt argument is not supported on a GPU.

Data Types: char | string

m — Row dimension of original unpacked image
positive integer

Row dimension of the original unpacked image, specified as a positive integer.
Data Types: double

shape — Size of output image
'same' (default) | 'full'

Size of the output image, specified as one of the following.

Value Description
'same' The output image is the same size as the input image. If the value of

packopt is 'ispacked', then shape must be 'same'.
'full' Compute the full erosion.

Data Types: char | string

Output Arguments
J — Eroded image
grayscale image | binary image | packed binary image | gpuArray

 imerode

1-1445

Eroded image, returned as a grayscale image, binary image, or packed binary image. If
the input image I is packed binary, then J is also packed binary. J has the same class as
I.

If the erosion is performed using a GPU, then J is returned as a gpuArray that contains a
grayscale or binary image of the same class as I.

Definitions

Binary Erosion
The binary erosion of A by B, denoted A ϴ B, is defined as the set operation A ϴ B = {z|
(Bz ⊆ A}. In other words, it is the set of pixel locations z, where the structuring element
translated to location z overlaps only with foreground pixels in A.

For more information on binary erosion, see [1] on page 1-1447.

Grayscale Erosion
In the general form of grayscale erosion, the structuring element has a height. The
grayscale erosion of A(x, y) by B(x, y) is defined as:

(A ϴ B)(x, y) = min {A(x + x′, y + y′) − B(x′, y′) | (x′, y′) ∊ DB},

DB is the domain of the structuring element B and A(x,y) is assumed to be +∞ outside the
domain of the image. To create a structuring element with nonzero height values, use the
syntax strel(nhood,height), where height gives the height values and nhood
corresponds to the structuring element domain, DB.

Most commonly, grayscale erosion is performed with a flat structuring element (B(x,y) =
0). Grayscale erosion using such a structuring element is equivalent to a local-minimum
operator:

(A ϴ B)(x, y) = min {A(x + x′, y + y′) | (x′, y′) ∊ DB}.

All of the strel syntaxes except for strel(nhood,height),
strel('arbitrary',nhood,height), and strel('ball', ...) produce flat
structuring elements.

1 Functions — Alphabetical List

1-1446

Algorithms
imerode automatically takes advantage of the decomposition of a structuring element
object (if a decomposition exists). Also, when performing binary erosion with a
structuring element object that has a decomposition, imerode automatically uses binary
image packing to speed up the erosion.

Erosion using bit packing is described in [3].

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using

MATLAB, Gatesmark Publishing, 2009.

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Vol. I,
Addison-Wesley, 1992, pp. 158-205.

[3] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image
Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 54, Number 3, pp.
254-258, May 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imerode supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imerode generates
code that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• The input image, I, must be 2-D or 3-D.

 imerode

1-1447

• The structuring element argument SE must be a single element—arrays of structuring
elements are not supported. To obtain the same result as that obtained using an array
of structuring elements, call the function sequentially.

• When the target is MATLAB Host Computer, the packopt and shape arguments
must be compile-time constants. When the target is any other platform, the packopt
syntax is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical and the structuring element SE
must be flat and two-dimensional.

• The packopt argument is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Functions
bwpack | bwunpack | conv2 | filter2 | imclose | imdilate | imopen

Objects
offsetstrel | strel

Introduced before R2006a

1 Functions — Alphabetical List

1-1448

imextendedmax
Extended-maxima transform

Syntax
BW = imextendedmax(I,H)
BW = imextendedmax(I,H,conn)

Description
BW = imextendedmax(I,H) returns the extended-maxima transform for I, which is the
regional maxima of the H-maxima transform. Regional maxima are connected components
of pixels with a constant intensity value, and whose external boundary pixels all have a
lower value.

BW = imextendedmax(I,H,conn) computes the extended-maxima transform, where
conn specifies the pixel connectivity.

Examples

Perform Extended-Maxima transform

Read image into workspace.

I = imread('glass.png');

Calculate the extended-maxima transform.

BW = imextendedmax(I,80);

Display original image and transformed image side-by-side.

imshowpair(I,BW,'montage')

 imextendedmax

1-1449

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

H — H-maxima transform
nonnegative scalar

H-maxima transform, specified as a nonnegative scalar.
Example: BW = imextendedmax(I,80);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

1 Functions — Alphabetical List

1-1450

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 imextendedmax

1-1451

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imextendedmax uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Transformed image
logical array

Transformed image, returned as a logical array the same size as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag,

1999, pp. 170-171.

1 Functions — Alphabetical List

1-1452

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imextendedmax supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imextendedmax generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the optional third input argument, conn, must be a compile-
time constant.

See Also
conndef | imextendedmin | imhmax | imreconstruct | imregionalmax

Introduced before R2006a

 imextendedmax

1-1453

imextendedmin
Extended-minima transform

Syntax
BW = imextendedmin(I,H)
BW = imextendedmin(I,H,conn)

Description
BW = imextendedmin(I,H) computes the extended-minima transform, which is the
regional minima of the H-minima transform. Regional minima are connected components
of pixels with a constant intensity value, and whose external boundary pixels all have a
higher value. h is a nonnegative scalar.

BW = imextendedmin(I,H,conn) computes the extended-minima transform, which is
the regional minima of the H-minima transform.

Examples

Perform Extended-Minima transform

Read image into the workspace.

I = imread('glass.png');

Calculate the extended-minima transform.

BW = imextendedmin(I,50);

Display the original image and the transformation side-by-side.

imshowpair(I,BW,'montage');

1 Functions — Alphabetical List

1-1454

Input Arguments
I — Input image
numeric array

Input array, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

H — H-minima transform
nonnegative scalar

H-minima transform, specified as a nonnegative scalar.
Example: BW = imextendedmin(I,80);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

 imextendedmin

1-1455

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

1 Functions — Alphabetical List

1-1456

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imextendedmin uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Transformed image
logical array

Transformed image, returned as a logical array the same size as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag,

1999, pp. 170-171.

 imextendedmin

1-1457

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imextendedmin supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imextendedmin generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the optional third input argument, conn, must be a compile-
time constant.

See Also
conndef | imextendedmax | imhmin | imreconstruct | imregionalmin

Introduced before R2006a

1 Functions — Alphabetical List

1-1458

imfill
Fill image regions and holes

Syntax
BW2 = imfill(BW,locations)
BW2 = imfill(BW,locations,conn)
BW2 = imfill(BW,'holes')
BW2 = imfill(BW,conn,'holes')

I2 = imfill(I)
I2 = imfill(I,conn)

BW2 = imfill(BW)
BW2 = imfill(BW,0,conn)
[BW2, locations_out] = imfill(BW)

Description
BW2 = imfill(BW,locations) performs a flood-fill operation on background pixels of
the input binary image BW, starting from the points specified in locations.

You optionally can perform the flood-fill operation using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

BW2 = imfill(BW,locations,conn) fills the area defined by locations, where
conn specifies the connectivity.

BW2 = imfill(BW,'holes') fills holes in the input binary image BW. In this syntax, a
hole is a set of background pixels that cannot be reached by filling in the background
from the edge of the image.

BW2 = imfill(BW,conn,'holes') fills holes in the binary image BW, where conn
specifies the connectivity.

I2 = imfill(I) fills holes in the grayscale image I. In this syntax, a hole is defined as
an area of dark pixels surrounded by lighter pixels.

 imfill

1-1459

I2 = imfill(I,conn) fills holes in the grayscale image I, where conn specifies the
connectivity.

BW2 = imfill(BW) displays the binary image BW on the screen and lets you define the
region to fill by selecting points interactively with the mouse. To use this syntax, BW must
be a 2-D image.

Press Backspace or Delete to remove the previously selected point. Shift-click, right-
click, or double-click to select a final point and start the fill operation. Press Return to
finish the selection without adding a point.

This syntax is not supported on a GPU.

BW2 = imfill(BW,0,conn) lets you override the default connectivity as you
interactively specify locations.

This syntax is not supported on a GPU.

[BW2, locations_out] = imfill(BW) returns the locations of points selected
interactively in locations_out. To use this syntax, BW must be a 2-D image.

This syntax is not supported on a GPU.

Examples

Fill Image from Specified Starting Point

BW1 = logical([1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0
 1 1 1 1 0 1 1 1
 1 0 0 1 1 0 1 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0]);

BW2 = imfill(BW1,[3 3],8)

BW2 = 8x8 logical array

 1 0 0 0 0 0 0 0

1 Functions — Alphabetical List

1-1460

 1 1 1 1 1 0 0 0
 1 1 1 1 1 0 1 0
 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1
 1 0 0 1 1 1 1 0
 1 0 0 0 1 1 1 0
 1 0 0 0 1 1 1 0

Fill Holes in a Binary Image

Read image into workspace.

I = imread('coins.png');
figure
imshow(I)
title('Original Image')

 imfill

1-1461

Convert image to binary image.

BW = imbinarize(I);
figure
imshow(BW)
title('Original Image Converted to Binary Image')

Fill holes in the binary image and display the result.

BW2 = imfill(BW,'holes');
figure
imshow(BW2)
title('Filled Image')

1 Functions — Alphabetical List

1-1462

Fill Holes in a Grayscale Image

I = imread('tire.tif');
I2 = imfill(I);
figure, imshow(I), figure, imshow(I2)

 imfill

1-1463

1 Functions — Alphabetical List

1-1464

Fill Operation on a GPU

Create a simple sample binary image.

BW1 = logical([1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0
 1 1 1 1 0 1 1 1
 1 0 0 1 1 0 1 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0])

BW1 =

 1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0
 1 1 1 1 0 1 1 1
 1 0 0 1 1 0 1 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0

Create a gpuArray.

BW1 = gpuArray(BW1);

Fill in the background of the image from a specified starting location.

BW2 = imfill(BW1,[3 3],8)

BW2 =

 1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 1 0 1 0
 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1
 1 0 0 1 1 1 1 0

 imfill

1-1465

 1 0 0 0 1 1 1 0
 1 0 0 0 1 1 1 0

Input Arguments
BW — Input binary image
logical array | gpuArray

Input binary image, specified as a logical array of any dimension.

To fill image regions and holes using a GPU, specify BW as a gpuArray that contains a
real, nonsparse, logical array of any dimension.
Example: BW = imread('text.png');
Example: BW = gpuArray(imread('text.png'));
Data Types: logical

locations — Linear indices identifying pixel locations
numeric vector of positive integers | 2-D numeric matrix of positive integers

Linear indices identifying pixel locations, specified as a numeric vector or 2-D numeric
matrix of positive integers. If locations is a p-by-1 vector, then it contains the linear
indices of the starting locations. If locations is a p-by-ndims(BW) matrix, then each
row contains the array indices of one of the starting locations.
Example: [3 3]
Data Types: double

I — Input grayscale image
numeric array | gpuArray

Input grayscale image, specified as a numeric array of any dimension.

To fill image regions and holes using a GPU, specify I as a gpuArray that contains a real,
nonsparse, numeric array of any dimension.
Example: I = imread('cameraman.tif');
Example: I = gpuArray(imread('cameraman.tif'));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-1466

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 4
for 2-D images, and 6 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 imfill

1-1467

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imfill uses the default value
conndef(ndims(BW),'minimal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Filled image
logical array | gpuArray

Filled image, returned as logical array.

If image regions and holes are filled using a GPU, then BW2 is returned as a gpuArray
that contains a logical array.

locations_out — Linear indices of pixel locations
numeric vector | numeric matrix

Linear indices of pixel locations, returned as a numeric vector or matrix.

I2 — Filled grayscale image
numeric array | gpuArray

1 Functions — Alphabetical List

1-1468

Filled grayscale image, returned as a numeric array.

If image regions and holes are filled using a GPU, then I2 is returned as a gpuArray that
contains a numeric array.

Algorithms
imfill uses an algorithm based on morphological reconstruction [1].

References
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag,

1999, pp. 173–174.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imfill supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imfill generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• The optional input arguments, conn and 'holes', must be compile-time constants.
• imfill supports up to 3-D inputs only. (No N-D support.)
• The interactive syntax to select points, imfill(BW,0,CONN) is not supported.
• With the locations input argument, once you select a format at compile time, you

cannot change it at run time. However, the number of points in locations can be varied
at run time.

 imfill

1-1469

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8). Does not support
the interactive hole filling syntax.

For more information, see “Image Processing on a GPU”.

See Also
bwselect | conndef | imreconstruct | regionfill

Introduced before R2006a

1 Functions — Alphabetical List

1-1470

imfilter
N-D filtering of multidimensional images

Syntax
B = imfilter(A,h)
B = imfilter(A,h,options,...)

Description
B = imfilter(A,h) filters the multidimensional array A with the multidimensional
filter h and returns the result in B.

You optionally can filter a multidimensional array with a 2-D filter using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

B = imfilter(A,h,options,...) performs multidimensional filtering according to
one or more specified options.

Examples

Create Filter and Apply It

Read a color image into the workspace and display it.

originalRGB = imread('peppers.png');
imshow(originalRGB)

 imfilter

1-1471

Create a motion-blur filter using the fspecial function.

h = fspecial('motion', 50, 45);

Apply the filter to the original image to create an image with motion blur. Note that
imfilter is more memory efficient than some other filtering functions in that it outputs
an array of the same data type as the input image array. In this example, the output is an
array of uint8.

filteredRGB = imfilter(originalRGB, h);
figure, imshow(filteredRGB)

1 Functions — Alphabetical List

1-1472

Filter the image again, this time specifying the replicate boundary option.

boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
figure, imshow(boundaryReplicateRGB)

 imfilter

1-1473

Filter Images Using imfilter with Convolution

By default, imfilter uses correlation because the toolbox filter design functions
produce correlation kernels. Use the optional parameter to use convolution.

Create a sample matrix.

A = magic(5)

A = 5×5

1 Functions — Alphabetical List

1-1474

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create a filter.

h = [-1 0 1];

Filter using correlation, the default.

imfilter(A,h)

ans = 5×5

 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

Filter using convolution, specifying imfilter with the optional parameter.

imfilter(A,h,'conv')

ans = 5×5

 -24 16 16 -14 8
 -5 16 -9 -9 14
 -6 -9 -14 -9 20
 -12 -9 -9 16 21
 -18 -14 16 16 2

Convert Image Class to Avoid Negative Output Values

In this example, the output of imfilter has negative values when the input is of class
double. To avoid negative values, convert the image to a different data type before
calling imfilter. For example, when the input type is uint8, imfilter truncates
output values to 0. It might also be appropriate to convert the image to a signed integer
type.

 imfilter

1-1475

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Filter the image with imfilter.

h = [-1 0 1];
imfilter(A,h)

ans = 5×5

 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

Notice that the result has negative values. To avoid negative values in the output image,
convert the input image to uint8 before performing the filtering. Since the input to
imfilter is of class uint8, the output also is of class uint8, and imfilter truncates
negative values to 0.

A = uint8(magic(5));
imfilter(A,h)

ans = 5x5 uint8 matrix

 24 0 0 14 0
 5 0 9 9 0
 6 9 14 9 0
 12 9 9 0 0
 18 14 0 0 0

1 Functions — Alphabetical List

1-1476

Input Arguments
A — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

h — Multidimensional filter
N-D array of data type double

Multidimensional filter, specified as an N-D array of data type double.
Data Types: double

options — Options that control the filtering operation
character vector | string scalar | numeric scalar

Options that control the filtering operation, specified as a character vector, string scalar,
or numeric scalar. The following table lists all supported options.

 imfilter

1-1477

Boundary Options

Option Description
Padding Options
numeric scalar, X Input array values outside the bounds of the array are assigned the

value X. When no padding option is specified, the default is 0.
'symmetric' Input array values outside the bounds of the array are computed by

mirror-reflecting the array across the array border.
'replicate' Input array values outside the bounds of the array are assumed to

equal the nearest array border value.
'circular' Input array values outside the bounds of the array are computed by

implicitly assuming the input array is periodic.
Output Size
'same' The output array is the same size as the input array. This is the

default behavior when no output size options are specified.
'full' The output array is the full filtered result, and so is larger than the

input array.
Correlation and Convolution Options
'corr' imfilter performs multidimensional filtering using correlation,

which is the same way that filter2 performs filtering. When no
correlation or convolution option is specified, imfilter uses
correlation.

'conv' imfilter performs multidimensional filtering using convolution.

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and class as the input image,
A.

1 Functions — Alphabetical List

1-1478

Tips
• This function may take advantage of hardware optimization for data types uint8,

uint16, int16, single, and double to run faster.

Algorithms
• The imfilter function computes the value of each output pixel using double-

precision, floating-point arithmetic. If the result exceeds the range of the data type,
then imfilter truncates the result to the allowed range of the data type. If it is an
integer data type, then imfilter rounds fractional values.

• If you specify an even-sized kernel h, then the center of the kernel is
floor((size(h) + 1)/2).

For example, the center of 4-element filter [0.25 0.75 -0.75 -0.25] is the second
element, 0.75. This filter gives identical results as filtering with the 5-element filter
[0 0.25 0.75 -0.75 -0.25].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imfilter supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imfilter
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, the input image, A, must be 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

• If you specify a large kernel h, a kernel that contains large values, or specify an image
containing large values, you can see different results between MATLAB and generated

 imfilter

1-1479

code using codegen for floating point data types. This happens because of
accumulation errors due to different algorithm implementations.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The filtering kernel h must be a vector or 2-D matrix of data type double.
• If the image is filtered using a GPU, then imfilter computes the value of each output

pixel using either single- or double-precision floating point, depending on the data
type of A. If A contains double-precision or uint32 values, then imfilter uses
double-precision values. For all other data types, imfilter uses single-precision. If A
is an integer or logical array, then imfilter truncates output elements that exceed
the range of the given type, and rounds fractional values.

For more information, see “Image Processing on a GPU”.

See Also
conv2 | convn | filter2 | fspecial

Topics
“Filter Grayscale and Truecolor (RGB) Images using imfilter Function”
“imfilter Boundary Padding Options”
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

1 Functions — Alphabetical List

1-1480

imfindcircles
Find circles using circular Hough transform

Syntax
centers = imfindcircles(A,radius)
[centers,radii] = imfindcircles(A,radiusRange)
[centers,radii,metric] = imfindcircles(A,radiusRange)
[___] = imfindcircles(___ ,Name,Value)

Description
centers = imfindcircles(A,radius) finds the circles in image A whose radii are
approximately equal to radius. The output, centers, is a two-column matrix containing
the x,y coordinates of the circles centers in the image.

[centers,radii] = imfindcircles(A,radiusRange) finds circles with radii in the
range specified by radiusRange. The additional output argument, radii, contains the
estimated radii corresponding to each circle center in centers.

[centers,radii,metric] = imfindcircles(A,radiusRange) also returns a
column vector, metric, containing the magnitudes of the accumulator array peaks for
each circle (in descending order). The rows of centers and radii correspond to the
rows of metric.

[___] = imfindcircles(___ ,Name,Value) specifies additional options with one or
more Name,Value pair arguments, using any of the previous syntaxes.

Examples

Detect Five Strongest Circles in an Image

This example shows how to find all circles in an image, and how to retain and display the
strongest circles.

 imfindcircles

1-1481

Read a grayscale image into the workspace and display it.

A = imread('coins.png');
imshow(A)

Find all the circles with radius r pixels in the range [15, 30].

[centers, radii, metric] = imfindcircles(A,[15 30]);

Retain the five strongest circles according to the metric values.

centersStrong5 = centers(1:5,:);
radiiStrong5 = radii(1:5);
metricStrong5 = metric(1:5);

Draw the five strongest circle perimeters over the original image.

viscircles(centersStrong5, radiiStrong5,'EdgeColor','b');

1 Functions — Alphabetical List

1-1482

Draw Lines Around Bright and Dark Circles in Image

Read the image into the workspace and display it.

A = imread('circlesBrightDark.png');
imshow(A)

 imfindcircles

1-1483

Define the radius range.

Rmin = 30;
Rmax = 65;

Find all the bright circles in the image within the radius range.

1 Functions — Alphabetical List

1-1484

[centersBright, radiiBright] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','bright');

Find all the dark circles in the image within the radius range.

[centersDark, radiiDark] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','dark');

Draw blue lines around the edges of the bright circles.

viscircles(centersBright, radiiBright,'Color','b');

 imfindcircles

1-1485

Draw red dashed lines around the edges of the dark circles.

viscircles(centersDark, radiiDark,'LineStyle','--');

1 Functions — Alphabetical List

1-1486

 imfindcircles

1-1487

Input Arguments
A — Input image
grayscale image | truecolor image | binary image

Input image is the image in which to detect circular objects, specified as a grayscale,
truecolor, or binary image.
Data Types: single | double | int16 | uint8 | uint16 | logical

radius — Circle radius
scalar numeric

Circle radius is the approximate radius of the circular objects you want to detect,
specified as a scalar of any numeric type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

radiusRange — Range of radii
2-element vector of integers

Range of radii for the circular objects you want to detect, specified as a 2-element vector
of integers of the form [rmin rmax].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ObjectPolarity','bright' specifies bright circular objects on a dark
background.

ObjectPolarity — Object polarity
'bright' (default) | 'dark'

1 Functions — Alphabetical List

1-1488

Object polarity indicates whether the circular objects are brighter or darker than the
background, specified as the comma-separated pair consisting of 'ObjectPolarity'
and either of the values in the following table.

'bright' The circular objects are brighter than the background.
'dark' The circular objects are darker than the background.

Method — Computation method
'PhaseCode' (default) | 'TwoStage'

Computation method is the technique used to compute the accumulator array, specified as
the comma-separated pair consisting of 'Method' and either of the values in the
following table.

'PhaseCode' Atherton and Kerbyson's [1] phase coding method . This is the
default.

'TwoStage' The method used in two-stage circular Hough transform [2], [3].

Example: 'Method','PhaseCode' specifies the Atherton and Kerbyson's phase coding
method.

Sensitivity — Sensitivity factor
0.85 (default) | number in the range [0. 1]

Sensitivity factor is the sensitivity for the circular Hough transform accumulator array,
specified as the comma-separated pair consisting of 'Sensitivity' and a number in the
range [0,1]. As you increase the sensitivity factor, imfindcircles detects more circular
objects, including weak and partially obscured circles. Higher sensitivity values also
increase the risk of false detection.

EdgeThreshold — Edge gradient threshold
number in the range [0. 1]

Edge gradient threshold sets the gradient threshold for determining edge pixels in the
image, specified as the comma-separated pair consisting of 'EdgeThreshold' and a
number in the range [0,1]. Specify 0 to set the threshold to zero-gradient magnitude.
Specify 1 to set the threshold to the maximum gradient magnitude. imfindcircles
detects more circular objects (with both weak and strong edges) when you set the
threshold to a lower value. It detects fewer circles with weak edges as you increase the
value of the threshold. By default, imfindcircles chooses the edge gradient threshold
automatically using the function graythresh.

 imfindcircles

1-1489

Example: 'EdgeThreshold',0.5 sets the edge gradient threshold to 0.5.

Output Arguments
centers — Coordinates of circle centers
P-by-2 matrix

Coordinates of the circle centers, returned as a P-by-2 matrix containing the x-
coordinates of the circle centers in the first column and the y-coordinates in the second
column. The number of rows, P, is the number of circles detected. centers is sorted
based on the strength of the circles.

radii — Estimated radii
column vector

The estimated radii for the circle centers, returned as a column vector. The radius value
at radii(j) corresponds to the circle centered at centers(j,:).

metric — Circle strengths
column vector

Circle strengths is the relative strengths for the circle centers, returned as a vector. The
value at metric(j) corresponds to the circle with radius radii(j) centered at
centers(j,:).

Tips
• Specify a relatively small radiusRange for better accuracy. A good rule of thumb is to

choose radiusRange such that rmax < 3*rmin and (rmax-rmin) < 100.
• The accuracy of imfindcircles is limited when the value of radius (or rmin) is less

than or equal to 5.
• The radius estimation step is typically faster if you use the (default) 'PhaseCode'

method instead of 'TwoStage'.
• Both computation methods, 'PhaseCode' and 'TwoStage' are limited in their ability

to detect concentric circles. The results for concentric circles can vary depending on
the input image.

• imfindcircles does not find circles with centers outside the domain of the image.

1 Functions — Alphabetical List

1-1490

• imfindcircles preprocesses binary (logical) images to improve the accuracy of the
result. It converts truecolor images to grayscale using the function rgb2gray before
processing them.

Algorithms
imfindcircles uses a Circular Hough Transform (CHT) based algorithm for finding
circles in images. This approach is used because of its robustness in the presence of
noise, occlusion and varying illumination.

The CHT is not a rigorously specified algorithm, rather there are a number of different
approaches that can be taken in its implementation. However, by and large, there are
three essential steps which are common to all.

1 Accumulator Array Computation

Foreground pixels of high gradient are designated as being candidate pixels and are
allowed to cast ‘votes’ in the accumulator array. In a classical CHT implementation,
the candidate pixels vote in pattern around them that forms a full circle of a fixed
radius. Figure 1a shows an example of a candidate pixel lying on an actual circle
(solid circle) and the classical CHT voting pattern (dashed circles) for the candidate
pixel.

 imfindcircles

1-1491

Classical CHT Voting Pattern
2 Center Estimation

The votes of candidate pixels belonging to an image circle tend to accumulate at the
accumulator array bin corresponding to the circle’s center. Therefore, the circle
centers are estimated by detecting the peaks in the accumulator array. Figure 1b
shows an example of the candidate pixels (solid dots) lying on an actual circle (solid
circle), and their voting patterns (dashed circles) which coincide at the center of the
actual circle.

3 Radius Estimation

If the same accumulator array is used for more than one radius value, as is commonly
done in CHT algorithms, radii of the detected circles have to be estimated as a
separate step.

1 Functions — Alphabetical List

1-1492

imfindcircles provides two algorithms for finding circles in images: Phase-Coding
(default) and Two-Stage. Both share some common computational steps, but each has its
own unique aspects as well.

The common computational features shared by both algorithms are as follow:

• Use of 2-D Accumulator Array

The classical Hough Transform requires a 3-D array for storing votes for multiple
radii, which results in large storage requirements and long processing times. Both the
Phase-Coding and Two-Stage methods solve this problem by using a single 2-D
accumulator array for all the radii. Although this approach requires an additional step
of radius estimation, the overall computational load is typically lower, especially when
working over large radius range. This is a widely adopted practice in modern CHT
implementations.

• Use of Edge Pixels

Overall memory requirements and speed is strongly governed by the number of
candidate pixels. To limit their number, the gradient magnitude of the input image is
threshold so that only pixels of high gradient are included in tallying votes.

• Use of Edge Orientation Information

Another way to optimize performance is to restrict the number of bins available to
candidate pixels. This is accomplished by utilizing locally available edge information to
only permit voting in a limited interval along direction of the gradient (Figure 2).

 imfindcircles

1-1493

Voting Mode: Multiple Radii, Along Direction of Gradient

rmin Minimum search radius
rmax Maximum search radius

ractual Radius of the circle that the candidate pixel belongs to
cmin Center of the circle of radius rmin

cmax Center of the circle of radius rmax

cactual Center of the circle of radius ractual

The two CHT methods employed by function imfindcircles fundamentally differ in the
manner by which the circle radii are computed.

• Two-Stage

Radii are explicitly estimated utilizing the estimated circle centers along with image
information. The technique is based on computing radial histograms [2] [3].

1 Functions — Alphabetical List

1-1494

• Phase-Coding

The key idea in Phase Coding [1] is the use of complex values in the accumulator array
with the radius information encoded in the phase of the array entries. The votes cast
by the edge pixels contain information not only about the possible center locations but
also about the radius of the circle associated with the center location. Unlike the Two-
Stage method where radius has to be estimated explicitly using radial histograms, in
Phase Coding the radius can be estimated by simply decoding the phase information
from the estimated center location in the accumulator array.

Compatibility Considerations

imfindcircles uses new filter size for logical images
Behavior changed in R2019a

Staring in R2019a, the imfindcircles function uses a 5-by-5 filter size for smoothing
logical images. imfindcircles may now return a different answer than in previous
releases, when the filter size was 6-by-6. For example, in some instances, the function
may return a different number of circles.

References
[1] T.J Atherton, D.J. Kerbyson. "Size invariant circle detection." Image and Vision

Computing. Volume 17, Number 11, 1999, pp. 795-803.

[2] H.K Yuen, .J. Princen, J. Illingworth, and J. Kittler. "Comparative study of Hough
transform methods for circle finding." Image and Vision Computing. Volume 8,
Number 1, 1990, pp. 71–77.

[3] E.R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Chapter 10. 3rd
Edition. Morgan Kauffman Publishers, 2005,

 imfindcircles

1-1495

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imfindcircles supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imfindcircles generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, all character vector input parameters and values must be a
compile-time constant.

See Also
hough | houghlines | houghpeaks | viscircles

Introduced in R2012a

1 Functions — Alphabetical List

1-1496

imflatfield
2-D image flat-field correction

Syntax
J = imflatfield(I,sigma)
J = imflatfield(I,sigma,mask)
J = imflatfield(___ ,'FilterSize',filterSize)

Description
J = imflatfield(I,sigma) applies flat-field correction to the grayscale or RGB image
I. The correction uses Gaussian smoothing with a standard deviation of sigma to
approximate the shading component of I. The corrected image is returned in J.

J = imflatfield(I,sigma,mask) applies flat-field correction to image I only where
the binary mask is true. Where the mask is false, the output image J contains the
unmodified values of image I.

J = imflatfield(___ ,'FilterSize',filterSize) specifies the size of the
Gaussian smoothing filter.

Examples

Correct Shading Distortion in Grayscale Image

Load a grayscale image. This image has severe shading distortion on the left side and in
the upper-right corner.

I = imread('printedtext.png');
imshow(I)
title('Distorted Image')

 imflatfield

1-1497

Perform the flat-field correction.

sigma = 30;
Iflatfield = imflatfield(I,sigma);

Display the result. The corrected image has more uniform brightness.

imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

1 Functions — Alphabetical List

1-1498

Correct Vignetting Defect in Color Image

Load a color image that has vignetting, or darkening of the corners.

I = imread('fabric.png');
imshow(I)
title('Image with Vignetting')

 imflatfield

1-1499

Perform the flat-field correction.

sigma = 20;
Iflatfield = imflatfield(I,sigma);

Display the result. The corrected image has more uniform brightness.

imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

1 Functions — Alphabetical List

1-1500

Apply Flat-Field Correction Using Binary Mask

Load a color image. This image has a shading defect in the lower right corner.

I = imread('hands1.jpg');
imshow(I)
title('Image with Dark Corner')

 imflatfield

1-1501

Try applying flat-field correction to the entire image.

sigma = 25;
Iflatfield = imflatfield(I,25);
imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

1 Functions — Alphabetical List

1-1502

The shading defect in the corner is corrected, but the center of the image is too bright
and the hand has changed color. To avoid this brightening artifact, apply flat-field
correction just to the background of the image.

Load the mask of this image. In the original mask, maskHand, the segmented hand is the
region of interest (ROI). Invert the mask so that the background is the ROI. Display the
mask, which shows the ROI in white.

maskHand = imread('hands1-mask.png');
maskBackground = ~maskHand;
imshow(maskBackground)
title('Background Mask')

 imflatfield

1-1503

Perform the flat-field correction on the background of the image using the mask
maskBackground. The hand is not a region of interest in the mask, therefore flat-field
correction is not applied to pixels in the hand.

Iflatfield2 = imflatfield(I,sigma,maskBackground);

Display the corrected image. The shading defect in the corner is corrected, and the hand
retains its original color.

imshow(Iflatfield2)
title(['Flat-Field Corrected Background, \sigma = ',num2str(sigma)])

1 Functions — Alphabetical List

1-1504

Input Arguments
I — Distorted image
2-D grayscale image | 2-D RGB image

Distorted image, specified as a 2-D grayscale image of size m-by-n or a 2-D RGB image of
size m-by-n-by-3.
Data Types: single | double | int16 | uint8 | uint16

sigma — Standard deviation of Gaussian smoothing filter
positive number | 2-element vector of positive numbers

Standard deviation of the Gaussian smoothing filter, specified as a positive number or a 2-
element vector of positive numbers. If you specify a scalar, then imflatfield uses a
square Gaussian kernel.

 imflatfield

1-1505

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

mask — Binary mask
2-D numeric matrix | 2-D logical matrix

Binary mask, specified as a 2-D numeric or logical matrix of size m-by-n. For numeric
input, any nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

filterSize — Size of Gaussian filter
positive, odd integer | 2-element vector of positive, odd integers

Size of the Gaussian filter, specified as a scalar or 2-element vector of positive, odd
integers. If you specify a scalar, then imflatfield uses a square filter. The default filter
size is 2*ceil(2*sigma)+1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
J — Corrected image
2-D grayscale image | 2-D RGB image

Corrected image, returned as a 2-D grayscale or RGB image of the same size and data
type as the input image, I.

Tips
• When I is an RGB image, then imflatfield converts the image to the HSV color

space using rgb2hsv and applies the flat-field correction to the HSV Value channel.
The image is converted back to RGB color space by using hsv2rgb.

• If you specify a mask, then imflatfield dilates the mask and pads the image
boundaries to reduce edge artifacts during the flat-field estimation.

1 Functions — Alphabetical List

1-1506

See Also
hsv2rgb | rgb2hsv

Introduced in R2018b

 imflatfield

1-1507

imfreehand
Create draggable freehand region

Note imfreehand is not recommended. Use drawfreehand or drawassisted instead.

Description
An imfreehand object encapsulates an interactive freehand region over an image.

You can add vertices and adjust the size and position of the polygon by using the mouse.
The polygon also has a context menu that controls aspects of its appearance and behavior.
For more information, see “Usage” on page 1-1510.

Creation

Syntax
h = imfreehand
h = imfreehand(hparent)
h = imfreehand(___ ,Name,Value)

Description
h = imfreehand begins interactive placement of a freehand region on the current axes,
and returns an imfreehand object.

h = imfreehand(hparent) begins interactive placement of a freehand region on the
object specified by hparent.

h = imfreehand(___ ,Name,Value) specifies name-value pairs that control the
behavior of the freehand region.

1 Functions — Alphabetical List

1-1508

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the freehand region can be dragged.
See the help for the setPositionConstraintFcn function for information about valid
function handles.

Closed — Freehand region is closed
true (default) | false

Freehand region is closed, specified as the comma-separated pair consisting of 'Closed'
and true or false. When set to true (the default), imfreehand draws a straight line to
connect the endpoints of the freehand line to create a closed region. If set to false,
imfreehand leaves the region open.
Data Types: logical

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.

 imfreehand

1-1509

Data Types: logical

Usage
When you call imfreehand with an interactive syntax, the pointer changes to a cross

hairs when positioned over an image. Click and drag the mouse to draw the freehand
region and adjust the position of the region. By default, imfreehand draws a straight line
connecting the last point you drew with the first point, but you can control this behavior
using the Closed parameter.

The freehand region also supports a context menu that you can use to control aspects of
its appearance and behavior.

The table lists the interactive features supported by imfreehand.

1 Functions — Alphabetical List

1-1510

Interactive Behavior Description
Moving the region. Move the pointer inside the freehand region. The pointer

changes to a fleur shape . Click and hold the left mouse
button to move the region.

Changing the color used to
draw the region.

Move the pointer inside the freehand region. Right-click
and select Set Color from the context menu.

Retrieving the current
position of the freehand
region.

Move the pointer inside the freehand region. Right-click
and select Copy Position from the context menu.
imfreehand copies an n-by-2 array of coordinates on the
boundary of the ROI to the clipboard.

Deleting the region Move the pointer inside the region. Right-click and select
Delete from the context menu. To remove this option from
the context menu, set the Deletable property to false: h =
imfreehand(); h.Deletable = false;

Object Functions
Each imfreehand object supports a number of methods. Type methods imfreehand to
see a complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setClosed Set closure behavior of ROI object
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

 imfreehand

1-1511

Examples

Click and Drag to Place Freehand Region
Interactively place a closed freehand region of interest by clicking and dragging over an
image.

imshow('pout.tif')
h = imfreehand;

Interactively move the freehand region by clicking and dragging. Use the wait function
to block the MATLAB command line. Double-click on the freehand region to resume
execution of the MATLAB command line.

position = wait(h);

Tips
• If you use imfreehand with an axes that contains an image object, and do not specify

a position constraint function, users can drag the freehand region outside the extent of
the image and lose the freehand region. When used with an axes created by the plot
function, the axes limits automatically expand to accommodate the movement of the
freehand region.

• To cancel the interactive placement, press the Esc key. imfreehand returns an empty
object.

See Also
imellipse | imline | impoint | impoly | imrect | imroi | iptgetapi |
makeConstrainToRectFcn

Introduced in R2007b

1 Functions — Alphabetical List

1-1512

imfuse
Composite of two images

Syntax
C = imfuse(A,B)
[C RC] = imfuse(A,RA,B,RB)
C = imfuse(___ ,method)
C = imfuse(___ ,Name,Value)

Description
C = imfuse(A,B) creates a composite image from two images, A and B. If A and B are
different sizes, imfuse pads the smaller dimensions with zeros so that both images are
the same size before creating the composite. The output, C, is a numeric matrix
containing a fused version of images A and B.

[C RC] = imfuse(A,RA,B,RB) creates a composite image from two images, A and B,
using the spatial referencing information provided in RA and RB. The output RC defines
the spatial referencing information for the output fused image C.

C = imfuse(___ ,method) uses the algorithm specified by method.

C = imfuse(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments, using any of the previous syntaxes.

Examples

Create Blended Overlay of Two Images

Load an image into the workspace. Create a copy with a rotation offset applied.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

 imfuse

1-1513

Create blended overlay image, scaling the intensities of A and B jointly as a single data
set. View the fused image.

C = imfuse(A,B,'blend','Scaling','joint');
imshow(C)

Save the resulting image as a .png file.

imwrite(C,'my_blend_overlay.png');

Create Overlay Image Using Color to Distinguish Areas of Similar Intensity

Load an image into the workspace. Create a copy and apply a rotation offset.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

1 Functions — Alphabetical List

1-1514

Create a blended overlay image, using red for image A, green for image B, and yellow for
areas of similar intensity between the two images. Then, display the overlay image.

C = imfuse(A,B,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);
imshow(C)

Save the resulting image as a .png file.

imwrite(C,'my_blend_red-green.png');

Create Overlay of Two Spatially Referenced Images

Load an image into the workspace and create a spatial referencing object associated with
it.

A = dicomread('knee1.dcm');
RA = imref2d(size(A));

 imfuse

1-1515

Create a second image by resizing image A and create a spatial referencing object
associated with that image.

B = imresize(A,2);
RB = imref2d(size(B));

Set referencing object parameters to specify the limits of the coordinates in world
coordinates.

RB.XWorldLimits = RA.XWorldLimits;
RB.YWorldLimits = RA.YWorldLimits;

Create a blended overlay image using color to indicate areas of similar intensity. This
example uses red for image A, green for image B, and yellow for areas of similar intensity
between the two images.

C = imfuse(A,B,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);

Display the fused image. Note how the images do not appear to share many areas of
similar intensity. For this example, the fused image is shrunk for easier display.

C = imresize(C,0.5);
imshow(C)

1 Functions — Alphabetical List

1-1516

Create a new fused image, this time using the spatial referencing information in RA and
RB.

[D,RD] = imfuse(A,RA,B,RB,'ColorChannels',[1 2 0]);

 imfuse

1-1517

Display the new fused image. In this version, the image appears yellow because the
images A and B have the same extent in the world coordinate system. The images actually
are aligned, even though B is twice the size of A. For this example, the fused image is
shrunk for easier display.

D = imresize(D,0.5);
imshow(D)

1 Functions — Alphabetical List

1-1518

 imfuse

1-1519

Input Arguments
A — Image to be combined into a composite image
grayscale image | truecolor image | binary image

Image to be combined into a composite image, specified as a grayscale, truecolor, or
binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

B — Image to be combined into a composite image
grayscale image | truecolor image | binary image

Image to be combined into a composite image, specified as a grayscale, truecolor, or
binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

RA — Spatial referencing information associated with the input image A
spatial referencing object

Spatial referencing information associated with the input image A, specified as a spatial
referencing object of class imref2d.

RB — Spatial referencing information associated with the input image B
spatial referencing object

Spatial referencing information associated with the input image B, specified as a spatial
referencing object of class imref2d.

method — Algorithm used to combine images
'falsecolor' (default) | 'blend' | 'diff' | 'montage'

Algorithm used to combine images, specified as one of the following values.

1 Functions — Alphabetical List

1-1520

Method Description
'falsecolor' Creates a composite RGB image showing A and B overlaid in

different color bands. Gray regions in the composite image
show where the two images have the same intensities.
Magenta and green regions show where the intensities are
different. This is the default method.

'blend' Overlays A and B using alpha blending.
'checkerboard' Creates an image with alternating rectangular regions from A

and B.
'diff' Creates a difference image from A and B.
'montage' Puts A and B next to each other in the same image.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','joint' scales the intensity values of A and B together as a single
data set.

Scaling — Intensity scaling option
'independent' (default) | 'joint' | 'none'

Intensity scaling option, specified as one of the following values:

'independent' Scales the intensity values of A and B independently
when C is created.

'joint' Scales the intensity values in the images jointly as if
they were together in the same image. This option is
useful when you want to visualize registrations of
monomodal images, where one image contains fill
values that are outside the dynamic range of the other
image.

'none' No additional scaling.

 imfuse

1-1521

ColorChannels — Output color channel for each input image
'green-magenta' (default) | [R G B] | 'red-cyan'

Output color channel for each input image, specified as one of the following values:

[R G B] A three element vector that specifies which image to assign
to the red, green, and blue channels. The R, G, and B
values must be 1 (for the first input image), 2 (for the
second input image), and 0 (for neither image).

'red-cyan' A shortcut for the vector [1 2 2], which is suitable for
red/cyan stereo anaglyphs

'green-magenta' A shortcut for the vector [2 1 2], which is a high contrast
option, ideal for people with many kinds of color blindness

Output Arguments
C — Fused image that is a composite of the input images
grayscale image | truecolor image | binary image

Fused image that is a composite of the input images, returned as a grayscale, truecolor,
or binary image.
Data Types: uint8

RC — Spatial referencing information associated with the output image
spatial referencing object

Spatial referencing information, returned as a spatial referencing object.

Tips
• Use imfuse to create composite visualizations that you can save to a file. Use

imshowpair to display composite visualizations to the screen.

See Also
imregister | imshowpair | imtransform

1 Functions — Alphabetical List

1-1522

Introduced in R2012a

 imfuse

1-1523

imgaborfilt
Apply Gabor filter or set of filters to 2-D image

Syntax
[mag, phase] = imgaborfilt(A,wavelength,orientation)
[mag, phase] = imgaborfilt(A,wavelength,orientation,Name,Value,...)
[mag, phase] = imgaborfilt(A,gaborbank)

Description
[mag, phase] = imgaborfilt(A,wavelength,orientation) computes the
magnitude and phase response of a Gabor filter for the input grayscale image A.
wavelength describes the wavelength in pixels/cycle of the sinusoidal carrier.
orientation is the orientation of the filter in degrees. The output mag and phase are
the magnitude and phase responses of the Gabor filter.

[mag, phase] = imgaborfilt(A,wavelength,orientation,Name,Value,...)
applies a single Gabor filter using name-value pairs to control various aspects of filtering.

[mag, phase] = imgaborfilt(A,gaborbank) applies the array of Gabor filters,
gaborbank, to the input image A. gaborbank is a 1-by-p array of Gabor objects, called a
filter bank. mag and phase are image stacks where each plane in the stack corresponds
to one of the outputs of the filter bank. For inputs of size A, the outputs mag and phase
contain the magnitude and phase response for each filter in gaborbank and are of size
m-by-n-by-p. Each plane in the magnitude and phase responses,
mag(:,:,ind),phase(:,:,ind), is the result of applying the Gabor filter of the same
index, gaborBank(ind).

Examples

Apply Single Gabor Filter to Input Image

Read image into the workspace.

1 Functions — Alphabetical List

1-1524

I = imread('board.tif');

Convert image to grayscale.

I = rgb2gray(I);

Apply Gabor filter to image.

wavelength = 4;
orientation = 90;
[mag,phase] = imgaborfilt(I,wavelength,orientation);

Display original image with plots of the magnitude and phase calculated by the Gabor
filter.

figure
subplot(1,3,1);
imshow(I);
title('Original Image');
subplot(1,3,2);
imshow(mag,[])
title('Gabor magnitude');
subplot(1,3,3);
imshow(phase,[]);
title('Gabor phase');

 imgaborfilt

1-1525

Apply Array of Gabor Filters to Input Image

Read image into the workspace.

I = imread('cameraman.tif');

Create array of Gabor filters, called a filter bank. This filter bank contains two
orientations and two wavelengths.

gaborArray = gabor([4 8],[0 90]);

Apply filters to input image.

1 Functions — Alphabetical List

1-1526

gaborMag = imgaborfilt(I,gaborArray);

Display results. The figure shows the magnitude response for each filter.

figure
subplot(2,2,1);
for p = 1:4
 subplot(2,2,p)
 imshow(gaborMag(:,:,p),[]);
 theta = gaborArray(p).Orientation;
 lambda = gaborArray(p).Wavelength;
 title(sprintf('Orientation=%d, Wavelength=%d',theta,lambda));
end

 imgaborfilt

1-1527

Input Arguments
A — Input grayscale image
real, nonsparse 2-D matrix

Input grayscale image, specified as a real, nonsparse 2-D matrix.

If the image contains Infs or NaNs, the behavior of imgaborfilt is undefined because
Gabor filtering is performed in the frequency domain.

For all input data types other than single, imgaborfilt performs the computation in
double. Input images of type single are filtered in type single. Performance
optimizations may result from casting the input image to single prior to calling
imgaborfilt.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

wavelength — Wavelength of the sinusoidal carrier
numeric scalar in the range [2,Inf)

Wavelength of the sinusoidal carrier, specified as a numeric scalar in the range [2,Inf),
in pixels/cycle.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

orientation — Orientation of filter in degrees
numeric scalar in the range [0 360]

Orientation of filter in degrees, specified as a numeric scalar in the range [0 360],
where the orientation is defined as the normal direction to the sinusoidal plane wave.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

gaborbank — Array of Gabor filters
gabor object

Array of Gabor filters, specified as a gabor object. You must use the gabor function to
create an array of Gabor filters.

1 Functions — Alphabetical List

1-1528

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [mag,phase] =
imgaborfilt(I,4,90,'SpatialFrequencyBandwidth',2);

SpatialFrequencyBandwidth — Spatial frequency bandwidth
1.0 (default) | numeric scalar

Spatial frequency bandwidth, specified as a numeric scalar in units of octaves. The spatial
frequency bandwidth determines the cutoff of the filter response as frequency content in
the input image varies from the preferred frequency, 1/lambda. Typical values for spatial-
frequency bandwidth are in the range [0.5 2.5].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SpatialAspectRatio — Ratio of semi-major and semi-minor axes of Gaussian
envelope
0.5 (default) | numeric scalar

Ratio of semi-major and semi-minor axes of Gaussian envelope (semi-minor/semi-
major), specified as a numeric scalar. This parameter controls the ellipticity of the
Gaussian envelope. Typical values for spatial aspect ratio are in the range [0.23 0.92].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
mag — Magnitude response for the Gabor filter
numeric array of class double

Magnitude response for the Gabor filter, returned as a numeric array of class double.

phase — Phase response for the Gabor filter
numeric array of class double

 imgaborfilt

1-1529

Phase response for the Gabor filter, returned as a numeric array of class double.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgaborfilt supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The wavelength, orientation, SpatialFrequencyBandwidth, and
SpatialAspectRatio must be compile-time constants.

• The filter bank syntax is not supported.

See Also
edge | fspecial | gabor | imfilter | imgradient

Topics
“Texture Segmentation Using Gabor Filters”

Introduced in R2015b

1 Functions — Alphabetical List

1-1530

imgaussfilt
2-D Gaussian filtering of images

Syntax
B = imgaussfilt(A)
B = imgaussfilt(A,sigma)
B = imgaussfilt(___ ,Name,Value)

Description
B = imgaussfilt(A) filters image A with a 2-D Gaussian smoothing kernel with
standard deviation of 0.5, and returns the filtered image in B.

You optionally can perform the filtering using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

B = imgaussfilt(A,sigma) filters image A with a 2-D Gaussian smoothing kernel with
standard deviation specified by sigma.

B = imgaussfilt(___ ,Name,Value) uses name-value pair arguments to control
aspects of the filtering.

Examples

Smooth image with Gaussian filter

Read image to be filtered.

I = imread('cameraman.tif');

Filter the image with a Gaussian filter with standard deviation of 2.

Iblur = imgaussfilt(I, 2);

 imgaussfilt

1-1531

Display all results for comparison.

subplot(1,2,1)
imshow(I)
title('Original Image');
subplot(1,2,2)
imshow(Iblur)
title('Gaussian filtered image, \sigma = 2')

Smooth Image with Gaussian Filter on a GPU

This example shows how to perform a Gaussian smoothing operation on a GPU.

1 Functions — Alphabetical List

1-1532

Read image to be filtered into a gpuArray.

I = gpuArray(imread('cameraman.tif'));

Perform Gaussian smoothing.

Iblur = imgaussfilt(I, 2);

Display all the results for comparison.

subplot(1,2,1), imshow(I), title('Original Image');

subplot(1,2,2), imshow(Iblur)
title('Gaussian filtered image, \sigma = 2')

Input Arguments
A — Image to be filtered
numeric array | gpuArray

Image to be filtered, specified as a numeric array of any dimension.

To perform the filtering using a GPU, specify A as a gpuArray that contains a numeric
array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

sigma — Standard deviation of the Gaussian distribution
0.5 (default) | positive number | 2-element vector of positive numbers

Standard deviation of the Gaussian distribution, specified as a positive number or a 2-
element vector of positive numbers. If you specify a scalar, then imgaussfilt uses a
square Gaussian kernel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 imgaussfilt

1-1533

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = imgaussfilt(A,'FilterSize',3);

FilterSize — Size of the Gaussian filter
positive, odd integer | 2-element vector of positive, odd integers

Size of the Gaussian filter, specified as a scalar or 2-element vector of positive, odd
integers. If you specify a scalar, then imgaussfilt uses a square filter. The default filter
size is 2*ceil(2*sigma)+1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Padding — Image padding
'replicate' (default) | numeric scalar | 'circular' | 'symmetric'

Image padding, specified as one of the following.

Value Description
numeric scalar Pad image with elements of constant value.
'circular' Pad with circular repetition of elements within the dimension.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad image with mirror reflections of itself.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

FilterDomain — Domain in which to perform filtering
'auto' (default) | 'spatial' | 'frequency'

Domain in which to perform filtering, specified as one of the following values:

Value Description
'auto' Perform convolution in the spatial or frequency domain, based on

internal heuristics.
'frequency' Perform convolution in the frequency domain.
'spatial' Perform convolution in the spatial domain.

1 Functions — Alphabetical List

1-1534

Data Types: char | string

Output Arguments
B — Filtered image
numeric array | gpuArray

Filtered image, returned as a numeric array of the same class and size as the input image,
A.

If the image is filtered using a GPU, then B is returned as a gpuArray containing a
numeric array.

Tips
• If image A contains Infs or NaNs, then the behavior of imgaussfilt for frequency

domain filtering is undefined. This can happen if you set the 'FilterDomain'
parameter to 'frequency' or if you set it to 'auto' and imgaussfilt uses
frequency domain filtering. To restrict the propagation of Infs and NaNs in the output
in a manner similar to imfilter, consider setting the 'FilterDomain' parameter to
'spatial'.

• If you set the 'FilterDomain' parameter to 'auto', then imgaussfilt uses an
internal heuristic to determine whether spatial or frequency domain filtering is faster.
This heuristic is machine dependent and may vary for different configurations. For
optimal performance, try both options, 'spatial' and 'frequency', to determine
the best filtering domain for your image and kernel size.

• If you do not specify the 'Padding' parameter, then imgaussfilt uses
'replicate' padding by default, which is different from the default used by
imfilter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 imgaussfilt

1-1535

Usage notes and limitations:

• If you set the FilterDomain parameter to 'frequency', this function supports the
generation of C code using MATLAB Coder. If you set the FilterDomain parameter
to 'spatial' and you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library. For more
information, see “Code Generation for Image Processing”.

• When generating code, all character vector input arguments must be compile-time
constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
fspecial | imfilter | imgaussfilt3

Introduced in R2015a

1 Functions — Alphabetical List

1-1536

imgaussfilt3
3-D Gaussian filtering of 3-D images

Syntax
B = imgaussfilt3(A)
B = imgaussfilt3(A,sigma)
B = imgaussfilt3(___ ,Name,Value)

Description
B = imgaussfilt3(A) filters 3-D image A with a 3-D Gaussian smoothing kernel with
standard deviation of 0.5, and returns the filtered image in B.

You optionally can perform the filtering using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

B = imgaussfilt3(A,sigma) filters 3-D image A with a 3-D Gaussian smoothing
kernel with standard deviation specified by sigma.

B = imgaussfilt3(___ ,Name,Value) uses name-value pair arguments to control
aspects of the filtering.

Examples

Smooth MRI volume with 3-D Gaussian filter

Load MRI data and display it.

vol = load('mri');
figure
montage(vol.D)
title('Original image volume')

 imgaussfilt3

1-1537

Smooth the image with a 3-D Gaussian filter.

siz = vol.siz;
vol = squeeze(vol.D);
sigma = 2;

volSmooth = imgaussfilt3(vol, sigma);

figure

1 Functions — Alphabetical List

1-1538

montage(reshape(volSmooth,siz(1),siz(2),1,siz(3)))
title('Gaussian filtered image volume')

Smooth MRI Volume with 3-D Gaussian Filter on a GPU

This example shows how to perform a 3-D Gaussian smoothing operation on a GPU.

Load MRI data to be filtered.

 imgaussfilt3

1-1539

vol = load('mri');
figure, montage(vol.D), title('Original image volume')

Create a gpuArray containing the volume data and perform Gaussian smoothing.

siz = vol.siz;
vol = gpuArray(squeeze(vol.D));
sigma = 2;

volSmooth = imgaussfilt3(vol, sigma);

Collect the smoothed data from the GPU (using the gather function) and display all the
results for comparison.

figure, montage(reshape(gather(volSmooth),siz(1),siz(2),1,siz(3)))
title('Gaussian filtered image volume')

Input Arguments
A — Image to be filtered
3-D numeric array | gpuArray

Image to be filtered, specified as a 3-D numeric array.

To perform the filtering using a GPU, specify A as a gpuArray that contains a 3-D
numeric array.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

sigma — Standard deviation of the Gaussian distribution
0.5 (default) | positive number | 3-element vector of positive numbers

Standard deviation of the Gaussian distribution, specified as positive number or a 3-
element vector of positive numbers. If sigma is a scalar, then imgaussfilt3 uses a
cubic Gaussian kernel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Functions — Alphabetical List

1-1540

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: volSmooth = imgaussfilt3(vol,sigma,'padding','circular');

FilterSize — Size of the Gaussian filter
positive, odd, integer | 3-element vector of positive, odd, integers

Size of the Gaussian filter, specified as a scalar or 3-element vector of positive, odd,
integers. If you specify a scalar, then imgaussfilt3 uses a cubic filter. The default filter
size is 2*ceil(2*sigma)+1.
Example: volSmooth = imgaussfilt3(vol,sigma,'FilterSize',5);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Padding — Image padding
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Image padding, specified as one of the following.

Value Description
numeric scalar Pad image with elements of constant value.
'circular' Pad with circular repetition of elements within the dimension.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad image with mirror reflections of itself.

Example: volSmooth = imgaussfilt3(vol,sigma,'padding','circular');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

FilterDomain — Domain in which to perform filtering
'auto' (default) | 'frequency' | 'spatial'

Domain in which to perform filtering, specified as one of the following values.

Filter Domain Description
'auto' Perform convolution in the spatial or frequency domain, based on

internal heuristics.

 imgaussfilt3

1-1541

Filter Domain Description
'frequency' Perform convolution in the frequency domain.
'spatial' Perform convolution in the spatial domain.

Example: volSmooth =
imgaussfilt3(vol,sigma,'FilterDomain','frequency');

Data Types: char | string

Output Arguments
B — Filtered image
numeric array | gpuArray

Filtered image, returned as a numeric array of the same class and size as input image.

If the image is filtered using a GPU, then B is returned as a gpuArray containing a
numeric array.

Tips
• If image A contains Infs or NaNs, then the behavior of imgaussfilt3 for frequency

domain filtering is undefined. This can happen if you set the 'FilterDomain'
parameter to 'frequency' or if you set it to 'auto' and imgaussfilt3 uses
frequency domain filtering. To restrict the propagation of Infs and NaNs in the output
in a manner similar to imfilter, consider setting the 'FilterDomain' parameter to
'spatial'.

• If you set the 'FilterDomain' parameter to 'auto', then imgaussfilt3 uses an
internal heuristic to determine whether spatial or frequency domain filtering is faster.
This heuristic is machine-dependent and may vary for different configurations. For
optimal performance, try both options, 'spatial' and 'frequency', to determine
the best filtering domain for your image and kernel size.

• If you do not specify the 'Padding' parameter, then imgaussfilt3 uses
'replicate' padding by default, which is different from the default used by
imfilter.

1 Functions — Alphabetical List

1-1542

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
imfilter | imgaussfilt

Introduced in R2015a

 imgaussfilt3

1-1543

imgca
Get current axes containing image

Syntax
ax = imgca
ax = imgca(fig)

Description
ax = imgca returns the current axes that contains an image. The current axes can be in
a regular figure window or in an Image Tool window. Note that the current axes that
contains an image might not be the same as the most recently accessed axes.

If no figure contains an axes that contains an image, then imgca creates a new axes.

ax = imgca(fig) returns the current axes that contains an image in the specified
figure.

Examples

Get Axes Containing Image

Read a grayscale image into the workspace.

I = imread('coins.png');
imshow(I)

1 Functions — Alphabetical List

1-1544

Convert the image into a binary image.

bw = imbinarize(I);
imshow(bw)

 imgca

1-1545

Fill holes in the binary objects, then calculate the centroids of the objects.

bw2 = imfill(bw,'holes');
s = regionprops(bw2, 'centroid');
centroids = cat(1,s.Centroid);

Display the original image and a plot of the centroids in the same figure window. Note
that the current axes contains the plot of the centroids, not the displayed image.

subplot(1,2,1)
imshow(I)
subplot(1,2,2)
plot(centroids(:,1),centroids(:,2),'*')
axis image

1 Functions — Alphabetical List

1-1546

The direction of the y-axis is reversed for images. For equivalent comparison of the image
and the plot of the centroids, reverse the y-axis direction of the plot. To get the most
recent axes, which contains the plot of the centroids, use the gca function.

h = gca;
h.YDir = 'reverse';

Use imgca to get the most recent axes containing an image. Note that this axes is not the
most recent axes. Overlay the centroids in red asterisks on the image.

hIm = imgca;
hold(hIm,'on')
plot(hIm,centroids(:,1),centroids(:,2),'r*')
hold(hIm,'off')

 imgca

1-1547

Input Arguments
fig — Figure
figure object

Figure, specified as a figure object.

Output Arguments
ax — Axes
axes object

Current axes containing an image, returned as an axes object.

1 Functions — Alphabetical List

1-1548

Tips
• imgca can be useful in returning the axes object in the Image Tool. You cannot

retrieve this axes using gca.

See Also
gca | gcf | imgcf | imhandles

Introduced before R2006a

 imgca

1-1549

imgcf
Get current figure containing image

Syntax
fig = imgcf

Description
fig = imgcf returns the current figure that contains an image. The figure may be a
regular figure window that contains at least one image or an Image Tool window.

If none of the figures currently open contains an image, then imgcf creates a new figure.

Examples

Use Figure Handle in Image Tool Window

Open an image in an Image Tool window.

I = imread('strawberries.jpg');
imtool(I)

1 Functions — Alphabetical List

1-1550

Use the handle of a figure containing an Image Tool window to center the window on the
screen.

sz = get(groot,'ScreenSize');
pos = get(imgcf,'Position');
pos = [(sz(3)-pos(3))/2 (sz(4)-pos(4))/2 pos(3) pos(4)];
set(imgcf,'Position',pos)

 imgcf

1-1551

Output Arguments
fig — Figure
figure object

Current figure containing an image, returned as a figure object.

1 Functions — Alphabetical List

1-1552

Tips
• imgcf can be useful in getting the figure used by the Image Tool. You cannot retrieve

the tool figure using gcf.

See Also
gca | gcf | imgca | imhandles

Introduced before R2006a

 imgcf

1-1553

imgetfile
Display Open Image dialog box

Syntax
[filename,user_canceled] = imgetfile
[filename,user_canceled] = imgetfile(Name,Value)

Description
[filename,user_canceled] = imgetfile displays the Open Image dialog box. Use
this dialog box in imaging applications to get the name of the image file a user wants to
open. The Open Image dialog box includes only files that use supported image file formats
(listed in imformats) and DICOM files. When the user selects a file and clicks Open,
imgetfile returns the full path of the file in filename and sets the user_canceled
return value to false. If the user clicks Cancel, imgetfile returns an empty character
vector ('') in filename and sets the user_canceled return value to true.

Note The Open Image dialog box is modal; it blocks the MATLAB command line until the
user responds.

[filename,user_canceled] = imgetfile(Name,Value) supports name-value
parameter arguments that you can use to control aspects of its behavior.

Examples

Get Name of File Selected from Specified Folder

Open the Open Image dialog box, and show the folder that contains the Image Processing
Toolbox sample images.

1 Functions — Alphabetical List

1-1554

sample_image_folder = fullfile(matlabroot,'toolbox/images/imdata');

[filename,user_canceled] = imgetfile('InitialPath',sample_image_folder)

Select an image in the list, and click Open. imgetfile returns the full path of the image
file selected as a character vector. The user_canceled return value is set to false.

filename =

C:\Program Files\MATLAB\R2016b\toolbox\images\imdata\cameraman.tif

user_canceled =

 logical

 imgetfile

1-1555

 0

Get Names of Multiple Files from Specified Folder

Open the Open Image dialog box. This example assumes you have a folder that contains
sample images on your system C: drive.

[filename,user_canceled] = imgetfile('InitialPath','C:\Temp\SampleImages','MultiSelect',true)

Select several images in the list using Shift+Click or Ctrl+Click.

Click Open. imgetfile returns a cell array of character vectors that contain the full
path of each image file. The user_canceled return value is set to false.

1 Functions — Alphabetical List

1-1556

filename =

 1×5 cell array

 Columns 1 through 3

 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…'

 Columns 4 through 5

 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…'

user_canceled =

 logical

 0

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [fname,user_canc] = imgetfile('InitialPath','C:\temp')

InitialPath — Folder displayed when the Open Image dialog box opens
character vector | string scalar

Folder displayed when the Open Image dialog box opens, specified as a string scalar or
character vector. If you do not specify an initial path, imgetfile opens the dialog box at
the last location where an image was successfully selected.
Data Types: char

MultiSelect — Selection mode
false (default) | true | 'on' | 'off'

 imgetfile

1-1557

Selection mode, specified as 'on' or 'off', or a Boolean value true or false. The
value true or 'on' turns on multiple selection, enabling a user to select more than one
image in the dialog box using Shift+click or Ctrl+click. The value false or 'off'
turns off multiple selection. If multiple selection is on, the output parameter filename is
a cell array of character vectors containing the full paths to the selected files.
Data Types: logical | char

Output Arguments
filename — Full path of image or images selected by the user
character vector | cell array of character vectors

Full path of image or images selected by the user, returned as a character vector or cell
array of character vectors. If the user clicked Cancel, filename is an empty character
vector ('').

user_canceled — User clicked Cancel
false | true

User clicked Cancel, returned as a Boolean scalar. The value is true if the user clicked
Cancel or false if the user selected an image or images.

See Also
imformats | imputfile | imtool | uigetfile

Introduced before R2006a

1 Functions — Alphabetical List

1-1558

imgradient
Gradient magnitude and direction of an image

Syntax
[Gmag,Gdir] = imgradient(I)
[Gmag,Gdir] = imgradient(I,method)
[Gmag,Gdir] = imgradient(Gx,Gy)

Description
[Gmag,Gdir] = imgradient(I) returns the gradient magnitude, Gmag, and the
gradient direction, Gdir, of the 2-D grayscale or binary image I.

You optionally can compute the gradient magnitude and direction using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

[Gmag,Gdir] = imgradient(I,method) returns the gradient magnitude and
direction using the specified method.

[Gmag,Gdir] = imgradient(Gx,Gy) returns the gradient magnitude and direction
from the directional gradients Gx and Gy in the x and y directions, respectively.

Examples

Calculate Gradient Magnitude and Direction Using Prewitt Method

Read an image into workspace.

I = imread('coins.png');

Calculate the gradient magnitude and direction, specifying the Prewitt gradient operator.

[Gmag, Gdir] = imgradient(I,'prewitt');

 imgradient

1-1559

Display the gradient magnitude and direction.

figure
imshowpair(Gmag, Gdir, 'montage');
title('Gradient Magnitude, Gmag (left), and Gradient Direction, Gdir (right), using Prewitt method')

Calculate Gradient Magnitude and Direction Using Directional Gradients

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients. By default, imgradientxy uses the Sobel
gradient operator.

[Gx,Gy] = imgradientxy(I);

Display the directional gradients.

imshowpair(Gx,Gy,'montage')
title('Directional Gradients Gx and Gy, Using Sobel Method')

1 Functions — Alphabetical List

1-1560

Calculate the gradient magnitude and direction using the directional gradients.

[Gmag,Gdir] = imgradient(Gx,Gy);

Display the gradient magnitude and direction.

imshowpair(Gmag,Gdir,'montage')
title('Gradient Magnitude (Left) and Gradient Direction (Right)')

 imgradient

1-1561

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

Input image, specified as a 2-D grayscale or 2-D binary image.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate' | 'roberts'

Gradient operator, specified as one of the following values.

1 Functions — Alphabetical List

1-1562

Method Description
'sobel' Sobel gradient operator. The gradient of a pixel is a

weighted sum of pixels in the 3-by-3 neighborhood. For
gradients in the vertical (y) direction, the weights are:

[1 2 1
 0 0 0
 -1 -2 -1]

In the x direction, the weights are transposed.
'prewitt' Prewitt gradient operator. The gradient of a pixel is a

weighted sum of pixels in the 3-by-3 neighborhood. For
gradients in the vertical (y) direction, the weights are:

[1 1 1
 0 0 0
 -1 -1 -1]

In the x direction, the weights are transposed.
'central' Central difference gradient. The gradient of a pixel is a

weighted difference of neighboring pixels. In the y
direction, dI/dy = (I(y+1) - I(y-1))/2.

'intermediate' Intermediate difference gradient. The gradient of a pixel
is the difference between an adjacent pixel and the
current pixel. In the y direction, dI/dy = I(y+1) -
I(y).

'roberts' Roberts gradient operator. The gradient of a pixel is the
difference between diagonally adjacent pixels. For
gradients in one direction, the weights are:

[1 0
 0 -1]

In the orthogonal direction, the weights are flipped along
the vertical axis.

Data Types: char | string

Gx — Horizontal gradient
numeric matrix

 imgradient

1-1563

Horizontal gradient, specified as a numeric matrix. The horizontal (x) axis points in the
direction of increasing column subscripts. You can use the imgradientxy function to
calculate Gx.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32

Gy — Vertical gradient
numeric matrix

Vertical gradient, specified as a numeric matrix of the same size as Gx. The vertical (y)
axis points in the direction of increasing row subscripts. You can use the imgradientxy
function to calculate Gy.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32

Output Arguments
Gmag — Gradient magnitude
numeric matrix

Gradient magnitude, returned as a numeric matrix of the same size as image I or the
directional gradients Gx and Gy. Gmag is of class double, unless the input image or
directional gradients are of class single, in which case it is of class single.
Data Types: double | single

Gdir — Gradient direction
numeric matrix

Gradient direction, returned as a numeric matrix of the same size as gradient magnitude
Gmag. Gdir contains angles in degrees within the range [-180, 180] measured
counterclockwise from the positive x-axis. (The x-axis points in the direction of increasing
column subscripts.) Gdir is of class double, unless the input image I or directional
gradients are of class single, in which case it is of class single.
Data Types: double | single

1 Functions — Alphabetical List

1-1564

Tips
• When applying the gradient operator at the boundaries of the image, values outside

the bounds of the image are assumed to equal the nearest image border value. This is
similar to the 'replicate' boundary option in imfilter.

Algorithms
The algorithmic approach taken in imgradient for each of the listed gradient methods is
to first compute directional gradients, Gx and Gy, in the x and y directions, respectively.
The horizontal (x) axis points in the direction of increasing column subscripts. The
vertical (y) axis points in the direction of increasing row subscripts. The gradient
magnitude and direction are then computed from their orthogonal components Gx and
Gy.

imgradient does not normalize the gradient output. If the range of the gradient output
image has to match the range of the input image, consider normalizing the gradient
image, depending on the method argument used. For example, with a Sobel kernel, the
normalization factor is 1/8, for Prewitt, it is 1/6, and for Roberts it is 1/2.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
edge | fspecial | imgradient3 | imgradientxy | imgradientxyz

Introduced in R2012b

 imgradient

1-1565

imgradient3
Find 3-D gradient magnitude and direction of images

Syntax
[Gmag,Gazimuth,Gelevation] = imgradient3(I)
[Gmag,Gazimuth,Gelevation] = imgradient3(I,method)
[Gmag,Gazimuth,Gelevation] = imgradient3(Gx,Gy,Gz)

Description
[Gmag,Gazimuth,Gelevation] = imgradient3(I) returns the gradient magnitude,
Gmag, gradient direction, Gazimuth, and gradient elevation Gelevation of the 3-D
grayscale or binary image I.

[Gmag,Gazimuth,Gelevation] = imgradient3(I,method) calculates the gradient
magnitude, direction, and elevation using the specified method.

[Gmag,Gazimuth,Gelevation] = imgradient3(Gx,Gy,Gz) calculates the gradient
magnitude, direction, and elevation from the directional gradients Gx, Gy, and Gz in the x,
y, and z directions, respectively.

Examples

Compute 3-D Gradient Magnitude and Direction Using Sobel Method

Read 3-D data into the workspace and prepare it for processing.

volData = load('mri');
sz = volData.siz;
vol = squeeze(volData.D);

Calculate the gradients.

[Gmag, Gaz, Gelev] = imgradient3(vol);

1 Functions — Alphabetical List

1-1566

Visualize the gradient magnitude as a montage.

figure,
montage(reshape(Gmag,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude')

 imgradient3

1-1567

Input Arguments
I — Input image
3-D grayscale image | 3-D binary image

Input image, specified as a 3-D grayscale image or 3-D binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

Value Meaning
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum of

pixels in the 3-by-3-by-3 neighborhood. For example, in the depth (z)
direction, the weights in the three planes are:

plane z-1 plane z plane z+1
[1 3 1
 3 6 3
 1 3 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -3 -1
 -3 -6 -3
 -1 -3 -1]

'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted sum of
pixels in the 3-by-3-by-3 neighborhood. For example, in the depth (z)
direction, the weights in the three planes are:

plane z-1 plane z plane z+1
[1 1 1
 1 1 1
 1 1 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -1 -1
 -1 -1 -1
 -1 -1 -1]

'central' Central difference gradient. The gradient of a pixel is a weighted
difference of neighboring pixels. For example, in the depth (z) direction,
dI/dz = (I(z+1) - I(z-1))/2.

'intermedi
ate'

Intermediate difference gradient. The gradient of a pixel is the difference
between an adjacent pixel and the current pixel. For example, in the
depth (z) direction, dI/dz = I(z+1) - I(z).

1 Functions — Alphabetical List

1-1568

When applying the gradient operator at the boundaries of the image, imgradient3
assumes values outside the bounds of the image equal the nearest image border value.
This behavior is similar to the 'replicate' boundary option in imfilter.
Data Types: char | string

Gx — Horizontal gradient
3-D numeric array

Horizontal gradient, specified as a 3-D numeric array. The horizontal (x) axis points in the
direction of increasing column subscripts. You can use the imgradientxyz function to
calculate Gx.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Gy — Vertical gradient
3-D numeric array

Vertical gradient, specified as a 3-D numeric array of the same size as Gx. The vertical (y)
axis points in the direction of increasing row subscripts. You can use the imgradientxyz
function to calculate Gy.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Gz — Depth gradient
3-D numeric array

Depth gradient, specified as a 3-D numeric array of the same size as Gx. The depth (z)
axis points in the direction of increasing plane subscripts. You can use the
imgradientxyz function to calculate Gz.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
Gmag — Magnitude of the gradient vector
3-D numeric array

Magnitude of the gradient vector, returned as a 3-D numeric array of the same size as
image I or the directional gradients, Gx, Gy, and Gz.

 imgradient3

1-1569

Gmag is of class double, unless the input image or any of the directional gradients are of
class single. In this case, Gmag is of class single.

Gazimuth — Azimuthal angle
3-D numeric array

Azimuthal angle, returned as a 3-D numeric array of the same size as the gradient
magnitude, Gmag. Gazimuth contains angles in degrees within the range [-180, 180]
measured between positive x-axis and the projection of the point on the x-y plane.

Gazimuth is of class double, unless the input image or any of the directional gradients
are of class single. In this case, Gmag is of class single.

1 Functions — Alphabetical List

1-1570

Gazimuth and Gelevation

Gelevation — Gradient elevation
3-D numeric array

Gradient elevation, returned as a 3-D numeric array of the same size as the gradient
magnitude, Gmag. Gelevation contains angles in degrees within the range [-90, 90]
measured between the radial line and the x-y plane.

 imgradient3

1-1571

Gelevation is of class double, unless the input image or any of the directional
gradients are of class single. In this case, Gmag is of class single.

Algorithms
imgradient3 does not normalize the gradient output. If the range of the gradient output
image has to match the range of the input image, consider normalizing the gradient
image, depending on the method argument used. For example, with a Sobel kernel, the
normalization factor is 1/44 and for Prewitt, the normalization factor is 1/18.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgradient3 supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the input argument method must be a compile-time constant.

See Also
imgradient | imgradientxy | imgradientxyz

Introduced in R2016a

1 Functions — Alphabetical List

1-1572

imgradientxy
Directional gradients of an image

Syntax
[Gx,Gy] = imgradientxy(I)
[Gx,Gy] = imgradientxy(I,method)

Description
[Gx,Gy] = imgradientxy(I) returns the directional gradients, Gx and Gy of the
grayscale or binary image I.

You optionally can compute the directional gradients using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

[Gx,Gy] = imgradientxy(I,method) returns the directional gradients using the
specified method.

Examples

Calculate Directional Gradients Using Prewitt Method

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients using the Prewitt gradient operator.

[Gx, Gy] = imgradientxy(I,'prewitt');

Display the directional gradients.

 imgradientxy

1-1573

figure
imshowpair(Gx, Gy, 'montage');
title('Directional Gradients: x-direction, Gx (left), y-direction, Gy (right), using Prewitt method')

Calculate Gradient Magnitude and Direction Using Directional Gradients

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients. By default, imgradientxy uses the Sobel
gradient operator.

[Gx,Gy] = imgradientxy(I);

Display the directional gradients.

imshowpair(Gx,Gy,'montage')
title('Directional Gradients Gx and Gy, Using Sobel Method')

1 Functions — Alphabetical List

1-1574

Calculate the gradient magnitude and direction using the directional gradients.

[Gmag,Gdir] = imgradient(Gx,Gy);

Display the gradient magnitude and direction.

imshowpair(Gmag,Gdir,'montage')
title('Gradient Magnitude (Left) and Gradient Direction (Right)')

 imgradientxy

1-1575

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

Input image, specified as a 2-D grayscale image or 2-D binary image.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

1 Functions — Alphabetical List

1-1576

Method Description
'sobel' Sobel gradient operator. The gradient of a pixel is a

weighted sum of pixels in the 3-by-3 neighborhood. In the
vertical (y) direction, the weights are:

[1 2 1
 0 0 0
 -1 -2 -1]

In the x direction, the weights are transposed.
'prewitt' Prewitt gradient operator. The gradient of a pixel is a

weighted sum of pixels in the 3-by-3 neighborhood. In the
vertical (y) direction, the weights are:

[1 1 1
 0 0 0
 -1 -1 -1]

In the x direction, the weights are transposed.
'central' Central difference gradient. The gradient of a pixel is a

weighted difference of neighboring pixels. In the y
direction, dI/dy = (I(y+1) - I(y-1))/2.

'intermediate' Intermediate difference gradient. The gradient of a pixel
is the difference between an adjacent pixel and the
current pixel. In the y direction, dI/dy = I(y+1) -
I(y).

Data Types: char | string

Output Arguments
Gx — Horizontal gradient
numeric matrix

Horizontal gradient, returned as a numeric matrix of the same size as image I. The
horizontal (x) axis points in the direction of increasing column subscripts. Gx is of class
double, unless the input image I is of class single, in which case Gx is of class single.
Data Types: single | double

 imgradientxy

1-1577

Gy — Vertical gradient
numeric matrix

Vertical gradient, returned as a numeric matrix of the same size as image I. The vertical
(y) axis points in the direction of increasing row subscripts. Gy is of class double, unless
the input image I is of class single, in which case Gy is of class single.
Data Types: single | double

Tips
• When applying the gradient operator at the boundaries of the image, values outside

the bounds of the image are assumed to equal the nearest image border value.

Algorithms
The algorithmic approach is to compute directional gradients with respect to the x-axis
and y-axis. The x-axis is defined along the columns going right and the y-axis is defined
along the rows going down.

imgradientxy does not normalize the gradient output. If the range of the gradient
output image has to match the range of the input image, consider normalizing the
gradient image, depending on the method argument used. For example, with a Sobel
kernel, the normalization factor is 1/8, and for Prewitt, it is 1/6.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

1 Functions — Alphabetical List

1-1578

See Also
edge | fspecial | imgradient | imgradient3 | imgradientxyz

Introduced in R2012b

 imgradientxy

1-1579

imgradientxyz
Find the directional gradients of a 3-D image

Syntax
[Gx,Gy,Gz] = imgradientxyz(I)
[Gx,Gy,Gz] = imgradientxyz(I,method)

Description
[Gx,Gy,Gz] = imgradientxyz(I) returns the directional gradients Gx, Gy, and Gz of
the 3-D grayscale or binary image I.

[Gx,Gy,Gz] = imgradientxyz(I,method) calculates the directional gradients using
the specified method.

Examples

Compute 3-D Directional Image Gradients Using Sobel Method

Read 3-D data and prepare it for processing.

volData = load('mri');
sz = volData.siz;
vol = squeeze(volData.D);

Calculate the directional gradients.

[Gx, Gy, Gz] = imgradientxyz(vol);

Visualize the directional gradients as a montage.

figure, montage(reshape(Gx,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along X')

1 Functions — Alphabetical List

1-1580

figure, montage(reshape(Gy,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along Y')

 imgradientxyz

1-1581

figure, montage(reshape(Gz,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along Z')

1 Functions — Alphabetical List

1-1582

Input Arguments
I — Input image
3-D grayscale image | 3-D binary image

Input image, specified as a 3-D grayscale image or 3-D binary image.

 imgradientxyz

1-1583

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

Value Meaning
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum of

pixels in the 3-by-3-by-3 neighborhood. For example, in the depth (z)
direction, the weights in the three planes are:

plane z-1 plane z plane z+1
[1 3 1
 3 6 3
 1 3 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -3 -1
 -3 -6 -3
 -1 -3 -1]

'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted sum of
pixels in the 3-by-3-by-3 neighborhood. For example, in the depth (z)
direction, the weights in the three planes are:

plane z-1 plane z plane z+1
[1 1 1
 1 1 1
 1 1 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -1 -1
 -1 -1 -1
 -1 -1 -1]

'central' Central difference gradient. The gradient of a pixel is a weighted
difference of neighboring pixels. For example, in the depth (z) direction,
dI/dz = (I(z+1) - I(z-1))/2.

'intermedi
ate'

Intermediate difference gradient. The gradient of a pixel is the difference
between an adjacent pixel and the current pixel. For example, in the
depth (z) direction, dI/dz = I(z+1) - I(z).

When applying the gradient operator at the boundaries of the image, imgradientxyz
assumes values outside the bounds of the image are equal to the nearest image border
value. This behavior is similar to the 'replicate' boundary option in imfilter.
Data Types: char | string

1 Functions — Alphabetical List

1-1584

Output Arguments
Gx — Horizontal gradient
3-D numeric array

Horizontal gradient, returned as a numeric matrix of the same size as image I. The
horizontal (x) axis points in the direction of increasing column subscripts. Gx is of class
double, unless the input image I is of class single, in which case Gx is of class single.
Data Types: single | double

Gy — Vertical gradient
3-D numeric array

Vertical gradient, returned as a numeric matrix of the same size as image I. The vertical
(y) axis points in the direction of increasing row subscripts. Gy is of class double, unless
the input image I is of class single, in which case Gy is of class single.
Data Types: single | double

Gz — Depth gradient
3-D numeric array

Depth gradient, returned as a 3-D numeric array of the same size as image I. The depth
(z) axis points in the direction of increasing plane subscripts. Gz is of class double,
unless the input image I is of class single, in which case Gz is of class single.

Algorithms
imgradientxyz does not normalize the gradient output. If the range of the gradient
output image has to match the range of the input image, consider normalizing the
gradient image, depending on the method argument used. For example, with a Sobel
kernel, the normalization factor is 1/44, for Prewitt, the normalization factor is 1/18.

 imgradientxyz

1-1585

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgradientxyz supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

• When generating code, the input argument method must be a compile-time constant.

See Also
imgradient | imgradient3 | imgradientxy

Introduced in R2016a

1 Functions — Alphabetical List

1-1586

imguidedfilter
Guided filtering of images

Syntax
B = imguidedfilter(A,G)
B = imguidedfilter(A)
B = imguidedfilter(___ ,Name,Value)

Description
B = imguidedfilter(A,G) filters binary, grayscale, or RGB image A using the guided
filter, where the filtering process is guided by image G.

B = imguidedfilter(A) filters input image A under self-guidance, using A itself as the
guidance image. This can be used for edge-preserving smoothing of image A.

B = imguidedfilter(___ ,Name,Value) filters the image A using name-value pairs
to control aspects of guided filtering.

Examples

Perform Edge-Preserving Smoothing Using Guided Filtering

This example shows how to perform edge-preserving smoothing using a guided filter.

Read an image into the workspace. Display the image.

A = imread('pout.tif');
imshow(A);

 imguidedfilter

1-1587

Smooth the image using imguidedfilter. In this syntax, imguidedfilter uses the
image itself as the guidance image.

Iguided = imguidedfilter(A);

For comparison, smooth the original image using a gaussian filter defined by
imgaussfilt. Set the standard deviation of the filter to 2.5 so that the degree of
smoothing approximately matches that of the guided filter.

Igaussian = imgaussfilt(A,2);

Display the result of guided filtering and the result of gaussian filtering.

imshowpair(Iguided,Igaussian,'montage');

1 Functions — Alphabetical List

1-1588

Observe that the flat regions of the two filtered images, such as the jacket and the face,
have similar amounts of smoothing. However, the guided filtered image better preserves
the sharpness of edges, such as around the trellis and the collar of the white shirt.

Input Arguments
A — Image to be filtered
binary image | grayscale image | RGB image

Image to be filtered, specified as a binary, grayscale, or RGB image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

G — Image to use as a guide during filtering
binary image | grayscale image | RGB image

 imguidedfilter

1-1589

Image to use as a guide during filtering, specified as a binary, grayscale, or RGB image of
the same size as image A.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Ismooth = imguidedfilter(A,'NeighborhoodSize',[4 4]);

NeighborhoodSize — Size of the rectangular neighborhood around each pixel
used in guided filtering
[5 5] (default) | positive integer | 2-element vector of positive integers

Size of the rectangular neighborhood around each pixel used in guided filtering, specified
as a positive integer or a 2-element vector of positive integers. If you specify a scalar
value, such as Q, then the neighborhood is a square of size [Q Q]. Do not specify a value
greater than the size of the image.
Example: Ismooth = imguidedfilter(A,'NeighborhoodSize',[7 7]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

DegreeOfSmoothing — Amount of smoothing
positive number

Amount of smoothing in the output image, specified as a positive number. If you specify a
small value, only neighborhoods with small variance (uniform areas) will get smoothed
and neighborhoods with larger variance (such as around edges) will not be smoothed. If
you specify a larger value, high variance neighborhoods, such as stronger edges, will get
smoothed in addition to the relatively uniform neighborhoods. Start with the default
value, check the results, and adjust the default up or down to achieve the effect you
desire.

If you specify a guide image G, then the default value of degreeOfSmoothing depends
on the data type of G, and is calculated as 0.01*diff(getrangefromclass(G)).^2.
For example, the default degree of smoothing is 650.25 for images of data type uint8,

1 Functions — Alphabetical List

1-1590

and the default is 0.01 for images of data type double with pixel values in the range [0,
1]. If you do not specify a guide image, then the default value depends similarly on the
data type of image A.
Example: Ismooth = imguidedfilter(A,'DegreeOfSmoothing',650.25);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and data type as A

Tips
• The parameter DegreeOfSmoothing specifies a soft threshold on variance for the

given neighborhood. If a pixel's neighborhood has variance much lower than the
threshold, it will see some amount of smoothing. If a pixel's neighborhood has variance
much higher than the threshold it will have little to no smoothing.

• Input images A and G can be of different classes. If either A or G is of class integer or
logical, then imguidedfilter converts them to floating-point precision for internal
computation.

• Input images A and G can have different number of channels.

• If A is an RGB image and G is a grayscale or binary image, then imguidedfilter
uses G for guidance for all the channels of A independently.

• If both A and G are RGB images, then imguidedfilter uses each channel of G for
guidance for the corresponding channel of A, i.e. plane-by-plane behavior.

• If A is a grayscale or binary image and G is an RGB image, then imguidedfilter
uses all the three channels of G for guidance (color statistics) for filtering A.

 imguidedfilter

1-1591

References
[1] Kaiming He, Jian Sun, Xiaoou Tang, Guided Image Filtering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Volume 35, Issue 6, pp. 1397-1409,
June 2013

See Also
edge | imfilter | imsharpen

Topics
“Perform Flash/No-flash Denoising with Guided Filter”
“What is Guided Image Filtering?”

Introduced in R2014a

1 Functions — Alphabetical List

1-1592

imhandles
Get all image objects

Syntax
imageobj = imhandles(parentobj)

Description
imageobj = imhandles(parentobj) returns all of the image objects whose ancestor
is parentobj. parentobj can be an array of valid figures, axes, images, or uipanel
objects.

imhandles ignores colorbars.

Note
imhandles returns an error if the image objects do not have the same figure as their
parent.

Examples
Return the image object in the current axes.

figure, imshow('moon.tif');
imageobj = imhandles(gca)

Display two images in a figure and use imhandles to get both of the image objects in the
figure.

subplot(1,2,1), imshow('autumn.tif');
subplot(1,2,2), imshow('glass.png');
imageobjs = imhandles(gcf)

 imhandles

1-1593

See Also
imgca | imgcf

Introduced before R2006a

1 Functions — Alphabetical List

1-1594

imhist
Histogram of image data

Syntax
[counts,binLocations] = imhist(I)
[counts,binLocations] = imhist(I,n)
[counts,binLocations] = imhist(X,map)

imhist(___)

Description
[counts,binLocations] = imhist(I) calculates the histogram for the grayscale
image I. The imhist function returns the histogram counts in counts and the bin
locations in binLocations. The number of bins in the histogram is determined by the
image type.

You optionally can compute the histogram counts and bin locations using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

[counts,binLocations] = imhist(I,n) specifies the number of bins, n, used to
calculate the histogram.

[counts,binLocations] = imhist(X,map) calculates the histogram for the indexed
image X with colormap map. The histogram has one bin for each entry in the colormap.

This syntax is not supported on a GPU.

imhist(___) displays a plot of the histogram. If the input image is an indexed image,
then the histogram shows the distribution of pixel values above a colorbar of the
colormap map.

If you use this syntax when I is a gpuArray, then no plot is displayed. imhist returns
the histogram counts in ans and does not return the histogram bin locations.

 imhist

1-1595

Examples

Calculate Histogram

Read a grayscale image into the workspace.

I = imread('pout.tif');

Display a histogram of the image. Since I is grayscale, by default the histogram will have
256 bins.

imhist(I)

1 Functions — Alphabetical List

1-1596

Display the Histogram of a 3-D Intensity Image

Load a 3-D dataset.

load mristack

Display the histogram of the data. Since the image is grayscale, imhist uses 256 bins by
default.

imhist(mristack)

 imhist

1-1597

Calculate Histogram on a GPU

Create array of class uint16.

I = gpuArray(imread('pout.tif'));

Calculate histogram. Because imhist does not automatically display the plot of the
histogram when run on a GPU, this example uses stem to plot the histogram.

[counts,x] = imhist(I);
stem(x,counts);

Input Arguments
I — Grayscale image
numeric array | gpuArray

Grayscale image, specified as a numeric array of any dimension.

To compute the histogram counts and bin locations using a GPU, specify I as a gpuArray
that contains a numeric array.
Example: I = imread('cameraman.tif');
Example: I = gpuArray(imread('cameraman.tif'));
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

n — Number of bins
256 (for grayscale images) (default) | numeric scalar

Number of bins, specified as a numeric scalar. If I is a grayscale image, then imhist
uses a default value of 256 bins. If I is a binary image, then imhist uses two bins.
Example: [counts,x] = imhist(I,50);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Indexed image
numeric array

Indexed image, specified as a numeric array of any dimension.

1 Functions — Alphabetical List

1-1598

Example: [X,map] = imread('trees.tif');
Data Types: single | double | uint8 | uint16 | logical

map — Colormap associated with indexed image
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix. The colormap
must be at least as long as the largest index in X.
Example: [X,map] = imread('trees.tif');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Output Arguments
counts — Histogram counts
numeric array | gpuArray

Histogram counts, returned as a numeric array. If the histogram is computed for an
indexed image, X, then the length of counts is the same as the length of the colormap,
map.

If the histogram is computed using a GPU, then counts is returned as a gpuArray
containing a numeric array.

binLocations — Bin locations
numeric array | gpuArray

Bin locations, returned as a numeric array.

If the histogram is computed using a GPU, then binLocations is returned as a
gpuArray containing a numeric array.

Tips
• For grayscale images, the n bins of the histogram are each half-open intervals of width

A/(n−1). In particular, the pth bin is the half-open interval

A(p− 1.5)
(n− 1) − B ≤ x < A(p− 0.5)

(n− 1) − B,

 imhist

1-1599

where x is the intensity value. The scale factor A and offset B depend on the type of
the image class as follows:

 doubl
e single int8 int16 int32 uint8 uint16 uint32 logical

A 1 1 255 65535 42949
67295 255 65535 42949

67295 1

B 0 0 128 32768 21474
83648 0 0 0 0

• To display the histogram from counts and binLocations, use the command
stem(binLocations,counts).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhist supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imhist generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• If the first input is a binary image, then n must be a scalar constant of value 2 at
compile time.

• Nonprogrammatic syntaxes are not supported. For example, the syntax imhist(I),
where imhist displays the histogram, is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Functions — Alphabetical List

1-1600

Usage notes and limitations:

• When running on a GPU, imhist does not display the histogram. To display the
histogram, use stem(binLocations,counts).

For more information, see “Image Processing on a GPU”.

See Also
histeq | histogram | stem

Introduced before R2006a

 imhist

1-1601

imhistmatch
Adjust histogram of 2-D image to match histogram of reference image

Syntax
J = imhistmatch(I,ref)
J = imhistmatch(I,ref,nbins)
J = imhistmatch(___ ,Name,Value)
[J,hgram] = imhistmatch(___)

Description
J = imhistmatch(I,ref) transforms the 2-D grayscale or truecolor image I returning
output image J whose histogram approximately matches the histogram of the reference
image ref.

• If both I and ref are truecolor RGB images, then imhistmatch matches each color
channel of I independently to the corresponding color channel of ref.

• If I is a truecolor RGB image and ref is a grayscale image, then imhistmatch
matches each channel of I against the single histogram derived from ref.

• If I is a grayscale image, then ref must also be a grayscale image.

Images I and ref can be any of the permissible data types and need not be equal in size.

J = imhistmatch(I,ref,nbins) uses nbins equally spaced bins within the
appropriate range for the given image data type. The returned image J has no more than
nbins discrete levels.

• If the data type of the image is either single or double, then the histogram range is
[0, 1].

• If the data type of the image is uint8, then the histogram range is [0, 255].
• If the data type of the image is uint16, then the histogram range is [0, 65535].
• If the data type of the image is int16, then the histogram range is [-32768, 32767].

1 Functions — Alphabetical List

1-1602

J = imhistmatch(___ ,Name,Value) uses name-value pairs to change the behavior
of the histogram matching algorithm.

[J,hgram] = imhistmatch(___) returns the histogram of the reference image ref
used for matching in hgram. hgram is a 1-by-nbins (when ref is grayscale) or a 3-by-
nbins (when ref is truecolor) matrix, where nbins is the number of histogram bins.
Each row in hgram stores the histogram of a single color channel of ref.

Examples

Match Histogram of Aerial Images

These aerial images, taken at different times, represent overlapping views of the same
terrain in Concord, Massachusetts. This example demonstrates that input images A and
Ref can be of different sizes and image types.

Load an RGB image and a reference grayscale image.

A = imread('concordaerial.png');
Ref = imread('concordorthophoto.png');

Get the size of A.

size(A)

ans = 1×3

 2036 3060 3

Get the size of Ref.

size(Ref)

ans = 1×2

 2215 2956

Note that image A and Ref are different in size and type. Image A is a truecolor RGB
image, while image Ref is a grayscale image. Both images are of data type uint8.

 imhistmatch

1-1603

Generate the histogram matched output image. The example matches each channel of A
against the single histogram of Ref. Output image B takes on the characteristics of image
A - it is an RGB image whose size and data type is the same as image A. The number of
distinct levels present in each RGB channel of image B is the same as the number of bins
in the histogram built from grayscale image Ref. In this example, the histogram of Ref
and B have the default number of bins, 64.

B = imhistmatch(A,Ref);

Display the RGB image A, the reference image Ref, and the histogram matched RGB
image B. The images are resized before display.

imshow(A)
title('RGB Image with Color Cast')

1 Functions — Alphabetical List

1-1604

imshow(Ref)
title('Reference Grayscale Image')

imshow(B)
title('Histogram Matched RGB Image')

 imhistmatch

1-1605

Histogram-Match Image Using Polynomial Method

Read a color image and a reference image. To demonstrate the polynomial method, assign
the reference image to be the darker of the two images.

I = imread('office_4.jpg');
ref = imread('office_2.jpg');
montage({I,ref})
title('Input Image (Left) vs Reference Image (Right)');

1 Functions — Alphabetical List

1-1606

Use the polynomial method to adjust the intensity of image I so that it matches the
histogram of reference image ref. For comparison, also adjust the intensity of image I
using the uniform method.

J = imhistmatch(I,ref,'method','polynomial');
K = imhistmatch(I,ref,'method','uniform');
montage({J,K})
title('Histogram-Matched Image Using Polynomial Method (Left) vs Uniform Method (Right)');

 imhistmatch

1-1607

The histogram-matched image using the uniform method introduces false colors in the
sky and road. The histogram-matched image using the polynomial method does not
exhibit this artifact.

Multiple N Values Applied to RGB Images

In this example, you will see the effect on output image J of varying the number of
equally spaced bins in the target histogram of image Ref, from its default value 64 to the
maximum value of 256 for uint8 pixel data.

The following images were taken with a digital camera and represent two different
exposures of the same scene.

 A = imread('office_2.jpg'); % Dark Image
 Ref = imread('office_4.jpg'); % Reference image

Image A, being the darker image, has a preponderance of its pixels in the lower bins. The
reference image, Ref, is a properly exposed image and fully populates all of the available
bins values in all three RGB channels: as shown in the table below, all three channels
have 256 unique levels for 8–bit pixel values.

1 Functions — Alphabetical List

1-1608

The unique 8-bit level values for the red channel is 205 for A and 256 for Ref. The unique
8-bit level values for the green channel is 193 for A and 256 for Ref. The unique 8-bit
level values for the blue channel is 224 for A and 256 for Ref.

The example generates the output image B using three different values of nbins: 64, 128
and 256. The objective of function imhistmatch is to transform image A such that the
histogram of output image B is a match to the histogram of Ref built with nbins equally

 imhistmatch

1-1609

spaced bins. As a result, nbins represents the upper limit of the number of discrete data
levels present in image B.

[B64, hgram] = imhistmatch(A, Ref, 64);
[B128, hgram] = imhistmatch(A, Ref, 128);
[B256, hgram] = imhistmatch(A, Ref, 256);

1 Functions — Alphabetical List

1-1610

The number of unique 8-bit level values for each output image is described in the table.
Note that as nbins increases, the number of levels in each RGB channel of output image
B also increases.

nbins Output Image Number of unique
histogram values

64 B64 57
128 B128 101
256 B256 134

Match Histogram of 16-Bit Grayscale MRI Image

This example shows how to perform histogram matching with different numbers of bins.

Load a 16-bit DICOM image of a knee imaged via MRI.

K = dicomread('knee1.dcm'); % read in original 16-bit image
LevelsK = unique(K(:)); % determine number of unique code values
disp(['image K: ',num2str(length(LevelsK)),' distinct levels']);

image K: 448 distinct levels

disp(['max level = ' num2str(max(LevelsK))]);

max level = 473

disp(['min level = ' num2str(min(LevelsK))]);

min level = 0

All 448 discrete values are at low code values, which causes the image to look dark. To
rectify this, scale the image data to span the entire 16-bit range of [0, 65535].

Kdouble = double(K); % cast uint16 to double
kmult = 65535/(max(max(Kdouble(:)))); % full range multiplier
Ref = uint16(kmult*Kdouble); % full range 16-bit reference image

Darken the reference image Ref to create an image A that can be used in the histogram
matching operation.

%Build concave bow-shaped curve for darkening |Ref|.
ramp = [0:65535]/65535;

 imhistmatch

1-1611

ppconcave = spline([0 .1 .50 .72 .87 1],[0 .025 .25 .5 .75 1]);
Ybuf = ppval(ppconcave, ramp);
Lut16bit = uint16(round(65535*Ybuf));
% Pass image |Ref| through a lookup table (LUT) to darken the image.
A = intlut(Ref,Lut16bit);

View the reference image Ref and the darkened image A. Note that they have the same
number of discrete code values, but differ in overall brightness.

subplot(1,2,1)
imshow(Ref)
title('Ref: Reference Image')
subplot(1,2,2)
imshow(A)
title('A: Darkened Image');

1 Functions — Alphabetical List

1-1612

Generate histogram-matched output images using histograms with different number of
bins. First use the default number of bins, 64. Then use the number of values present in
image A, 448 bins.

B16bit64 = imhistmatch(A(:,:,1),Ref(:,:,1)); % default: 64 bins

N = length(LevelsK); % number of unique 16-bit code values in image A.
B16bitUniq = imhistmatch(A(:,:,1),Ref(:,:,1),N);

View the results of the two histogram matching operations.

figure
subplot(1,2,1)
imshow(B16bit64)

 imhistmatch

1-1613

title('B16bit64: 64 bins')
subplot(1,2,2)
imshow(Ref)
title(['B16bitUniq: ',num2str(N),' bins'])

Input Arguments
I — Input image
2-D truecolor image | 2-D grayscale image

Input image to be transformed, specified as a 2-D truecolor or grayscale image. The
returned image will take the data type class of the input image.

1 Functions — Alphabetical List

1-1614

Data Types: single | double | int16 | uint8 | uint16

ref — Reference image whose histogram is the reference histogram
2-D truecolor image | 2-D grayscale image

Reference image whose histogram is the reference histogram, specified as a 2-D truecolor
or grayscale image. The reference image provides the equally spaced nbins bin
reference histogram which output image J is trying to match.
Data Types: single | double | int16 | uint8 | uint16

nbins — Number of equally spaced bins in reference histogram
64 (default) | positive integer

Number of equally spaced bins in reference histogram, specified as a positive integer. In
addition to specifying the number of equally spaced bins in the histogram for image ref,
nbins also represents the upper limit of the number of discrete data levels present in
output image J.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imhistmatch(I,ref,'Method','polynomial') matches the histogram of
image I to that of reference image ref using the polynomial mapping technique.

Method — Mapping technique
'uniform' (default) | 'polynomial'

Mapping technique used to map the histogram of ref to image I, specified as the comma-
separated pair consisting of 'Method' and one of these values:

• 'uniform' — Use a histogram-based intensity function and histogram equalization.
• 'polynomial' — Calculate a cubic Hermite polynomial mapping function from the

cumulative histograms of the source and reference images. The polynomial method is
useful when the reference image is darker than the input image. In this situation, the
polynomial method gives a smoother color transition than the uniform method.

 imhistmatch

1-1615

Output Arguments
J — Output image
2-D truecolor RGB image | 2-D grayscale image

Output image, returned as a 2-D truecolor or grayscale image. The output image is
derived from image I whose histogram is an approximate match to the histogram of input
image ref built with nbins equally-spaced bins. Image J is of the same size and data
type as input image I. Input argument nbins represents the upper limit of the number of
discrete levels contained in image J.
Data Types: single | double | int16 | uint8 | uint16

hgram — Histogram counts derived from reference image ref
1-by-nbins vector | 3-by-nbins matrix

Histogram counts derived from reference image ref, specified as a vector or matrix.
When ref is a truecolor image, hgram is a 3-by-nbins matrix. When ref is a grayscale
image, hgram is a 1-by-nbins vector.
Data Types: double

Algorithms
The objective of imhistmatch is to transform image I such that the histogram of image
J matches the histogram derived from image ref. It consists of nbins equally spaced
bins which span the full range of the image data type. A consequence of matching
histograms in this way is that nbins also represents the upper limit of the number of
discrete data levels present in image J.

An important behavioral aspect of this algorithm to note is that as nbins increases in
value, the degree of rapid fluctuations between adjacent populated peaks in the
histogram of image J tends to increase. This can be seen in the following histogram plots
taken from the 16–bit grayscale MRI example.

1 Functions — Alphabetical List

1-1616

An optimal value for nbins represents a trade-off between more output levels (larger
values of nbins) while minimizing peak fluctuations in the histogram (smaller values of
nbins).

See Also
histeq | imadjust | imhist | imhistmatchn

Introduced in R2012b

 imhistmatch

1-1617

imhistmatchn
Adjust histogram of N-D image to match histogram of reference image

Syntax
B = imhistmatchn(A,ref)
B = imhistmatchn(A,ref,nbins)
[B,hgram] = imhistmatchn(___)

Description
B = imhistmatchn(A,ref) transforms the N-D grayscale image A and returns output
image B whose histogram approximately matches the histogram of the reference image
ref. Both A and ref must be grayscale images, but they do not need to have the same
data type, size, or number of dimensions.

B = imhistmatchn(A,ref,nbins) uses nbins equally spaced bins within the
appropriate range for the given image data type. The returned image B has no more than
nbins discrete levels.

If the data type of the image is:

• single or double, the histogram range is [0, 1].
• uint8, the histogram range is [0, 255].
• uint16, the histogram range is [0, 65535].
• int16, the histogram range is [-32768, 32767].

[B,hgram] = imhistmatchn(___) returns the histogram of the reference image ref
used for matching in hgram. hgram is a 1-by-nbins vector, where nbins is the number of
histogram bins.

Examples

1 Functions — Alphabetical List

1-1618

Match Histograms of Multidimensional Images

Load an N-D grayscale image into the workspace. Also load a grayscale image to provide
a reference histogram.

load mri D
load mristack

Display the original volume as slices.

figure
montage(D,'DisplayRange',[])
title('Original 3-D Image')

 imhistmatchn

1-1619

Reshape the reference as a stack of grayscale slices for display.

ref = reshape(mristack,[256,256,1,21]);

Display the reference volume as slices. To display correctly on the screen, the reference
volume is downsized by a factor of 0.5 using imresize.

ref_downsized = imresize(ref,0.5);
figure
montage(ref_downsized,'DisplayRange',[])
title('Reference 3-D Image')

1 Functions — Alphabetical List

1-1620

Match the histogram of D to the histogram of the fullsize ref.

Dmatched = imhistmatchn(D,ref);

 imhistmatchn

1-1621

Display the output. Observe that the brightness levels of the output more closely match
the reference image than the original image.

figure
montage(Dmatched,'DisplayRange',[])
title('Histogram Matched MRI')

1 Functions — Alphabetical List

1-1622

Input Arguments
A — Input image
N-D grayscale image

Input image to be transformed, specified as an N-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image whose histogram is the reference histogram
grayscale image

Reference image whose histogram is the reference histogram, specified as a grayscale
image. The reference image provides the equally spaced nbins bin reference histogram
which output image B is trying to match.
Data Types: single | double | int16 | uint8 | uint16

nbins — Number of equally spaced bins in reference histogram
64 (default) | positive integer

Number of equally spaced bins in reference histogram, specified as a positive integer.
nbins also represents the upper limit of the number of discrete data levels present in
output image B.
Data Types: double

Output Arguments
B — Output image
N-D grayscale image

Output image, returned as an N-D grayscale image. The output image is derived from
image A whose histogram is an approximate match to the histogram of input image ref
built with nbins equally spaced bins. Image B is of the same size and data type as input
image A. Input argument nbins represents the upper limit of the number of discrete
levels contained in image B.
Data Types: single | double | int16 | uint8 | uint16

hgram — Histogram counts derived from reference image ref
1-by-nbins vector

 imhistmatchn

1-1623

Histogram counts derived from reference image ref, returned as a 1-by-nbins vector.
Data Types: double

See Also
histeq | imadjust | imhist | imhistmatch

Introduced in R2017a

1 Functions — Alphabetical List

1-1624

imhmax
H-maxima transform

Syntax
J = imhmax(I,H)
J = imhmax(I,H,conn)

Description
J = imhmax(I,H) suppresses all maxima in the intensity image I whose height is less
than H. Regional maxima are connected components of pixels with a constant intensity
value, and whose external boundary pixels all have a lower value.

J = imhmax(I,H,conn) computes the H-maxima transform, where conn specifies the
connectivity.

Examples

Create H-Maxima Transform

Create simple sample array of zeros with several maxima.

a = zeros(10,10);
a(2:4,2:4) = 3;
a(6:8,6:8) = 8

a = 10×10

 0 0 0 0 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 8 8 8 0 0

 imhmax

1-1625

 0 0 0 0 0 8 8 8 0 0
 0 0 0 0 0 8 8 8 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Calculate the maxima equal to 4 or more. Note how the area of the image set to 3 is not
included.

b = imhmax(a,4)

b = 10×10

 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

H — H-maxima transform
nonnegative scalar

H-maxima transform, specified as a nonnegative scalar.

1 Functions — Alphabetical List

1-1626

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 imhmax

1-1627

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imhmax uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
J — Transformed image
numeric array

Transformed image, returned as a numeric array of the same size and class as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag,

1999, pp. 170-171.

1 Functions — Alphabetical List

1-1628

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhmax supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imhmax generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the optional third input argument, conn, must be a compile-
time constant.

See Also
conndef | imextendedmax | imhmin | imreconstruct | imregionalmax

Introduced before R2006a

 imhmax

1-1629

imhmin
H-minima transform

Syntax
J = imhmin(I,H)
J = imhmin(I,H,conn)

Description
J = imhmin(I,H) suppresses all minima in the grayscale image I whose depth is less
than H. Regional minima are connected components of pixels with a constant intensity
value, t, whose external boundary pixels all have a value greater than t.

J = imhmin(I,H,conn) computes the H-minima transform, where conn specifies the
connectivity.

Examples

Calculate H-Minima Transform

Create a sample image with two regional minima.

a = 10*ones(10,10);
a(2:4,2:4) = 7;
a(6:8,6:8) = 2

a = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 2 2 2 10 10

1 Functions — Alphabetical List

1-1630

 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Suppress all minima below a specified value. Note how the region with pixels valued 7
disappears in the transformed image because its depth is less than the specified h value.

b = imhmin(a,4)

b = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

H — H-minima transform
nonnegative scalar

H-minima transform, specified as a nonnegative scalar.

 imhmin

1-1631

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

1 Functions — Alphabetical List

1-1632

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imhmin uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
J — Transformed image
numeric array

Transformed image, returned as a nonsparse numeric array of the same size and class as
I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag,

1999, pp. 170-171.

 imhmin

1-1633

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhmin supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imhmin generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the optional third input argument, conn, must be a compile-
time constant.

See Also
conndef | imextendedmin | imhmax | imreconstruct | imregionalmin

Introduced before R2006a

1 Functions — Alphabetical List

1-1634

imimposemin
Impose minima

Syntax
J = imimposemin(I,BW)
J = imimposemin(I,BW,conn)

Description
J = imimposemin(I,BW) modifies the grayscale mask image I using morphological
reconstruction so it only has regional minima wherever binary marker image BW is
nonzero.

J = imimposemin(I,BW,conn) specifies the pixel connectivity for the morphological
reconstruction.

Examples

Impose Regional Minimum at One Location

This example shows how to modify an image so that one area is always a regional
minimum.

Read an image and display it. This image is called the mask image.

mask = imread('glass.png');
imshow(mask)

 imimposemin

1-1635

Create a binary image that is the same size as the mask image and sets a small area of
the binary image to 1. These pixels define the location in the mask image where a
regional minimum will be imposed. The resulting image is called the marker image.

marker = false(size(mask));
marker(65:70,65:70) = true;

Superimpose the marker over the mask to show where these pixels of interest fall on the
original image. The small white square marks the spot. This code is not essential to the
impose minima operation.

J = mask;
J(marker) = 255;
figure
imshow(J)
title('Marker Image Superimposed on Mask')

1 Functions — Alphabetical List

1-1636

Impose the regional minimum on the input image using the imimposemin function. Note
how all the dark areas of the original image, except the marked area, are lighter.

K = imimposemin(mask,marker);
figure
imshow(K)

 imimposemin

1-1637

To illustrate how this operation removes all minima in the original image except the
imposed minimum, compare the regional minima in the original image with the regional
minimum in the processed image. These calls to imregionalmin return binary images
that specify the locations of all the regional minima in both images.

BW = imregionalmin(mask);
figure
subplot(1,2,1)
imshow(BW)
title('Regional Minima in Original Image')

BW2 = imregionalmin(K);
subplot(1,2,2)
imshow(BW2)
title('Regional Minima After Processing')

1 Functions — Alphabetical List

1-1638

Input Arguments
I — Grayscale mask image
numeric array

Grayscale mask image, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

BW — Binary marker image
numeric array | logical array

 imimposemin

1-1639

Binary marker image, specified as a numeric or logical array of the same size as the
grayscale mask image I. For numeric input, any nonzero pixels are considered to be 1
(true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

1 Functions — Alphabetical List

1-1640

Value Meaning
18-connected Pixels are connected if their faces or

edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges,
or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imimposemin uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
J — Reconstructed image
numeric array

Reconstructed image, returned as a numeric or logical array of the same size and data
type as I.

 imimposemin

1-1641

Algorithms
imimposemin uses a technique based on morphological reconstruction.

See Also
conndef | imreconstruct | imregionalmin

Topics
“Morphological Reconstruction”

Introduced before R2006a

1 Functions — Alphabetical List

1-1642

imlincomb
Linear combination of images

Syntax
Z = imlincomb(K1,A1,K2,A2,...,Kn,An)
Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K)
Z = imlincomb(___ ,outputClass)

Description
Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes the linear combination of
images, A1, A2, … , An, with weights K1, K2, … , Kn according to:

Z = K1*A1 + K2*A2 + ... + Kn*An

You optionally can compute the linear combination using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) adds an offset, K, to the linear
combination:

Z = K1*A1 + K2*A2 + ... + Kn*An + K

Z = imlincomb(___ ,outputClass) specifies the output class of Z.

Examples

Scale an Image Using Linear Combinations

Read an image into the workspace.

I = imread('cameraman.tif');

Scale the image using a coefficient of 1.5 in the linear combination.

J = imlincomb(1.5,I);

 imlincomb

1-1643

Display the original image and the processed image.

imshow(I)

figure
imshow(J)

1 Functions — Alphabetical List

1-1644

Form a Difference Image with Zero Value Shifted to 128

Read an image into the workspace.

I = imread('cameraman.tif');

Create a low-pass filtered copy of the image.

J = uint8(filter2(fspecial('gaussian'), I));

Find the difference image and shift the zero value to 128 using a linear combination of I
and J.

K = imlincomb(1,I,-1,J,128); %K(r,c) = I(r,c) - J(r,c) + 128

Display the resulting difference image.

 imlincomb

1-1645

imshow(K)

Add Two Images and Specify Output Class Using Linear Combinations

Read two grayscale uint8 images into the workspace.

I = imread('rice.png');
J = imread('cameraman.tif');

Add the images using a linear combination. Specify the output as type uint16 to avoid
truncating the result.

K = imlincomb(1,I,1,J,'uint16');

Display the result.

imshow(K,[])

1 Functions — Alphabetical List

1-1646

Add Two Images and Specify Output Class Using Linear Combinations on a GPU

Read two grayscale uint8 images into the workspace and convert them to gpuArrays.

I = gpuArray(imread('rice.png'));
J = gpuArray(imread('cameraman.tif'));

Add the images using a linear combination on a GPU. Specify the output as type uint16
to avoid truncating the result.

K = imlincomb(1,I,1,J,'uint16');

Display the result.

 imlincomb

1-1647

figure
imshow(K,[])

Compare Methods for Averaging Images

This example shows the difference between nesting calls and using linear combinations
when performing a series of arithmetic operations on images. To illustrate how
imlincomb performs all the arithmetic operations before truncating the result, compare
the results of calculating the average of two arrays, X and Y, using nested arithmetic
functions and using imlincomb.

Create two arrays.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);

Average the arrays using nested arithmetic functions. To calculate the average returned
in Z(1,1), the function imadd adds 255 and 50 and truncates the result to 255 before
passing it to imdivide. The average returned in Z(1,1) is 128.

Z = imdivide(imadd(X,Y),2)

Z = 2x3 uint8 matrix

 128 25 63
 47 128 75

In contrast, imlincomb performs the addition and division in double precision and only
truncates the final result. The average returned in Z2(1,1) is 153.

Z2 = imlincomb(.5,X,.5,Y)

Z2 = 2x3 uint8 matrix

 153 25 63
 47 138 75

1 Functions — Alphabetical List

1-1648

Input Arguments
K1, K2, Kn — Image coefficients
numeric scalar | gpuArray

Image coefficients, specified as real, numeric scalars.

To compute the linear combination using a GPU, specify the image coefficients as
gpuArrays that each contain a numeric scalar.
Data Types: double

A1, A2, An — Input images
numeric array | gpuArray

Input images, specified as numeric arrays of the same size and class.

To compute the linear combination using a GPU, specify the input images as gpuArrays
that each contain a numeric array of the same size and class.

K — Offset
numeric scalar

Offset, specified as a numeric scalar.
Data Types: double

outputClass — Output class
string scalar | character vector

Output class of Z, specified as a string scalar or character vector containing the name of a
numeric class.
Example: 'uint16'
Example: "double"

Output Arguments
Z — Linearly combined image
numeric array | gpuArray

 imlincomb

1-1649

Linearly combined image, returned as a numeric array of the same size as A1. If A1 is
logical, then Z is double, otherwise Z has the same class as A1.

If the linear combination is computed using a GPU, then Z is returned as a gpuArray
containing a numeric array.

Tips
• When performing a series of arithmetic operations on a pair of images, you can

achieve more accurate results if you use imlincomb to combine the operations, rather
than nesting calls to the individual arithmetic functions, such as imadd. When you
nest calls to the arithmetic functions, and the input arrays are of an integer class, each
function truncates and rounds the result before passing it to the next function, thus
losing accuracy in the final result. imlincomb computes each element of the output Z
individually, in double-precision floating point. If Z is an integer array, imlincomb
clips elements of Z that exceed the range of the integer type and rounds off fractional
values.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imlincomb supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imlincomb
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• You can specify up to 4 input image arguments.
• The output_class argument must be a compile-time constant.

1 Functions — Alphabetical List

1-1650

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
imadd | imcomplement | imdivide | immultiply | imsubtract

Introduced before R2006a

 imlincomb

1-1651

imline
Create draggable, resizable line

Note imline is not recommended. Use drawline instead.

Description
An imline object encapsulates an interactive line over an image.

You can adjust the size and position of the line by using the mouse. The line also has a
context menu that controls aspects of its appearance and behavior. For more information,
see “Usage” on page 1-1654.

Creation

Syntax
h = imline
h = imline(hparent)
h = imline(hparent,position)
h = imline(hparent,x,y)
h = imline(___ ,Name,Value)

Description
h = imline begins interactive placement of a line on the current axes, and returns an
imline object.

h = imline(hparent) begins interactive placement of a line on the object specified by
hparent.

h = imline(hparent,position) creates a draggable, resizeable line, with
coordinates defined by position.

1 Functions — Alphabetical List

1-1652

h = imline(hparent,x,y) creates a draggable, resizeable line, with x- and y-
coordinates of the endpoints defined by x and y.

h = imline(___ ,Name,Value) specifies name-value pairs that control the behavior of
the line.

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

position — Position of line endpoints
2-element vector

Position of line endpoints, specified as a 2-by-2 array of the form [x1 y1; x2 y2].

x — x-coordinates of line endpoints
2-element vector

x-coordinates of line endpoints, specified as a 2-element vector of the form x = [x1 x2].

y — y-coordinates of line endpoints
2-element vector

y-coordinates of line endpoints, specified as a 2-element vector of the form y = [y1 y2].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the line can be dragged. See the help

 imline

1-1653

for the setPositionConstraintFcn function for information about valid function
handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage
When you call imline with an interactive syntax, the pointer changes to a cross hairs

 when over the image. Click and drag the mouse to specify the position and length of
the line. The line supports a context menu that you can use to control aspects of its
appearance and behavior.

1 Functions — Alphabetical List

1-1654

The table describes the interactive behavior supported by imline.

Interactive Behavior Description
Moving the line. Move the pointer over the line. The pointer changes to a

fleur shape . Click and drag the mouse to move the line.
Moving the endpoints of the
line.

Move the pointer over either end of the line. The pointer

changes to the pointing finger, . Click and drag the
mouse to resize the line.

Changing the color used to
display the line.

Move the pointer over the line. Right-click and select Set
Color from the context menu.

 imline

1-1655

Interactive Behavior Description
Retrieving the coordinates
of the endpoints of the line.

Move the pointer over the line. Right-click and select Copy
Position from the context menu. imline copies a 2-by-2
array to the clipboard specifying the coordinates of the
endpoints of the line in the form [X1 Y1; X2 Y2].

Deleting the line Move the pointer on top of the line. Right-click and select
Delete from the context menu. To remove this option from
the context menu, set the Deletable property to false: h =
imline(); h.Deletable = false;

Object Functions
Each imline object supports a number of methods. Type methods imline to see a
complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

1 Functions — Alphabetical List

1-1656

Examples

Update Title when Line Moves
Use a custom color for displaying the line. Use addNewPositionCallback method.
Move the line, note that the 2-by-2 position vector of the line is displayed in the title
above the image. Explore the context menu of the line by right clicking on the line.

imshow('pout.tif')
h = imline(gca,[10 100],[100 100]);
setColor(h,[0 1 0]);
id = addNewPositionCallback(h,@(pos) title(mat2str(pos,3)));

After observing the callback behavior, remove the callback using the
removeNewPositionCallback function.

removeNewPositionCallback(h,id);

Click and Drag to Place Line
Interactively place a line by clicking and dragging. Use wait to block the MATLAB
command line. Double-click on the line to resume execution of the MATLAB command
line.

imshow('pout.tif')
h = imline;
position = wait(h);

Tips
• If you use imline with an axes that contains an image object, and do not specify a

position constraint function, users can drag the line outside the extent of the image
and lose the line. When used with an axes created by the plot function, the axis limits
automatically expand to accommodate the movement of the line.

• Use imdistline to create an interactive line with a text box that displays the
distance between line endpoints.

 imline

1-1657

See Also
imdistline | imellipse | imfreehand | impoint | impoly | imrect | imroi |
makeConstrainToRectFcn

Introduced before R2006a

1 Functions — Alphabetical List

1-1658

immagbox
Magnification box for image displayed in scroll panel

Use the immagbox function to add a magnification box to the same figure as an image
contained in a scroll panel. A magnification box is an editable text box that contains the
current magnification of the target image. When you enter a new value in the
magnification box, the magnification of the target image changes. When the magnification
of the target image changes for any reason, the magnification box updates the
magnification value.

Syntax
hbox = immagbox(hparent,himage)

Description
hbox = immagbox(hparent,himage) creates a magnification box for an image
displayed in a scroll panel. himage is a handle to the target image in the scroll panel.
hparent is a handle to the figure or uipanel object that will contain the magnification
box. The function returns hbox, a handle to the magnification box.

Examples

Add Magnification Box to Scrollable Image

Display an image in a figure. The example suppresses the standard toolbar and menubar
in the figure window because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('pears.png');

Create a scroll panel to contain the image.

 immagbox

1-1659

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .1 1 .9])

Add a magnification box to the figure. Set the position of the magnification box to the
lower left corner of the figure.

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])

1 Functions — Alphabetical List

1-1660

Get the scroll panel API so that you can control the view programmatically.

apiSP = iptgetapi(hSP);

Set the magnification of the image to 200% by using the scroll panel API function
setMagnification. Notice how the magnification box updates.

apiSP.setMagnification(2)

 immagbox

1-1661

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the magnification box, specified as a
handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle. The image must be displayed in a scroll
panel created by imscrollpanel.

1 Functions — Alphabetical List

1-1662

Output Arguments
hbox — Handle to magnification box
handle

Handle to magnification box, returned as a handle. A magnification box is a type of
uipanel object.

Definitions

Magnification Box API Structure
A magnification box contains a structure of function handles, called an API. You can use
the functions in this API to manipulate the magnification box. To retrieve this structure,
use the iptgetapi function, as in the following example.

api = iptgetapi(hbox)

This table lists the magnification box API functions, in the order they appear in the
structure.

Function Description
setMagnification Set the magnification of the target image in units of screen pixels per

image pixel.

mag = api.setMagnification(new_mag)

new_mag is a scalar magnification factor.

See Also
imscrollpanel | iptgetapi

Introduced before R2006a

 immagbox

1-1663

immovie
Make movie from multiframe image

Syntax
mov = immovie(X,cmap)
mov = immovie(RGB)

Description
mov = immovie(X,cmap) returns the movie structure array mov from the images in the
multiframe indexed image X with colormap cmap.

mov = immovie(RGB) returns the movie structure array mov from the images in the
multiframe truecolor image RGB.

Examples

Make Movie from Indexed Image Sequence

load mri
mov = immovie(D,map);
implay(mov)

Input Arguments
X — Multiframe indexed image
m-by-n-by-1-by-k numeric array

Multiframe indexed image, specified as an m-by-n-by-1-by-k numeric array, where k is the
number of frames. Each frame uses the same colormap, cmap.
Data Types: single | double | uint8 | uint16 | logical

1 Functions — Alphabetical List

1-1664

cmap — Color map
c-by-3 numeric matrix

Color map associated with multiframe indexed image X, specified as a c-by-3 numeric
matrix containing the RGB values of c colors.

RGB — Multiframe truecolor image
m-by-n-by-3-by-k numeric array

Multiframe truecolor image, specified as an m-by-n-by-3-by-k numeric array, where k is
the number of frames.
Data Types: single | double | uint8 | uint16

Output Arguments
mov — Movie
k-by-1 array of movie frame structures

Movie, returned as an k-by-1 array of movie frame structures. For details about the movie
frame structure, see getframe.

Tips
• To play the movie, call implay.
• To create a movie that can be played outside the MATLAB environment, use a

VideoWriter object.

See Also
VideoWriter | getframe | implay | montage | movie

Introduced before R2006a

 immovie

1-1665

immse
Mean-squared error

Syntax
err = immse(X,Y)

Description
err = immse(X,Y) calculates the mean-squared error (MSE) between the arrays X and
Y. X and Y can be arrays of any dimension, but must be of the same size and class.

Examples

Calculate Mean-Squared Error in Noisy Image

Read image and display it.

ref = imread('pout.tif');
imshow(ref)

1 Functions — Alphabetical List

1-1666

Create another image by adding noise to a copy of the reference image.

A = imnoise(ref,'salt & pepper', 0.02);
imshow(A)

 immse

1-1667

Calculate mean-squared error between the two images.

err = immse(A, ref);
fprintf('\n The mean-squared error is %0.4f\n', err);

 The mean-squared error is 353.7631

Input Arguments
X — Input array
numeric array

Input array, specified as a nonsparse, numeric array.
Example: err = immse(I,I2);

1 Functions — Alphabetical List

1-1668

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Y — Input array
nonsparse, numeric array

Input arrays, specified as a nonsparse, numeric array.
Example: err = immse(I,I2);
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
err — Mean-squared error
double | single

Mean-squared error, returned as a scalar of class double. If the input arguments are of
class single, err is of class single

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• immse supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
mean | median | psnr | ssim | sum | var

Introduced in R2014b

 immse

1-1669

immultiply
Multiply two images or multiply image by constant

Syntax
Z = immultiply(X,Y)

Description
Z = immultiply(X,Y) multiplies each element in array X by the corresponding element
in array Y and returns the product in the corresponding element of the output array Z.

immultiply computes each element of Z individually in double-precision floating point.
If X or Y is an integer array, then elements of Z exceeding the range of the integer type
are truncated, and fractional values are rounded.

If X and Y are numeric arrays of the same size and class, you can use the expression X.*Y
instead of immultiply.

Examples

Multiply an Image by Itself

Read a grayscale image into the workspace, then convert the image to uint8.

I = imread('moon.tif');
I16 = uint16(I);

Multiply the image by itself. Note that immultiply converts the class of the image from
uint8 to uint16 before performing the multiplication to avoid truncating the results.

J = immultiply(I16,I16);

Show the original image and the processed image.

1 Functions — Alphabetical List

1-1670

imshow(I)

 immultiply

1-1671

1 Functions — Alphabetical List

1-1672

figure
imshow(J)

 immultiply

1-1673

1 Functions — Alphabetical List

1-1674

Scale an Image by a Constant Factor

Read an image into the workspace.

I = imread('moon.tif');

Scale each value of the image by a constant factor of 0.5.

J = immultiply(I,0.5);

Display the original image and the processed image.

imshow(I)

 immultiply

1-1675

1 Functions — Alphabetical List

1-1676

figure
imshow(J)

 immultiply

1-1677

1 Functions — Alphabetical List

1-1678

Input Arguments
X — First array
real, nonsparse, numeric or logical array

First array, specified as a real, nonsparse, numeric or logical array of any dimension.

Y — Second array
real, nonsparse, numeric or logical array

Second array to be multiplied with X, specified as a real, nonsparse, numeric or logical
array.

• If X is numeric, then the size and class of Y can have one of the following values:

• Y is the same size and class as X.
• Y is the same size as X and is logical.
• Y is a scalar of type double.

• If X is logical, then Y must have the same size as X. Y can be any class.

Output Arguments
Z — Product
numeric array

Product, returned as a numeric array.

• If X is numeric, then Z has the same size and class as X.
• If X is logical, then Z has the same size and class as Y.

If X or Y is an integer array, elements of the output that exceed the range of the integer
type are truncated, and fractional values are rounded.

See Also
imabsdiff | imadd | imcomplement | imdivide | imlincomb | imsubtract

 immultiply

1-1679

Introduced before R2006a

1 Functions — Alphabetical List

1-1680

imnlmfilt
Non-local means filtering of image

Syntax
J = imnlmfilt(I)
J = imnlmfilt(I,Name,Value)
[J,estDoS] = imnlmfilt(___)

Description
J = imnlmfilt(I) applies a non-local means-based filter to the grayscale or color
image I and returns the resulting image in J.

J = imnlmfilt(I,Name,Value) uses name-value pairs to change the behavior of the
non-local means filter.

[J,estDoS] = imnlmfilt(___) also returns the degree of smoothing, estDoS, used
to estimate the denoised pixel value.

Examples

Denoise Grayscale Image Using Non-Local Means Filter

Read a grayscale image.

I = imread('cameraman.tif');

Add white Gaussian noise with zero mean and 0.0015 variance to the image using the
imnoise function.

noisyImage = imnoise(I,'gaussian',0,0.0015);

Remove noise from the image through non-local means filtering. The imnlmfilt
estimates degree of smoothing based on the standard deviation of noise in the image.

 imnlmfilt

1-1681

[filteredImage,estDoS] = imnlmfilt(noisyImage);

Display the noisy image (left) and the non-local means filtered image (right) as a montage.
Display estimated degree of smoothing, estDoS as the figure title.

The non-local means filter removes noise from the input image but preserves the
sharpness of strong edges, such as the silhouette of the man and buildings. This function
also smooths textured regions, such as the grass in the foreground of the image, resulting
in less detail when compared to the noisy image.

montage({noisyImage,filteredImage})
title (['Estimated degree of smoothing, ', 'estDoS = ',num2str(estDoS)]);

Denoise Color Image Using Non-Local Means Filter

Read a color image.

imRGB = imread('peppers.png');

1 Functions — Alphabetical List

1-1682

Add white Gaussian noise with zero mean and 0.0015 variance to the image using the
imnoise function. Display the noisy RGB image.

noisyRGB = imnoise(imRGB,'gaussian',0,0.0015);
imshow(noisyRGB)

Convert the noisy RGB image to the L*a*b color space, so that the non-local means filter
smooths perceptually similar colors.

noisyLAB = rgb2lab(noisyRGB);

Extract a homogeneous L*a*b patch from the noisy background to compute the noise
standard deviation.

 imnlmfilt

1-1683

roi = [210,24,52,41];
patch = imcrop(noisyLAB,roi);

In this L*a*b patch, compute the Euclidean distance from the origin, edist. Then,
calculate the standard deviation of edist to estimate the noise.

patchSq = patch.^2;
edist = sqrt(sum(patchSq,3));
patchSigma = sqrt(var(edist(:)));

Set the 'DegreeOfSmoothing' value to be higher than the standard deviation of the
patch. Filter the noisy L*a*b* image using non-local means filtering.

DoS = 1.5*patchSigma;
denoisedLAB = imnlmfilt(noisyLAB,'DegreeOfSmoothing',DoS);

Convert the filtered L*a*b image to the RGB color space. Display the filtered RGB image.

denoisedRGB = lab2rgb(denoisedLAB,'Out','uint8');
imshow(denoisedRGB)

1 Functions — Alphabetical List

1-1684

Compare a patch from the noisy RGB image (left) and the same patch from the non-local
means filtered RGB image (right).

roi2 = [178,68,110,110];
montage({imcrop(noisyRGB,roi2),imcrop(denoisedRGB,roi2)})

 imnlmfilt

1-1685

Input Arguments
I — Image to filter
2-D grayscale image | 2-D color image

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 2-D color image of
size m-by-n-by-3. The size of I must be greater than or equal to 21-by-21.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: J = imnlmfilt(I,'DegreeOfSmoothing',10);

1 Functions — Alphabetical List

1-1686

DegreeOfSmoothing — Degree of smoothing
positive number

Degree of smoothing, specified as the comma-separated pair consisting of
'DegreeOfSmoothing' and a positive number. As this value increases, the smoothing in
the resulting image J increases. If you do not specify 'DegreeOfSmoothing', then the
default value is the standard deviation of noise estimated from the image. For more
information, see “Default Degree of Smoothing” on page 1-1688.

SearchWindowSize — Search window size
21 (default) | odd-valued positive integer

Search window size, specified as the comma-separated pair consisting of
'SearchWindowSize' and an odd-valued positive integer, s. The search for similar
neighborhoods to a pixel is limited to the s-by-s region surrounding that pixel.
SearchWindowSize affects the performance linearly in terms of time.
SearchWindowSize cannot be larger than the size of the input image, I.

ComparisonWindowSize — Comparison window size
5 (default) | odd-valued positive integer

Comparison window size, specified as the comma-separated pair consisting of
'ComparisonWindowSize' and an odd-valued positive integer, c. The imnlmfilt
function computes similarity weights using the c-by-c neighborhood surrounding pixels.
ComparisonWindowSize must be less than or equal to SearchWindowSize. For more
information, see “Estimate Denoised Pixel Value” on page 1-1688.

Output Arguments
J — Non-local means filtered image
2-D grayscale image | 2-D color image

Non-local means filtered image, returned as a 2-D grayscale image or 2-D color image of
the same size and data type as the input image, I.

estDoS — Estimated degree of smoothing
positive number

Estimated degree of smoothing, returned as a positive number. If you specify
DegreeOfSmoothing, then imnlmfilt returns the same value in estDoS. Otherwise,

 imnlmfilt

1-1687

imnlmfilt returns the default degree of smoothing estimated using “Default Degree of
Smoothing” on page 1-1688.

Tips
• To smooth perceptually close colors in an RGB image, convert the image to the CIE

L*a*b* color space using rgb2lab before applying the non-local means filter. To view
the results, first convert the filtered L*a*b* image to the RGB color space using
lab2rgb.

• If the data type of I is double, then computations are performed in data type double.
Otherwise, computations are performed in data type single.

Algorithms

Default Degree of Smoothing
The default value of 'DegreeOfSmoothing' is the standard deviation of noise estimated
from the image. To estimate the standard deviation, imnlmfilt convolves the image with
a 3-by-3 filter proposed by J. Immerkær [2]. When I is a color image, the default value of
'DegreeOfSmoothing' is the standard deviations of noise averaged across the
channels.

Estimate Denoised Pixel Value
The non-local means filtering algorithm estimates the denoised value of pixel p using
these steps.

1 For a specific pixel, q, in the search window, calculate the weighted Euclidean
distance between pixel values in the c-by-c comparison windows surrounding p and q.
For color images, include all channels in the Euclidean distance calculation.

The weight is a decreasing exponential function whose rate of decay is determined by
the square of 'DegreeOfSmoothing'. When an image is noisy,
'DegreeOfSmoothing' is large and only pixels with similar values contribute to the
Euclidean distance calculation. When an image has little noise,
'DegreeOfSmoothing' is small and all pixels contribute to the Euclidean distance
calculation.

1 Functions — Alphabetical List

1-1688

The result is a numeric scalar that indicates the similarity between the neighborhood
of p and the neighborhood of q.

Note In the implementation by A. Buades et al. [1], the Euclidean distance between
two comparison windows is convolved with a Gaussian kernel of size c-by-c. This
convolution gives more weight to the Euclidean distance between pixel values for
pixels near the center of the comparison window. The imnlmfilt function omits this
step for computational efficiency.

2 Repeat this computation for each of the other pixels in the s-by-s search window,
finding the weighted Euclidean distance between pixel p and each of those pixels.
The result is an s-by-s similarity matrix that indicates similarity between the
neighborhood of p and the other neighborhoods in the search window.

3 Normalize the similarity matrix.
4 Using the weights in the normalized similarity matrix, compute the weighted average

of pixel values in the s-by-s search window around pixel p. The result is the denoised
value of p.

References
[1] Buades, A., B. Coll, and J.-M. Morel. "A Non-Local Algorithm for Image Denoising."

2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 2, June 2005, pp. 60–65.

[2] Immerkær, J. "Fast Noise Variance Estimation." Computer Vision and Image
Understanding. Vol. 64, Number 2, Sept. 1996, pp. 300–302.

See Also
imbilatfilt | imdiffusefilt | imguidedfilter | locallapfilt

Introduced in R2018b

 imnlmfilt

1-1689

imnoise
Add noise to image

Syntax
J = imnoise(I,'gaussian')
J = imnoise(I,'gaussian',m)
J = imnoise(I,'gaussian',m,var_gauss)
J = imnoise(I,'localvar',var_local)
J = imnoise(I,'localvar',intensity_map,var_local)
J = imnoise(I,'poisson')
J = imnoise(I,'salt & pepper')
J = imnoise(I,'salt & pepper',d)
J = imnoise(I,'speckle')
J = imnoise(I,'speckle',var_speckle)

Description
J = imnoise(I,'gaussian') adds zero-mean, Gaussian white noise with variance of
0.01 to grayscale image I.

You optionally can add noise using a GPU (requires Parallel Computing Toolbox). For more
information, see “Image Processing on a GPU”.

J = imnoise(I,'gaussian',m) adds Gaussian white noise with mean m and variance
of 0.01.

J = imnoise(I,'gaussian',m,var_gauss) adds Gaussian white noise with mean m
and variance var_gauss.

J = imnoise(I,'localvar',var_local) adds zero-mean, Gaussian white noise of
local variance var_local.

J = imnoise(I,'localvar',intensity_map,var_local) adds zero-mean,
Gaussian white noise. The local variance of the noise, var_local, is a function of the

1 Functions — Alphabetical List

1-1690

image intensity values in I. The mapping of image intensity value to noise variance is
specified by the vector intensity_map.

J = imnoise(I,'poisson') generates Poisson noise from the data instead of adding
artificial noise to the data. See “Algorithms” on page 1-1695 for more information.

J = imnoise(I,'salt & pepper') adds salt and pepper noise, with default noise
density 0.05. This affects approximately 5% of pixels.

J = imnoise(I,'salt & pepper',d) adds salt and pepper noise, where d is the
noise density. This affects approximately d*numel(I) pixels.

J = imnoise(I,'speckle') adds multiplicative noise using the equation J = I+n*I,
where n is uniformly distributed random noise with mean 0 and variance 0.05.

J = imnoise(I,'speckle',var_speckle) adds multiplicative noise with variance
var_speckle.

Examples

Add Noise to an Image

Read a grayscale image and display it.

I = imread('eight.tif');
imshow(I)

 imnoise

1-1691

Add salt and pepper noise, with a noise density of 0.02, to the image. Display the result.

J = imnoise(I,'salt & pepper',0.02);
imshow(J)

1 Functions — Alphabetical List

1-1692

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix. If I has more than two dimensions, then
the image is treated as a multidimensional grayscale image and not as an RGB image.

imnoise expects pixel values of data type double and single to be in the range [0, 1].
You can use the rescale function to adjust pixel values to the expected range. If your
image is type double or single with values outside the range [0,1], then imnoise clips
input pixel values to the range [0, 1] before adding noise.

Note For Poisson noise, images of data type int16 are not allowed.

 imnoise

1-1693

Data Types: single | double | int16 | uint8 | uint16

m — Mean of Gaussian noise
0 (default) | numeric scalar

Mean of Gaussian noise, specified as a numeric scalar.

var_gauss — Variance of Gaussian noise
0.01 (default) | numeric scalar

Variance of Gaussian noise, specified as a numeric scalar.

var_local — Local variance of Gaussian noise
numeric matrix | numeric vector

Local variance of Gaussian noise, specified as one of the following:

• A numeric matrix of the same size as I.
• A numeric vector the same length of intensity_map.

intensity_map — Intensity values
numeric vector

Intensity values that are mapped to Gaussian noise variance, specified as a numeric
vector. The values are normalized to the range [0, 1].

You can plot the functional relationship between noise variance var_local and image
intensity using the command plot(intensity_map,var_local).

d — Noise density
0.05 (default) | numeric scalar

Noise density for salt and pepper noise, specified as a numeric scalar. The noise is applied
to approximately d*numel(I) pixels.

var_speckle — Variance of multiplicative noise
0.05 (default) | numeric scalar

Variance of multiplicative noise, specified as a numeric scalar.

1 Functions — Alphabetical List

1-1694

Output Arguments
J — Noisy image
numeric matrix

Noisy image, returned as a numeric matrix of the same data type as input image I. For
images of data type double or single, the imnoise function clips output pixel values to
the range [0, 1] after adding noise.

Algorithms
• The mean and variance parameters for 'gaussian', 'localvar', and 'speckle'

noise types are always specified as if the image were of class double in the range [0,
1]. If the input image is a different class, the imnoise function converts the image to
double, adds noise according to the specified type and parameters, clips pixel values
to the range [0, 1], and then converts the noisy image back to the same class as the
input.

• The Poisson distribution depends on the data type of input image I:

• If I is double precision, then input pixel values are interpreted as means of Poisson
distributions scaled up by 1e12. For example, if an input pixel has the value
5.5e-12, then the corresponding output pixel will be generated from a Poisson
distribution with mean of 5.5 and then scaled down by 1e12.

• If I is single precision, the scale factor used is 1e6.
• If I is uint8 or uint16, then input pixel values are used directly without scaling.

For example, if a pixel in a uint8 input has the value 10, then the corresponding
output pixel will be generated from a Poisson distribution with mean 10.

• To add 'salt & pepper' noise with density d to an image, imnoise first assigns
each pixel a random probability value from a standard uniform distribution on the
open interval (0, 1).

• For pixels with probability value in the range (0, d/2), the pixel value is set to 0.
The number of pixels that are set to 0 is approximately d*numel(I)/2.

• For pixels with probability value in the range [d/2, d), the pixel value is set to the
maximum value of the image data type. The number of pixels that are set to the
maximum value is approximately d*numel(I)/2.

• For pixels with probability value in the range [d, 1), the pixel value is unchanged.

 imnoise

1-1695

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
rand | randn

Introduced before R2006a

1 Functions — Alphabetical List

1-1696

imopen
Morphologically open image

Syntax
J = imopen(I,SE)
J = imopen(I,nhood)

Description
J = imopen(I,SE) performs morphological opening on the grayscale or binary image I,
returning the opened image, J. SE is a single structuring element object returned by the
strel or offsetstrel functions. The morphological open operation is an erosion
followed by a dilation, using the same structuring element for both operations.

You optionally can perform the opening using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = imopen(I,nhood) opens the image I, where nhood is a matrix of 0s and 1s that
specifies the structuring element neighborhood. This is equivalent to the syntax
imopen(I,strel(nhood)). The imopen function determines the center element of the
neighborhood by floor((size(nhood)+1)/2).

Examples

Morphologically Open Image with a Disk-Shaped Structuring Element

Read the image into the workspace and display it.

original = imread('snowflakes.png');
imshow(original);

 imopen

1-1697

Create a disk-shaped structuring element with a radius of 5 pixels.

se = strel('disk',5);

Remove snowflakes having a radius less than 5 pixels by opening it with the disk-shaped
structuring element.

afterOpening = imopen(original,se);
figure
imshow(afterOpening,[]);

1 Functions — Alphabetical List

1-1698

Morphologically Open Image Using a GPU

Read an image.

 original = imread('snowflakes.png');

Create a disk-shaped structuring element.

se = strel('disk',5);

Morphologically open the image on a GPU, using a gpuArray object, and display the
images.

afterOpening = imopen(gpuArray(original),se);
figure, imshow(original), figure, imshow(afterOpening,[])

Input Arguments
I — Input image
grayscale image | binary image | gpuArray

Input image, specified as a grayscale image or binary image. I can have any dimension,
and must be real and nonsparse.

To perform the opening using a GPU, specify I as a gpuArray that contains an image of
type uint8 or logical.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the
image I is data type logical, the structuring element must be flat.

If you perform the opening using a GPU, then SE must be flat and two-dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.

 imopen

1-1699

Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Opened image
grayscale image | binary image | gpuArray

Opened image, returned as a grayscale image or binary image. J has the same class as
input image I.

If the opening is performed using a GPU, then J is returned as a gpuArray that contains
a grayscale or binary image of the same class as I.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imopen supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imopen generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• When generating code, the image input argument, IM, must be 2-D or 3-D and the
structuring element input argument, SE, must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-1700

• gpuArray input must be of type uint8 or logical and the structuring element must
be flat and two-dimensional.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imclose | imdilate | imerode

Objects
offsetstrel | strel

Introduced before R2006a

 imopen

1-1701

imoverlay
Burn binary mask into 2-D image

Syntax
B = imoverlay(A,BW)
B = imoverlay(___ ,color)

Description
B = imoverlay(A,BW) fills the grayscale or RGB input image, A, with a solid color
where the input binary mask, BW, is true.

B = imoverlay(___ ,color) lets you specify the color that imoverlay uses to fill the
image. color is a valid MATLAB color specification.

Examples

Burn Binary Image into Grayscale Image

Read grayscale image into the workspace.

A = imread('cameraman.tif');

Read binary image into the workspace.

BW = imread('text.png');

Burn the binary image into the grayscale image, choosing the color to be used.

B = imoverlay(A,BW,'yellow');

Display the result.

1 Functions — Alphabetical List

1-1702

figure
imshow(B)

Input Arguments
A — Input image
real, nonsparse 2-D matrix

Input image, specified as a real, nonsparse 2-D matrix.
Data Types: single | double | int16 | uint8 | uint16 | logical

BW — Mask image
2-D logical matrix

Mask image, specified 2-D logical matrix the same size as A.

 imoverlay

1-1703

Data Types: single | double | int16 | uint8 | uint16 | logical

color — Color used for the overlay
MATLAB color specification

Color used for the overlay, specified as a MATLAB color specification. For example, if you
want to specify the color red, you could use any of the following specifications:
'red','r', or [1 0 0].

Output Arguments
B — Output image
2-D matrix

Output image, returned as a 2-D matrix of class uint8.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imoverlay supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, if you specify color as a character vector, it must be a compile-
time constant.

See Also
boundarymask | superpixels

Introduced in R2016a

1 Functions — Alphabetical List

1-1704

imoverview
Overview tool for image displayed in scroll panel

Use the imoverview function to create an Overview tool in a new figure window. The
Overview tool is a navigation aid when exploring a zoomed-in version of the image.

The Overview tool displays the target image in its entirety, scaled to fit. The tool overlays
a rectangle, called the detail rectangle, over the scaled version of the image. The detail
rectangle shows the portion of the target image that is currently visible in the scroll
panel. To view portions of the image that are not currently visible in the scroll panel,
move the detail rectangle in the Overview tool.

Syntax
imoverview(himage)

 imoverview

1-1705

htool = imoverview(___)

Description
imoverview(himage) creates an Overview tool associated with the image specified by
the handle himage, called the target image.

htool = imoverview(___) returns htool, a handle to the Overview tool figure.

Examples

Create Overview Tool in New Figure

Display an image in a figure. Suppress the standard toolbar and menubar in the figure
window because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('foggysf1.jpg');

Create a scroll panel to contain the image. Create an overview tool in a new figure
window.

hSP = imscrollpanel(hFig,hIm);
imoverview(hIm)

1 Functions — Alphabetical List

1-1706

 imoverview

1-1707

Get the scroll panel API so that you can control the view programmatically.

api = iptgetapi(hSP);

Set the magnification of the image to 200% by using the scroll panel API function
setMagnification. Notice how the detail rectangle of the overview tool shrinks
because a smaller portion of the image is displayed.

api = iptgetapi(hSP);
api.setMagnification(2);

1 Functions — Alphabetical List

1-1708

 imoverview

1-1709

Input Arguments
himage — Handle to image
handle

Handle to image, specified as a handle. The image must be displayed in a scroll panel
created by imscrollpanel.

Output Arguments
htool — Handle to Overview tool
handle

Handle to Overview tool figure, returned as a handle.

1 Functions — Alphabetical List

1-1710

Tips
• To create an Overview tool that can be embedded in an existing figure or uipanel

object, use imoverviewpanel.

See Also
imoverviewpanel | imscrollpanel

Introduced before R2006a

 imoverview

1-1711

imoverviewpanel
Overview tool panel for image displayed in scroll panel

Use the imoverviewpanel function to add an Overview tool to the same figure as an
image contained in a scroll panel. The Overview tool is a navigation aid when exploring a
zoomed-in version of the image.

The Overview tool displays the target image in its entirety, scaled to fit. The tool overlays
a rectangle, called the detail rectangle, over the scaled version of the image. The detail
rectangle shows the portion of the target image that is currently visible in the scroll
panel. To view portions of the image that are not currently visible in the scroll panel,
move the detail rectangle in the Overview tool.

Syntax
hpanel = imoverviewpanel(hparent,himage)

Description
hpanel = imoverviewpanel(hparent,himage) creates an Overview tool for an
image displayed in a scroll panel. himage is a handle to the target image in the scroll
panel. hparent is the handle to the figure or uipanel object that will contain the
Overview tool. hpanel is the handle to the Overview tool.

Examples

Add Overview Tool to Scrollable Image

Display an image in a figure. The example suppresses the standard toolbar and menubar
in the figure window because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('foggysf1.jpg');

1 Functions — Alphabetical List

1-1712

Create a scroll panel to contain the image. Set the size and position of the scroll panel so
that the image occupies the top half of the figure window.

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .5 1 .5])

Add an overview tool to the figure. Set the size and position of the overview tool to occupy
the bottom half of the figure window.

To explore details of the displayed image, try dragging the detail rectangle over the
overview tool.

hOvPanel = imoverviewpanel(hFig,hIm);
set(hOvPanel,'Units','Normalized','Position',[0 0 1 .5])

 imoverviewpanel

1-1713

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Overview tool, specified as a handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle. The image must be displayed in a scroll
panel created by imscrollpanel.

1 Functions — Alphabetical List

1-1714

Output Arguments
hpanel — Handle to Overview tool
handle

Handle to Overview tool, returned as a handle. An Overview tool is a type of uipanel
object.

Tips
• To create an Overview tool in a separate figure window, use imoverview. When

created using imoverview, the Overview tool includes zoom-in and zoom-out buttons.

See Also
imoverview | imscrollpanel

Introduced before R2006a

 imoverviewpanel

1-1715

impixel
Pixel color values

Syntax
P = impixel
P = impixel(I)
P = impixel(X,map)

P = impixel(I,c,r)
P = impixel(X,map,c,r)

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)

[xi2,yi2,P] = impixel(___)

Description
P = impixel lets you select pixels interactively from the image in the current axes. With
this syntax and the other interactive syntaxes, the pixel selection tool blocks the MATLAB
command line until you complete the operation. When you finish selecting pixels,
impixel returns the pixel values in P.

Use normal button clicks to select pixels. Press Backspace or Delete to remove the
previously selected pixel. To add a final pixel and finish pixel selection in one step, press
shift-click, or right-click or double-click. To finish selecting pixels without adding a final
pixel, press Return.

P = impixel(I) returns the value of pixels in image I. The impixel function displays
the image and waits for you to select pixels in the image using the mouse.

P = impixel(X,map) returns the value of pixels in indexed image X with corresponding
colormap, map. The impixel function displays the image and waits for you to select
pixels in the image using the mouse.

1 Functions — Alphabetical List

1-1716

P = impixel(I,c,r) returns the values of specified pixels in image I. The column and
row coordinates of the sampled pixels are specified by c and r. The kth row of P contains
the RGB values for the pixel (r(k), c(k)).

P = impixel(X,map,c,r) returns the values of specified pixels in indexed image X.
The column and row coordinates of the sampled pixels are specified by c and r.

P = impixel(x,y,I,xi,yi) returns the values of pixels in the specified image, I,
using a nondefault coordinate system wherex and y specify the image limits. xi and yi
specify the spatial coordinates of the pixels whose values are returned in P.

P = impixel(x,y,X,map,xi,yi) returns the values of pixels in the specified indexed
image, X, with corresponding colormap, map, using a nondefault coordinate system.

[xi2,yi2,P] = impixel(___) additionally returns the coordinates of the selected
pixels.

Examples

Return Individual Pixel Values from Image

Read a truecolor image into the workspace.

RGB = imread('peppers.png');

Determine the column c and row r indices of the pixels to extract.

c = [1 12 146 410];
r = [1 104 156 129];

Return the data at the selected pixel locations.

pixels = impixel(RGB,c,r)

pixels = 4×3

 62 29 64
 62 34 63
 166 54 60
 59 28 47

 impixel

1-1717

Input Arguments
I — Input image
RGB image | grayscale image | binary image

Input image, specified as an RGB, grayscale, or binary image.
Data Types: single | double | int16 | uint8 | uint16 | logical

X — Indexed image
numeric array

Indexed image, specified as a numeric array.
Data Types: single | double | uint8 | uint16 | logical

map — Colormap
m-by-3 numeric array

Colormap associated with the indexed image X, specified as an m-by-3 numeric array.
Values with data type single or double must be in the range [0, 1].
Data Types: single | double | uint8

c, r — Column or row index of pixels to sample
vector of positive integers

Column or row index of pixels to sample, specified as a vector of positive integers. The
length and data type of c and r must match.
Data Types: single | double

x, y — Image limits in world coordinates
2-element numeric vector

Image limits in world coordinates along the x or y direction, specified as a 2-element
numeric vector of the form [min max]. The values of x and y set the image XData and
YData. The data type of x and y must match.
Data Types: single | double

xi, yi — x- or y-coordinates of pixels to sample
numeric vector

1 Functions — Alphabetical List

1-1718

x- or y-coordinates of pixels to sample, in the world coordinate system defined by x and y,
specified as a numeric vector. The length and data type of xi and yi must match.
Data Types: single | double

Output Arguments
P — Sampled pixel values
p-by-3 matrix

Sampled pixel values, returned as a p-by-3 matrix. impixel always returns pixel values
as RGB triplets, regardless of the image type. The values in each row of the matrix
depends on the image type.

Image Type Result
RGB Returns the actual RGB data for the pixel. The values are data

type double.
Grayscale Returns the intensity value as an RGB triplet, where R=G=B.

The values are data type double.
Indexed Returns the RGB triplet stored in the row of the colormap that

the pixel value points to. The values have the same data type as
the colormap, map.

Binary Returns the intensity value as an RGB triplet, where R=G=B.
The values are data type double.

xi2, yi2 — x- or y-coordinates of sampled pixels
numeric vector

x- or y-coordinates of sampled pixels, returned as a numeric vector.

• If you select pixels interactively using the mouse, or if you specify pixels using row and
column indices c and r, then xi2 and yi2 are interpreted as pixel indices.

• If you specify the image limits, x and y, in a nondefault spatial coordinate system, then
xi2 and yi2 are interpreted as x- and y-coordinates in that coordinate system.

See Also
getpts | improfile

 impixel

1-1719

Introduced before R2006a

1 Functions — Alphabetical List

1-1720

impixelinfo
Pixel Information tool

Use the impixelinfo function to create a Pixel Information tool. The Pixel Information
tool displays information about the pixel in an image that the pointer is positioned over. If
the figure contains multiple images, the tool displays pixel information for all the images.
For more information about using the tool, see Tips on page 1-1723.

Syntax
impixelinfo
impixelinfo(h)
impixelinfo(hparent,himage)
htool = impixelinfo(___)

Description
impixelinfo creates a Pixel Information tool in the current figure.

impixelinfo(h) creates a Pixel Information tool in the figure specified by the handle h.

impixelinfo(hparent,himage) creates a Pixel Information tool in hparent that
provides information about the pixels in himage.

htool = impixelinfo(___) returns a handle to the Pixel Information tool uipanel.

 impixelinfo

1-1721

Examples

Add Pixel Information Tool to Figure
Display an image and add a Pixel Information tool to the figure. The example shows how
you can change the position of the tool in the figure using properties of the tool uipanel
object.

h = imshow('hestain.png');
hp = impixelinfo;
set(hp,'Position',[5 1 300 20]);

Use the Pixel Information tool in a figure containing multiple images of different types.

figure
subplot(1,2,1), imshow('liftingbody.png');
subplot(1,2,2), imshow('autumn.tif');
impixelinfo;

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. Axes,
uipanel, or figure objects must contain at least one image object.

hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Pixel Information tool, specified as a
handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

1 Functions — Alphabetical List

1-1722

Output Arguments
htool — Handle to Pixel Information tool
handle

Handle to Pixel Information tool uipanel, returned as a handle.

Tips
The Pixel Information tool is a uipanel object, positioned in the lower-left corner of the
figure. The tool contains the text label Pixel info: followed by the pixel information.
Before you move the pointer over the image, the tool contains the default pixel
information text (X,Y) Pixel Value. Once you move the pointer over the image, the
information displayed varies by image type, as shown in the following table. If you move
the pointer off the image, the pixel information tool displays the default pixel information
label for that image type.

Image Type Pixel Information Example
Intensity (X,Y) Intensity (13,30) 82
Indexed (X,Y) <index> [R G B] (2,6) <4> [0.29 0.05

0.32]
Binary (X,Y) BW (12,1) 0
Truecolor (X,Y) [R G B] (19,10) [15 255 10]
Floating point image with
CDataMapping property set to
direct

(X,Y) value <index> [R G
B]

(19,10) 82 <4> [15 255
10]

• If you want to display the pixel information without the “Pixel Info” label, use the
impixelinfoval function.

• To copy the pixel information label to the clipboard, right-click while the pointer is
positioned over a pixel. In the context menu displayed, choose Copy pixel info.

See Also
impixelinfoval | imtool

 impixelinfo

1-1723

Introduced before R2006a

1 Functions — Alphabetical List

1-1724

impixelinfoval
Pixel Information tool without text label

Use the impixelinfoval function to create a Pixel Information tool without the Pixel
info: text label. The Pixel Information tool displays information about the pixel in an
image that the pointer is positioned over. If the figure contains multiple images, the tool
displays pixel information for all the images. The information displayed depends on the
image type. See impixelinfo for more details about using the Pixel Information tool.

Syntax
htool = impixelinfoval(hparent,himage)

Description
htool = impixelinfoval(hparent,himage) creates a Pixel Information tool in
hparent that provides information about the pixels in himage.

Examples

Add Pixel Information Tool Without Text Label
Add a Pixel Information tool to a figure, excluding the text label. Note how you can
change the style and size of the font used to display the value in the tool using standard
graphics object properties.

ankle = dicomread('CT-MONO2-16-ankle.dcm');
h = imshow(ankle,[]);
hText = impixelinfoval(gcf,h);

 impixelinfoval

1-1725

set(hText,'FontWeight','bold')
set(hText,'FontSize',10)

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Pixel Information tool, specified as a
handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

Output Arguments
htool — Handle to Pixel Information tool
handle

Handle to Pixel Information tool uipanel, returned as a handle.

See Also
impixelinfo

Introduced before R2006a

1 Functions — Alphabetical List

1-1726

impixelregion
Pixel Region tool

Use the impixelregion function to create a Pixel Region tool in a new figure window.
The Pixel Region tool is an aid to explore pixel values of images.

The Pixel Region tool displays an extreme close-up view of a small region of pixels in the
target image. The tool overlays a rectangle, called the pixel region rectangle, over the
target image. To view pixels in a different region, click and drag the rectangle over the
target image, or scroll the Pixel Region tool. You can resize the pixel region rectangle to
change the resolution of pixels in the Pixel Region tool. If the size of the pixels allows, the
tool superimposes the numeric value of the pixel over each pixel.

Pixel Region
rectangle

Pixel Region
 tool

Pixel Region
tool button

 impixelregion

1-1727

Syntax
impixelregion
impixelregion(h)
htool = impixelregion(___)

Description
impixelregion creates a Pixel Region tool associated with the image displayed in the
current figure, called the target image.

impixelregion(h) creates a Pixel Region tool in the figure specified by the handle h.

htool = impixelregion(___) returns htool, a handle to the Pixel Region tool
figure.

Examples

Create Pixel Region Tool in New Figure

Display an image.

imshow('peppers.png')

Create an pixel region tool in a new figure window. The tool associates with the image in
the current figure.

impixelregion

1 Functions — Alphabetical List

1-1728

 impixelregion

1-1729

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle, impixelregion uses the first image returned by
findobj(H,'Type','image').

1 Functions — Alphabetical List

1-1730

Output Arguments
htool — Handle to Pixel Region tool
handle

Handle to Pixel Region tool figure, returned as a handle.

Tips
• To get a closer view of the pixels displayed in the tool, use the zoom buttons on the

Pixel Region tool toolbar.
• To get the current position of the pixel region rectangle, right-click on the rectangle

and select Copy Position from the context menu. The Pixel Region tool copies a four-
element position vector to the clipboard. To change the color of the pixel region
rectangle, right-click and select Set Color.

• To create a Pixel Region tool that can be embedded in an existing figure window or
uipanel, use impixelregionpanel.

See Also
impixelinfo | impixelregionpanel | imtool

Introduced before R2006a

 impixelregion

1-1731

impixelregionpanel
Pixel Region tool panel

Use the impixelregionpanel function to add a Pixel Region tool to the same figure as
an image. The Pixel Region tool is an aid to explore pixel values of images.

The Pixel Region tool displays an extreme close-up view of a small region of pixels in the
target image. The tool overlays a rectangle, called the pixel region rectangle, over the
target image. To view pixels in a different region, click and drag the rectangle over the
target image, or scroll the Pixel Region tool. You can resize the pixel region rectangle to
change the resolution of pixels in the Pixel Region tool. If the size of the pixels allows, the
tool superimposes the numeric value of the pixel over each pixel.

Syntax
hpanel = impixelregionpanel(hparent,himage)

Description
hpanel = impixelregionpanel(hparent,himage) creates a Pixel Region tool in a
figure window. himage is a handle to the target image whose pixels are to be displayed.
hparent is the handle to the figure or uipanel object that will contain the Pixel Region
tool. hpanel is the handle to the Pixel Region tool.

Examples

Add Pixel Region Tool to Figure

Display an image in a figure. This example displays the image in a subplot to create space
in the figure window for the pixel region tool.

hFig = figure;
subplot(1,2,1)
hIm = imshow('peppers.png');

1 Functions — Alphabetical List

1-1732

Create a pixel region tool in the same figure as the image. The pixel region tool covers the
entire figure window.

hpanel = impixelregionpanel(hFig,hIm);

 impixelregionpanel

1-1733

Reduce the dimensions of the pixel region tool to 40% of the height and width of the
figure. Specify the position of the bottom left corner of the tool so that the tool occupies
the space in the figure to the right of the image.

To explore pixel values across the image, try dragging and resizing the pixel region
rectangle over the target image and scrolling the pixel region tool.

set(hpanel,'Position',[0.55 0.3 .4 .4])

1 Functions — Alphabetical List

1-1734

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that will contain the Pixel Region tool, specified as a
handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle.

 impixelregionpanel

1-1735

Output Arguments
hpanel — Handle to Pixel Region tool
handle

Handle to Pixel Region tool, returned as a handle. A Pixel Region tool is a type of uipanel
object.

Tips
• To create a Pixel Region tool in a separate figure window, use impixelregion.

See Also
impixelregion | imrect | imscrollpanel

Introduced before R2006a

1 Functions — Alphabetical List

1-1736

implay
Play movies, videos, or image sequences

Use the implay function to open the Video Viewer app, which plays MATLAB movies,
videos, or image sequences (also called image stacks). Using Video Viewer you can select
the movie or image sequence that you want to play, jump to a specific frame in the
sequence, change the frame rate of the display, or perform other viewing activities. You
can open multiple Video Viewers to view different movies simultaneously.

The figure shows the Video Viewer app containing an image sequence.

 implay

1-1737

Syntax
implay
implay(filename)
implay(I)
implay(___ ,fps)

1 Functions — Alphabetical List

1-1738

Description
implay opens the Video Viewer app. To select the movie or image sequence that you
want to play, use the Video Viewer File menu.

implay(filename) opens the Video Viewer app, displaying the content of the file
specified by filename. The file can be an Audio Video Interleaved (AVI) file. The Video
Viewer reads one frame at a time, conserving memory during playback. The Video Viewer
does not play audio tracks.

implay(I) opens the Video Viewer app, displaying the first frame in the multiframe
image specified by I.

implay(___ ,fps) specifies the frame rate at which you want to view the movie or
image sequence.

Examples

Play Three Types of Videos
Animate a sequence of images.

load cellsequence
implay(cellsequence,10);

Visually explore a stack of MRI images.

load mristack
implay(mristack);

Play an AVI file.

implay('rhinos.avi');

Input Arguments
filename — File name
character vector | string scalar

 implay

1-1739

File name of AVI file, specified as a character vector or string scalar.
Data Types: char | string

I — Multiframe image sequence
MATLAB movie structure | sequence of binary, grayscale, or truecolor images

Multiframe image sequence, specified as one of the following.

• A MATLAB movie structure
• A binary or grayscale image sequence, specified as an m-by-n-by-1-by-k array or an m-

by-n-by-k array
• A truecolor (RGB) image sequence, specified as an M-by-N-by-3-by-K array.

I can be numeric but uint8 is preferred. The actual data type used to display pixels may
differ from the source data type.

fps — Frames per second
20 (default) | positive number

Frame rate, in frames-per-second, specified as a positive number. If omitted, the Video
Viewer uses the frame rate specified in the file or the default value, 20.

Tips
• You can also open the Video Viewer app through the Apps tab. Navigate to the Image

Processing and Computer Vision group and click Video Viewer.

See Also
VideoWriter | Volume Viewer | immovie | montage | movie

Introduced in R2007b

1 Functions — Alphabetical List

1-1740

impoint
Create draggable point

Note impoint is not recommended. Use drawpoint instead.

Description
An impoint object encapsulates an interactive point over an image.

You can adjust the position of the point by using the mouse. The point also has a context
menu that controls aspects of its appearance and behavior. For more information, see
“Usage” on page 1-1743.

Creation

Syntax
h = impoint
h = impoint(hparent)
h = impoint(hparent,position)
h = impoint(hparent,x,y)
h = impoint(___ ,Name,Value)

Description
h = impoint begins interactive placement of a point on the current axes, and returns an
impoint object.

h = impoint(hparent) begins interactive placement of a point on the object specified
by hparent.

h = impoint(hparent,position) creates a draggable point with coordinates defined
by position.

 impoint

1-1741

h = impoint(hparent,x,y) creates a draggable point with x- and y-coordinates of the
point defined by x and y.

h = impoint(___ ,Name,Value) specifies name-value pairs that control the behavior
of the point.

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

position — Position of point
2-element vector

Position of point, specified as a 2-element vector of the form [x y].

x, y — x- or y-coordinate of point
numeric scalar

x- or y-coordinate of the point, specified as a numeric scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the point can be dragged. See the
help for the setPositionConstraintFcn function for information about valid function
handles.

1 Functions — Alphabetical List

1-1742

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage
When you call impoint with an interactive syntax, the pointer changes to a cross hairs

 when over the image. Click and drag the mouse to specify the position of the point.
The point supports a context menu that you can use to control aspects of its appearance
and behavior.

 impoint

1-1743

The table describes the interactive behavior supported by impoint.

Interactive Behavior Description
Moving the point. Move the mouse pointer over the point. The mouse pointer

changes to a fleur shape . Click and drag the mouse to
move the point.

Changing the color used to
display the point.

Move the mouse pointer over the point. Right-click and
select Set Color from the context menu and specify the
color you want to use.

Retrieving the coordinates
of the point.

Move the mouse pointer over the point. Right-click and
select Copy Position from the context menu to copy a 1-
by-2 array to the clipboard specifying the coordinates of the
point [X Y].

Deleting the point Move the pointer on top of the point. Right-click and select
Delete from the context menu. To remove this option from
the context menu, set the Deletable property to false: h =
impoint(); h.Deletable = false;

Object Functions
Each impoint object supports a number of methods. Type methods impoint to see a
complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object

1 Functions — Alphabetical List

1-1744

setString Set text label for point ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

Examples

Enforce Boundary Constraint when Point Moves
Use impoint methods to set custom color, set a label, enforce a boundary constraint, and
update position in title as point moves.
imshow('rice.png')
h = impoint(gca,100,200);

Update the title with the new position by using addNewPositionCallback.
addNewPositionCallback(h,@(h) title(sprintf('(%1.0f,%1.0f)',h(1),h(2))));

Construct a boundary constraint function by using makeConstrainToRectFcn.
fcn = makeConstrainToRectFcn('impoint',get(gca,'XLim'),get(gca,'YLim'));

Enforce the boundary constraint function using setPositionConstraintFcn.
setPositionConstraintFcn(h,fcn);
setColor(h,'r');
setString(h,'Point label');

Click and Drag to Move Point
Interactively place a point. Use wait to block the MATLAB command line. Double-click on
the point to resume execution of the MATLAB command line

imshow('pout.tif')
h = impoint(gca,[]);
position = wait(h);

Tips
If you use impoint with an axes that contains an image object, and do not specify a drag
constraint function, then users can drag the point outside the extent of the image and lose

 impoint

1-1745

the point. When used with an axes created by the plot function, the axes limits
automatically expand to accommodate the movement of the point.

See Also
imellipse | imfreehand | imline | impoly | imrect | imroi |
makeConstrainToRectFcn

Introduced before R2006a

1 Functions — Alphabetical List

1-1746

impoly
Create draggable, resizable polygon

Note impoly is not recommended. Use drawpolygon instead.

Description
An impoly object encapsulates an interactive polygon over an image.

You can add vertices and adjust the size and position of the polygon by using the mouse.
The polygon also has a context menu that controls aspects of its appearance and behavior.
For more information, see “Usage” on page 1-1749.

Creation

Syntax
h = impoly
h = impoly(hparent)
h = impoly(hparent,position)
h = impoly(___ ,Name,Value)

Description
h = impoly begins interactive placement of a polygon on the current axes, and returns
an impoly object.

h = impoly(hparent) begins interactive placement of a polygon on the object
specified by hparent.

h = impoly(hparent,position) creates a draggable, resizeable polygon with
vertices at coordinates defined by position.

 impoly

1-1747

h = impoly(___ ,Name,Value) specifies name-value pairs that control the behavior of
the polygon.

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

position — Position of polygon vertices
n-by-2 matrix

Position of polygon vertices, specified as an n-by-2 matrix. The two columns define the x-
and y-coordinate, respectively, of each of the n vertices.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the polygon can be dragged. See the
help for the setPositionConstraintFcn function for information about valid function
handles.

Closed — Polygon is closed
true (default) | false

Polygon is closed, specified as the comma-separated pair consisting of 'Closed' and
true or false. When set to true (the default), impoly creates a closed polygon, that is,
it draws a straight line between the last vertex specified and the first vertex specified to
create a closed region. When Closed is false, impoly does not connect the last vertex
with the first vertex, creating an open polygon (or polyline).

1 Functions — Alphabetical List

1-1748

Data Types: logical

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage
When you call impoly with an interactive syntax, the pointer changes to a cross hairs

 when over the image. Click and drag the mouse to define the vertices of the polygon
and adjust the size, shape, and position of the polygon. By default, impoly draws a
straight line connecting the last point you drew with the first point, but you can control
this behavior using the Closed parameter.

The polygon also supports a context menu that you can use to control aspects of its
appearance and behavior. The choices in the context menu vary whether you position the
pointer on an edge of the polygon (or anywhere inside the region) or on one of the
vertices. The figure shows the context menu when the pointer is on the polygon but not
on a vertex.

 impoly

1-1749

The table lists the interactive behaviors supported by impoly.

Interactive Behavior Description
Closing the polygon. Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon
that you selected. The pointer changes to a circle .
Click either mouse button.

• Double-click the left mouse button. This action creates a
vertex at the point under the mouse and draws a straight
line connecting this vertex with the initial vertex.

• Click the right mouse button. This action draws a line
connecting the last vertex selected with the initial
vertex; it does not create a new vertex.

1 Functions — Alphabetical List

1-1750

Interactive Behavior Description
Adding a new vertex. Move the pointer over an edge of the polygon. Press and

hold the A key. The shape of the pointer changes . Click
the left mouse button to create a new vertex at that position
on the line.

Moving a vertex. (Reshaping
the polygon.)

Move the pointer over a vertex. The pointer changes to a
circle . Click and drag the vertex to its new position.

Deleting a vertex. Move the pointer over a vertex. The shape changes to a
circle . Right-click and select Delete Vertex from the
vertex context menu. This action deletes the vertex and
adjusts the shape of the polygon, drawing a new straight
line between the two vertices that were neighbors of the
deleted vertex.

Deleting the polygon Move the pointer inside the polygon or on one of the lines
that define the polygon, not on a vertex. Right-click and
select Delete from the context menu. To remove this option
from the context menu, set the Deletable property to
false: h = impoly(); h.Deletable = false;

Moving the polygon. Move the pointer inside the polygon. The pointer changes to

a fleur shape . Click and drag the mouse to move the
polygon.

Changing the color of the
polygon

Move the pointer inside the polygon. Right-click and select
Set Color from the context menu.

Retrieving the coordinates
of the vertices

Move the pointer inside the polygon. Right-click and select
Copy Position from the context menu. impoly copies an n-
by-2 array containing the x- and y-coordinates of each
vertex to the clipboard. n is the number of vertices you
specified.

Object Functions
Each impoly object supports a number of methods. Type methods impoly to see a
complete list.

 impoly

1-1751

addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setClosed Set closure behavior of ROI object
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setVerticesDraggable Set vertex behavior of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

Examples

Draw Polygon on Image and Specify Position Constraint Function

Display an image.

imshow('gantrycrane.png')

1 Functions — Alphabetical List

1-1752

Draw a polygon on the image, specifying the location of five vertices.

h = impoly(gca,[188,30; 189,142; 93,141; 13,41; 14,29]);

 impoly

1-1753

Set the color of the polygon to yellow.

setColor(h,'yellow');

1 Functions — Alphabetical List

1-1754

Define a function for the new position callback. This function displays the current position
of the polygon whenever it is moved.

addNewPositionCallback(h, @(p) title(mat2str(p,3)));

 impoly

1-1755

Create the function that constrains the movement of the polygon by using
makeConstrainToRectFcn, specifying the boundary of the image as the limits. Enforce
the boundary constraint function using setPositionConstraintFcn.

fcn = makeConstrainToRectFcn('impoly',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

1 Functions — Alphabetical List

1-1756

Interactively Create a Polygon by Clicking to Specify Vertex Locations

Display image.

figure
imshow('gantrycrane.png');

 impoly

1-1757

Create a polygon, specifying several vertices, but leave it unfinished so that you can finish
it interactively. The example sets Closed to false so that the polygon is left open. When
you move the cursor over one of the endpoints of the polygon, the cursor shape changes
to a circle.

h = impoly(gca,[203,30; 202,142; 294,142],'Closed',false);

1 Functions — Alphabetical List

1-1758

Complete the polygon. Grab one of the ends of the existing lines. Extend the line by
dragging it to another corner of the shape you want to create. Then, while positioning the
cursor over the line, press and hold the A key to add a vertex to the line. Once you create
the vertex you can drag it anywhere you want to create the shape you want. Continue
dragging the line and adding vertices as you want. For more information, see “Usage” on
page 1-1749.

 impoly

1-1759

Tips
If you use impoly with an axes that contains an image object, and do not specify a
position constraint function, users can drag the polygon outside the extent of the image

1 Functions — Alphabetical List

1-1760

and lose the polygon. When used with an axes created by the plot function, the axes
limits automatically expand when the polygon is dragged outside the extent of the axes.

See Also
imellipse | imfreehand | imline | impoint | imrect | imroi |
makeConstrainToRectFcn

Introduced in R2007b

 impoly

1-1761

improfile
Pixel-value cross-sections along line segments

Syntax
improfile
improfile(n)
improfile(I,xi,yi)
improfile(I,xi,yi,n)

c = improfile(___)
[cx,cy,c] = improfile(I,xi,yi,n)
[cx,cy,c,xi,yi] = improfile(I,xi,yi,n)

[___] = improfile(x,y,I,xi,yi)
[___] = improfile(x,y,I,xi,yi,n)

[___] = improfile(___ ,method)

Description
improfile retrieves the intensity values of pixels along a line or a multiline path in the
grayscale, binary, or RGB image in the current axes and displays a plot of the intensity
values. If the specified path consists of a single line segment, improfile creates a two-
dimensional plot of intensity values versus the distance along the line segment. If the path
consists of two or more line segments, improfile creates a three-dimensional plot of the
intensity values versus their x- and y-coordinates.

With this syntax, you specify the line or path using the mouse, by clicking points in the
image. Press Backspace or Delete to remove the previously selected point. To finish
selecting points, adding a final point, press shift-click, right-click, or double-click. To
finish selecting points without adding a final point, press Return.

improfile(n) retrieves the intensity values, where n specifies the number of points to
include.

1 Functions — Alphabetical List

1-1762

improfile(I,xi,yi) retrieves pixel intensity values, where I specifies an image, and
xi and yi are equal-length vectors specifying the spatial coordinates of the endpoints of
the line segments.

improfile(I,xi,yi,n) returns pixel intensity values, where n specifies the number of
points to include.

c = improfile(___) returns the intensity values in c.

[cx,cy,c] = improfile(I,xi,yi,n) additionally returns the spatial coordinates of
the pixels, cx and cy, of length n.

[cx,cy,c,xi,yi] = improfile(I,xi,yi,n) additionally returns two equal-length
vectors specifying the spatial coordinates of the endpoints of the line segments, xi and
yi.

[___] = improfile(x,y,I,xi,yi) retrieves pixel intensity values using a
nondefault coordinate system wherex and y specify the image XData and YData.

[___] = improfile(x,y,I,xi,yi,n) defines a nondefault spatial coordinate system
and specifies the number of points to include, n.

[___] = improfile(___ ,method) specifies the interpolation method.

Examples

Plot Multisegment Line from Image

Read an image into the workspace, and display it.

I = imread('liftingbody.png');
imshow(I)

 improfile

1-1763

Specify x- and y-coordinates that define connected line segments.

x = [19 427 416 77];
y = [96 462 37 33];

Display a 3-D plot of the pixel values of these line segments.

1 Functions — Alphabetical List

1-1764

improfile(I,x,y),grid on;

 improfile

1-1765

Input Arguments
n — Number of points
positive integer

Number of points to include along the path, specified as a positive integer. If you do not
provide this argument, improfile chooses a value for n, roughly equal to the number of
pixels the path traverses.
Data Types: double

I — Input image
RGB image | grayscale image | binary image

Input image, specified as an RGB, grayscale, or binary image.
Data Types: single | double | int16 | uint8 | uint16 | logical

xi, yi — Spatial coordinates of the endpoints of line segments
numeric vector

Spatial coordinates of the endpoints of line segments in the x or y dimension, specified as
a numeric vector. xi and yi have equal length.
Data Types: double

x, y — Image limits in world coordinates
2-element numeric vector

Image limits in world coordinates along the x- or y-dimension, specified as a 2-element
numeric vector of the form [min max]. x and y specify the image XData and YData. The
data type of x and y must match.
Data Types: single | double

method — Interpolation method
'nearest' (default) | 'bilinear' | 'bicubic'

Interpolation method, specified as 'nearest' for nearest-neighbor interpolation,
'bilinear', or 'bicubic'.
Data Types: char | string

1 Functions — Alphabetical List

1-1766

Output Arguments
c — Pixel intensity values
n-by-1 numeric vector | n-by-1-by-3 numeric array

Pixel intensity values, returned as an n-by-1 numeric vector when I is a grayscale
intensity image, or an n-by-1-by-3 numeric array when I is an RGB image.
Data Types: double

cx, cy — Spatial coordinates of sampled pixels
n-by-1 numeric vector

Spatial coordinates of sampled pixels in the x or y dimension, specified as an n-by-1
numeric vector.
Data Types: double

See Also
impixel | interp2

Introduced before R2006a

 improfile

1-1767

imputfile
Display Save Image dialog box

Syntax
[filename,ext,user_canceled] = imputfile

Description
[filename,ext,user_canceled] = imputfile displays the Save Image dialog box
which you can use to specify the full path and format of a file. Using the dialog box, you
can navigate to folders in a file system and select a particular file or specify the name of a
new file. imputfile limits the types of files displayed in the dialog box to the image file
format selected in the Files of Type menu.

When you click Save, imputfile returns the full path to the file in filename and the
file extension associated with the file format selected from the Files of Type menu in
ext. imputfile automatically adds the file name extension (such as .jpg) to the file
name.

If the user clicks Cancel or closes the Save Image dialog box, imputfile closes and
returns control to MATLAB, setting user_canceled to True (1), and settingfilename
and ext to empty character vectors (''); otherwise, user_canceled is False (0).

Note The Save Image dialog box is modal; it blocks the MATLAB command line until you
click Save or cancel the operation.

Examples

Get User-Specified File Name

Open the Save Image dialog box. This dialog box is modal—control in the command
window is suspended until you respond to the Save Image dialog box.

1 Functions — Alphabetical List

1-1768

[fn, ext, ucancel] = imputfile

To view only images in Portable Network Graphics format, select the format from the
Save as type menu.

 imputfile

1-1769

Specify a new filename and click Save. imputfile returns the full path of the filename
you specified, the file extension, and the Boolean value false, meaning that you didn’t
click Cancel. Note that imputfile automatically adds the file extension of the format
you selected to the file name.

1 Functions — Alphabetical List

1-1770

fn =

 1×37 char array

 '\\home$\Documents\MATLAB\mytest.png'

ext =

 1×3 char array

 'png'

ucancel =

 logical

 imputfile

1-1771

 0

Output Arguments
filename — Name of file selected
character array

Name of file selected, returned as a character array.

ext — File extension of a supported file format
character array

File extension of a supported file format, returned as a character array.

user_canceled — Flag indicating if user chose to cancel dialog
logical

Flag indicating if user chose to cancel dialog, returned as a Boolean logical value true
or false.

See Also
imformats | imgetfile | imsave | imtool

Introduced in R2007b

1 Functions — Alphabetical List

1-1772

impyramid
Image pyramid reduction and expansion

Syntax
B = impyramid(A,direction)

Description
B = impyramid(A,direction) computes a Gaussian pyramid reduction or expansion
of A by one level. direction determines whether impyramid performs a reduction or an
expansion.

Examples

Compute Four-level Multiresolution Pyramid of Image

Read image into the workspace.

I = imread('cameraman.tif');

Perform a series of reductions. The first call reduces the original image. The other calls to
impyramid use the previously reduced image.

I1 = impyramid(I, 'reduce');
I2 = impyramid(I1, 'reduce');
I3 = impyramid(I2, 'reduce');

View the original image and the reduced versions.

figure, imshow(I)

 impyramid

1-1773

figure, imshow(I1)

figure, imshow(I2)

1 Functions — Alphabetical List

1-1774

figure, imshow(I3)

Input Arguments
A — Image to be reduced or expanded
numeric or logical array

Image to reduced or expanded, specified as a numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

direction — Reduction or expansion
'reduce' | 'expand'

Reduction or expansion, specified as one of the following values:

 impyramid

1-1775

Value Description
'reduce' Return an image, smaller than the original image.
'expand' Return an image that is larger than the original image.

Data Types: char | string

Output Arguments
B — Reduced or expanded image
numeric or logical array

Reduced or expanded image, returned as a numeric or logical array, the same class as A.

Algorithms
If A is m-by-n and direction is 'reduce', the size of B is ceil(M/2)-by-ceil(N/2). If
direction is 'expand', the size of B is (2*M-1)-by-(2*N-1).

Reduction and expansion take place only in the first two dimensions. For example, if A is
100-by-100-by-3 and direction is 'reduce', then B is 50-by-50-by-3.

impyramid uses the kernel specified on page 533 of the Burt and Adelson paper on page
1-1776:

w = 1
4 −

a
2, 1

4, a, 1
4, 1

4 −
a
2 , where a = 0.375. The parameter a is set to 0.375 so that the

equivalent weighting function is close to a Gaussian shape. In addition, the weights can
be readily applied using fixed-point arithmetic.

References
[1] Burt and Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE

Transactions on Communications, Vol. COM-31, no. 4, April 1983, pp. 532-540.

[2] Burt, "Fast Filter Transforms for Image Processing," Computer Graphics and Image
Processing, Vol. 16, 1981, pp. 20-51

1 Functions — Alphabetical List

1-1776

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• impyramid supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• direction must be a compile-time constant.

See Also
imresize

Introduced in R2007b

 impyramid

1-1777

imquantize
Quantize image using specified quantization levels and output values

Syntax
quant_A = imquantize(A,levels)
quant_A = imquantize(___ ,values)
[quant_A,index] = imquantize(___)

Description
quant_A = imquantize(A,levels) quantizes image A using specified quantization
values contained in the N element vector levels. Output image quant_A is the same size
as A and contains N + 1 discrete integer values in the range 1 to N + 1 which are
determined by the following criteria:

• If A(k) ≤ levels(1), then quant_A(k) = 1.
• If levels(m-1) < A(k) ≤ levels(m) , then quant_A(k) = m.
• If A(k) > levels(N), then quant_A(k) = N + 1.

Note that imquantize assigns values to the two implicitly defined end intervals:

• A(k) ≤ levels(1)
• A(k) > levels(N)

quant_A = imquantize(___ ,values) adds the N + 1 element vector values where
N = length(levels). Each of the N + 1 elements of values specify the quantization
value for one of the N + 1 discrete pixel values in quant_A.

• If A(k) ≤ levels(1), then quant_A(k) = values(1).
• If levels(m-1) < A(k) ≤ levels(m) , then quant_A(k) = values(m).
• If A(k) > levels(N), then quant_A(k) = values(N + 1).

[quant_A,index] = imquantize(___) returns an array index such that:

1 Functions — Alphabetical List

1-1778

quant_A = values(index)

Examples

Segment Image into Three Levels Using Two Thresholds

Read image and display it.

I = imread('circlesBrightDark.png');
imshow(I)
axis off
title('Original Image')

 imquantize

1-1779

Calculate two threshold levels.

thresh = multithresh(I,2);

Segment the image into three levels using imquantize .

1 Functions — Alphabetical List

1-1780

seg_I = imquantize(I,thresh);

Convert segmented image into color image using label2rgb and display it.

RGB = label2rgb(seg_I);
figure;
imshow(RGB)
axis off
title('RGB Segmented Image')

 imquantize

1-1781

Compare Thresholding Entire Image Versus Plane-by-Plane Thresholding

Read truecolor (RGB) image and display it.

1 Functions — Alphabetical List

1-1782

I = imread('peppers.png');
imshow(I)
axis off
title('RGB Image');

Generate thresholds for seven levels from the entire RGB image.

threshRGB = multithresh(I,7);

Generate thresholds for each plane of the RGB image.

threshForPlanes = zeros(3,7);

for i = 1:3

 imquantize

1-1783

 threshForPlanes(i,:) = multithresh(I(:,:,i),7);
end

Process the entire image with the set of threshold values computed from entire image.

value = [0 threshRGB(2:end) 255];
quantRGB = imquantize(I, threshRGB, value);

Process each RGB plane separately using the threshold vector computed from the given
plane. Quantize each RGB plane using threshold vector generated for that plane.

quantPlane = zeros(size(I));

for i = 1:3
 value = [0 threshForPlanes(i,2:end) 255];
 quantPlane(:,:,i) = imquantize(I(:,:,i),threshForPlanes(i,:),value);
end

quantPlane = uint8(quantPlane);

Display both posterized images and note the visual differences in the two thresholding
schemes.

imshowpair(quantRGB,quantPlane,'montage')
axis off
title('Full RGB Image Quantization Plane-by-Plane Quantization')

1 Functions — Alphabetical List

1-1784

To compare the results, calculate the number of unique RGB pixel vectors in each output
image. Note that the plane-by-plane thresholding scheme yields about 23% more colors
than the full RGB image scheme.

dim = size(quantRGB);
quantRGBmx3 = reshape(quantRGB, prod(dim(1:2)), 3);
quantPlanemx3 = reshape(quantPlane, prod(dim(1:2)), 3);

colorsRGB = unique(quantRGBmx3, 'rows');
colorsPlane = unique(quantPlanemx3, 'rows');

disp(['Unique colors in RGB image : ' int2str(length(colorsRGB))]);

Unique colors in RGB image : 188

disp(['Unique colors in Plane-by-Plane image : ' int2str(length(colorsPlane))]);

Unique colors in Plane-by-Plane image : 231

Threshold grayscale image from 256 to 8 levels

Reduce the number of discrete levels in an image from 256 to 8. This example uses two
different methods for assigning values to each of the eight output levels.

Read image and display it.

I = imread('coins.png');
imshow(I)
axis off
title('Grayscale Image')

 imquantize

1-1785

Split the image into eight levels by obtaining seven thresholds from multithresh.

thresh = multithresh(I,7);

Construct the valuesMax vector such that the maximum value in each quantization
interval is assigned to the eight levels of the output image.

valuesMax = [thresh max(I(:))]

valuesMax = 1x8 uint8 row vector

 65 88 119 149 169 189 215 255

[quant8_I_max, index] = imquantize(I,thresh,valuesMax);

Similarly, construct the valuesMin vector such that the minimum value in each
quantization interval is assigned to the eight levels of the output image. Instead of calling
imquantize again with the vector valuesMin , use the output argument index to assign
those values to the output image.

1 Functions — Alphabetical List

1-1786

valuesMin = [min(I(:)) thresh]

valuesMin = 1x8 uint8 row vector

 23 65 88 119 149 169 189 215

quant8_I_min = valuesMin(index);

Display both eight-level output images side by side.

imshowpair(quant8_I_min,quant8_I_max,'montage')
title('Minimum Interval Value Maximum Interval Value')

Input Arguments
A — Input image
image

Input image, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 imquantize

1-1787

levels — Quantization levels
vector

Quantization levels, specified as an N element vector. Values of the discrete quantization
levels must be in monotonically increasing order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

values — Quantization values
vector

Quantization values, specified as an N + 1 element vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
quant_A — Quantized output image
image

Quantized output image, returned as a numeric array the same size as A. If input
argument values is specified, then quant_A is the same data type as values. If values is
not specified, then quant_A is of class double.

index — Mapping array
array

Mapping array, returned as an array the same size as input image A. It contains integer
indices which access values to construct the output image: quant_A = values(index). If
input argument values is not defined, then index = quant_A.
Data Types: double

1 Functions — Alphabetical List

1-1788

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imquantize supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
label2rgb | multithresh | rgb2ind

Introduced in R2012b

 imquantize

1-1789

imreconstruct
Morphological reconstruction

Syntax
J = imreconstruct(marker,mask)
J = imreconstruct(marker,mask,conn)

Description
J = imreconstruct(marker,mask) performs morphological reconstruction of the
image marker under the image mask, and returns the reconstruction in J. The elements
of marker must be less than or equal to the corresponding elements of mask. If the
values in marker are greater than corresponding elements in mask, then
imreconstruct clips the values to the mask level before starting the procedure.

You optionally can perform morphological reconstruction of 2-D images using a GPU
(requires Parallel Computing Toolbox). For more information, see “Image Processing on a
GPU”.

J = imreconstruct(marker,mask,conn) performs morphological reconstruction
with the specified connectivity, conn.

Examples

Perform Opening-by-Reconstruction to Identify High Intensity Objects

Read a grayscale image and display it.

I = imread('snowflakes.png');
figure
imshow(I)

1 Functions — Alphabetical List

1-1790

Adjust the contast of the image to create the mask image and display results.

mask = adapthisteq(I);
figure
imshow(mask)

Create a marker image that identifies high-intensity objects in the image using
morphological erosion and display results.

se = strel('disk',5);
marker = imerode(mask,se);
imshow(marker)

 imreconstruct

1-1791

Perform morphological opening on the mask image, using the marker image to identify
high-intensity objects in the mask. Display results.

obr = imreconstruct(marker,mask);
figure
imshow(obr,[])

Use Reconstruction to Segment an Image

Read a logical image into workspace and display it. This is the mask image.

1 Functions — Alphabetical List

1-1792

mask = imread('text.png');
figure
imshow(mask)

Create a marker image that identifies the object in the image you want to extract through
segmentation. For this example, identify the "w" in the word "watershed".

marker = false(size(mask));
marker(13,94) = true;

Perform segmentation of the mask image using the marker image.

im = imreconstruct(marker,mask);
figure
imshow(im)

 imreconstruct

1-1793

Use Reconstruction to Segment an Image on a GPU

Read mask image and create gpuArray.

mask = gpuArray(imread('text.png'));
figure, imshow(mask)

Create marker image gpuArray.

marker = gpuArray.false(size(mask));
marker(13,94) = true;

Perform the segmentation and display the result.

1 Functions — Alphabetical List

1-1794

J = imreconstruct(marker,mask);
figure, imshow(J)

Input Arguments
marker — Input image
numeric array | logical array | gpuArray

Input image, specified as a numeric or logical array.

To perform the morphological reconstruction using a GPU, specify marker as a gpuArray
that contains a 2-D numeric or logical matrix. imreconstruct does not support RGB
images and 3-D images on a GPU.
Example: se = strel('disk',5); marker = imerode(mask,se);
Example: marker = gpuArray(imread('text.png'));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

mask — Mask image
numeric array | logical array | gpuArray

Mask image, specified as a numeric or logical array of the same size and data type as
marker.

To perform the morphological reconstruction using a GPU, specify mask as a gpuArray
that contains a 2-D numeric or logical matrix. imreconstruct does not support RGB
images and 3-D mask images on a GPU.
Example: mask = imread('text.png');
Example: mask = gpuArray(imread('text.png'));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

 imreconstruct

1-1795

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

1 Functions — Alphabetical List

1-1796

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imreconstruct uses the default value
conndef(ndims(marker),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
J — Reconstructed image
numeric array | logical array | gpuArray

Reconstructed image, returned as a numeric or logical array, depending on the input
image, that is the same size as the input image.

If the morphological reconstruction is performed using a GPU, then J is returned as a
gpuArray that contains a numeric or logical matrix.

Tips
• Morphological reconstruction is the algorithmic basis for several other Image

Processing Toolbox functions, including imclearborder, imextendedmax,
imextendedmin, imfill, imhmax, imhmin, and imimposemin.

 imreconstruct

1-1797

• Performance note: This function may take advantage of hardware optimization for
data types logical, uint8, uint16, single, and double to run faster. Hardware
optimization requires marker and mask to be 2-D images and conn to be either 4 or
8.

Algorithms
imreconstruct uses the fast hybrid grayscale reconstruction algorithm described in [1].

References
[1] Vincent, L., "Morphological Grayscale Reconstruction in Image Analysis: Applications

and Efficient Algorithms," IEEE Transactions on Image Processing, Vol. 2, No. 2,
April, 1993, pp. 176-201.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imreconstruct supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imreconstruct generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the optional third input argument, conn, must be a compile-
time constant, and can only take the value 4 or 8.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Functions — Alphabetical List

1-1798

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).

For more information, see “Image Processing on a GPU”.

See Also
imclearborder | imextendedmax | imextendedmin | imfill | imhmax | imhmin |
imimposemin

Topics
“Morphological Reconstruction”

Introduced before R2006a

 imreconstruct

1-1799

imrect
Create draggable rectangle

Note imrect is not recommended. Use drawrectangle instead.

Description
An imrect object encapsulates an interactive rectangle over an image.

You can adjust the size and position of the rectangle by using the mouse. The rectangle
also has a context menu that controls aspects of its appearance and behavior. For more
information, see “Usage” on page 1-1802.

Creation

Syntax
h = imrect
h = imrect(hparent)
h = imrect(hparent,position)
h = imrect(___ ,Name,Value)

Description
h = imrect begins interactive placement of a rectangle on the current axes, and returns
an imrect object.

h = imrect(hparent) begins interactive placement of a rectangle on the object
specified by hparent.

h = imrect(hparent,position) creates a draggable rectangle at the position
position on the object specified by hparent.

1 Functions — Alphabetical List

1-1800

h = imrect(___ ,Name,Value) specifies name-value pairs that control the behavior of
the rectangle.

Input Arguments
hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but
can also be any other object that can be the parent of an hggroup object.

position — Position of rectangle
4-element vector

Position of the rectangle, specified as a 4-element vector of the form [xmin ymin width
height]. The initial size of the rectangle is width-by-height, and the upper-left corner
of the rectangle is at the (x,y) coordinate (xmin,ymin).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is
dragged. You can use this function to control where the rectangle can be dragged. See
the help for the setPositionConstraintFcn function for information about valid
function handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.

 imrect

1-1801

Data Types: logical

Usage
When you call imrect with an interactive syntax, the pointer changes to a cross hairs

 when over the image. You can create the rectangle and adjust its size and position
using the mouse. The rectangle also supports a context menu that you can use to control
aspects of its appearance and behavior. Right-click on the rectangle to access this context
menu.

The table lists the interactive behaviors supported by imrect.

1 Functions — Alphabetical List

1-1802

Interactive Behavior Description
Moving the rectangle. Move the pointer inside the rectangle. The pointer changes

to a fleur shape . Click and drag the mouse to move the
rectangle.

Resizing the rectangle. Move the pointer over any of the edges or corners of the
rectangle, the shape changes to a double-ended arrow, .
Click and drag the edge or corner using the mouse.

Changing the color of the
rectangle.

Move the pointer inside the rectangle. Right-click and select
Set Color from the context menu.

Retrieving the coordinates
of the current position

Move the pointer inside the polygon. Right-click and select
Copy Position from the context menu. imrect copies a
four-element position vector to the clipboard.

Preserve the current aspect
ratio of the rectangle during
interactive resizing.

Move the pointer inside the rectangle. Right-click and select
Fix Aspect Ratio from the context menu.

Deleting the rectangle Move the pointer inside the rectangle or on an edge of the
rectangle. Right-click and select Delete from the context
menu. To remove this option from the context menu, set the
Deletable property to false: h = imrect();
h.Deletable = false;

When you use setResizeable to make the rectangle non-resizable, the Fix Aspect
Ratio context menu item is not provided.

Object Functions
Each imrect object supports a number of methods. Type methods imrect to see a
complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint

function

 imrect

1-1803

removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB

command line
setColor Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setFixedAspectRatioMode Preserve aspect ratio when resizing ROI object
setPosition Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setResizable Set resize behavior of ROI object
wait (Not recommended) Block MATLAB command line until

ROI creation is finished

Examples

Update Title when Rectangle Moves
Display a rectangle ROI over an image. Display the position of the rectangle in the title.
The title updates when you move the rectangle. Try dragging one side of the rectangle
outside the boundary of the image.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Specify a position constraint function using makeConstrainToRectFcn to keep the
rectangle inside the original XLim and YLim ranges of the image.

fcn = makeConstrainToRectFcn('imrect',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Now drag the rectangle using the mouse. Observe that the rectangle can no longer
extend past the image boundary.

Click and Drag to Place Rectangle
Interactively place a rectangle by clicking and dragging. Use wait to block the MATLAB
command line. Double-click on the rectangle to resume execution of the MATLAB
command line.

1 Functions — Alphabetical List

1-1804

imshow('pout.tif');
h = imrect;
position = wait(h);

Tips
If you use imrect with an axes that contains an image object, and do not specify a
position constraint function, users can drag the rectangle outside the extent of the image.
When used with an axes created by the plot function, the axes limits automatically
expand to accommodate the movement of the rectangle.

See Also
imellipse | imfreehand | imline | impoint | impoly | imroi |
makeConstrainToRectFcn

Introduced before R2006a

 imrect

1-1805

imreducehaze
Reduce atmospheric haze

Syntax
[J,T,L] = imreducehaze(I)
[___] = imreducehaze(I,amount)
[___] = imreducehaze(___ ,Name,Value)

Description
[J,T,L] = imreducehaze(I) reduces atmospheric haze in color or grayscale image I.
The function returns the dehazed image J, an estimate T of the haze thickness at each
pixel, and the estimated atmospheric light L.

[___] = imreducehaze(I,amount) additionally specifies the amount of haze to
remove.

[___] = imreducehaze(___ ,Name,Value) changes the behavior of the dehazing
algorithm using name-value pairs.

Examples

Reduce Haze Using Default Parameters

Read a hazy image into the workspace.

A = imread('foggysf1.jpg');

Reduce the haze and display the result next to the original image in a montage.

B = imreducehaze(A);
montage({A,B})
title("Hazy Image (Left) vs. Reduced Haze Image (Right)")

1 Functions — Alphabetical List

1-1806

Reduce Haze Using approxdcp Contrast Stretching

Read a hazy image into the workspace.

A = imread('foggysf2.jpg');

Reduce 90% of the haze using the approxdcp method.

B = imreducehaze(A,0.9,'method','approxdcp');

Display in a montage the original hazy image and the image with reduced haze.

montage({A,B})

 imreducehaze

1-1807

Estimate Haze Thickness and Image Depth

Read hazy image into the workspace.

A = imread('foggyroad.jpg');

Reduce haze in the image using default parameter values.

[~, T] = imreducehaze(A);

Display the result along side the original image.

figure, imshowpair(A, T, 'montage')

1 Functions — Alphabetical List

1-1808

The haze thickness provides a rough approximation of the depth of the scene, defined up
to an unknown multiplication factor. Add eps to avoid log(0).

D = -log(1-T+eps);

For display purposes, scale the depth so that it is in [0,1].

D = mat2gray(D);

Display the original image next to the estimated depth in false color.

figure
subplot(1,2,1)
imshow(A), title('Hazy image')
subplot(1,2,2)
imshow(D), title('Depth estimate')
colormap(gca, hot(256))

 imreducehaze

1-1809

Input Arguments
I — Hazy image
RGB image | grayscale image

Hazy image, specified as an RGB or grayscale image.
Data Types: single | double | uint8 | uint16

amount — Amount of haze to remove
1 (default) | number in the range [0,1]

1 Functions — Alphabetical List

1-1810

Amount of haze to remove, specified as a number in the range [0,1]. When the value is 1,
imreducehaze reduces the maximum amount of haze. When the value is 0,
imreducehaze does not reduce haze and the input image is unchanged. Larger values
can cause more severe color distortion.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = imreducehaze(A,0.9,'method','approxdcp');

Method — Technique used to reduce haze
'simpledcp' (default) | 'approxdcp'

Technique used to reduce haze, specified as the comma-separated pair consisting of
'Method' and one of these values:

• 'simpledcp' — Simple dark channel prior method [2]. This method uses a per-pixel
dark channel to estimate haze and quadtree decomposition to estimate the
atmospheric light.

• 'approxdcp' — Approximate dark channel prior method [1]. This method uses both
per-pixel and spatial blocks when computing the dark channel and does not use
quadtree decomposition.

For more information, see Algorithms on page 1-1813.
Data Types: char | string

AtmosphericLight — Maximum value to be treated as haze
1-by-3 numeric vector | numeric scalar

Maximum value to be treated as haze, specified as the comma-separated pair consisting
of 'AtmosphericLight' and a 1-by-3 numeric vector for RGB images or a numeric
scalar for grayscale images. Values must be in the range [0, 1]. Atmospheric light values
greater than 0.5 tend to give better results.

 imreducehaze

1-1811

If you do not specify AtmosphericLight, then the imreduzehaze function estimates a
value depending on the value of 'method'.
Data Types: double

ContrastEnhancement — Contrast enhancement technique
'global' (default) | 'boost' | 'none'

Contrast enhancement technique, specified as the comma-separated pair consisting of
'ContrastEnhancement' and 'global', 'boost', or 'none'.
Data Types: char | string

BoostAmount — Amount of per-pixel gain
0.1 (default) | number in the range [0, 1]

Amount of per-pixel gain to apply as postprocessing, specified as the comma-separated
pair consisting of 'BoostAmount' and a number in the range [0, 1]. This argument is
only supported if ContrastEnhancement is specified as 'boost'.
Data Types: double

Output Arguments
J — Dehazed image
numeric array

Dehazed image, returned as numeric array of the same size as the input hazy image I.

T — Haze thickness
numeric array

Haze thickness estimated at each pixel, returned as a numeric array.

L — Estimated atmospheric light
numeric array

Estimated atmospheric light, returned as a numeric array. L represents the value of the
brightest nonspecular haze.

1 Functions — Alphabetical List

1-1812

Algorithms
The model to describe a hazy image I is

I(x) = J(x)T(x) + L(1-T(x))

I is the observed intensity, J is the scene radiance, L is atmospheric light, and T is a
transmission map describing the portion of light that reaches the camera.

Dehazing algorithms recover the scene radiance (dehazed image) J from an estimation of
the transmission map and atmospheric light according to:

J(x) = (I(x)-A)/(max(t(x),t0)) + A

imreducehaze uses two different dehazing algorithms, simpledcp and approxdcp.
These methods both rely on a dark channel prior, which is based on the observation that
unhazy images of outdoor scenes usually contain some pixels that have low signal in one
or more color channels. The methods differ in how they estimate the dark channel prior
and atmospheric light.

The dehazing algorithms in imreducehaze follow five steps:

1 Estimate the atmospheric light L using a dark channel prior.
2 Estimate the transmission map T.
3 Refine the estimated transmission map.
4 Restore the image.
5 Perform optional contrast enhancement.

References
[1] He, Kaiming. "Single Image Haze Removal Using Dark Channel Prior." Thesis, The

Chinese University of Hong Kong. 2011.

[2] Dubok, et al. "Single Image Dehazing with Image Entropy and Information Fidelity."
ICIP. 2014, pp. 4037–4041.

See Also
imadjust | stretchlim

 imreducehaze

1-1813

Topics
“Low-Light Image Enhancement”
“Quadtree Decomposition”

Introduced in R2017b

1 Functions — Alphabetical List

1-1814

imref2d
Reference 2-D image to world coordinates

Description
An imref2d object encapsulates the relationship between the intrinsic coordinates
anchored to the rows and columns of a 2-D image and the spatial location of the same row
and column locations in a world coordinate system.

The image is sampled regularly in the planar world-x and world-y coordinate system such
that intrinsic-x values align with world-x values, and intrinsic-y values align with world-y
values. The resolution in each dimension can be different.

Creation

Syntax
R = imref2d
R = imref2d(imageSize)
R = imref2d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY)
R = imref2d(imageSize,xWorldLimits,yWorldLimits)

Description
R = imref2d creates an imref2d object with default property settings.

R = imref2d(imageSize) sets the optional ImageSize on page 1-0 property.

R = imref2d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY) sets the
optional ImageSize on page 1-0 , PixelExtentInWorldX on page 1-0 ,
and PixelExtentInWorldY on page 1-0 properties.

 imref2d

1-1815

R = imref2d(imageSize,xWorldLimits,yWorldLimits) sets the optional
ImageSize on page 1-0 , XWorldLimits on page 1-0 , and YWorldLimits
on page 1-0 properties.

Properties
ImageExtentInWorldX — Span of image in the x-dimension in the world
coordinate system
numeric scalar

Span of image in the x-dimension in the world coordinate system, specified as a numeric
scalar. The imref2d object sets this value as PixelExtentInX * ImageSize(2).
Data Types: double

ImageExtentInWorldY — Span of image in the y-dimension in the world
coordinate system
numeric scalar

Span of image in the y-dimension in the world coordinate system, specified as a numeric
scalar. The imref2d object sets this value as PixelExtentInY * ImageSize(1).
Data Types: double

ImageSize — Number of elements in each spatial dimension
two-element positive row vector

Number of elements in each spatial dimension, specified as a two-element positive row
vector. ImageSize is the same form as that returned by the size function.
Data Types: double

PixelExtentInWorldX — Size of a single pixel in the x-dimension measured in
the world coordinate system
positive scalar

Size of a single pixel in the x-dimension measured in the world coordinate system,
specified as a positive scalar.
Data Types: double

1 Functions — Alphabetical List

1-1816

PixelExtentInWorldY — Size of a single pixel in the y-dimension measured in
the world coordinate system
positive scalar

Size of a single pixel in the y-dimension measured in the world coordinate system,
specified as a positive scalar.
Data Types: double

XWorldLimits — Limits of image in world x-dimension
two-element numeric row vector

Limits of image in world x-dimension, specified as a two-element row numeric vector
[xMin xMax].
Data Types: double

YWorldLimits — Limits of image in world y-dimension
two-element numeric row vector

Limits of image in world y-dimension, specified as a two-element numeric row vector
[yMin yMax].
Data Types: double

XIntrinsicLimits — Limits of image in intrinsic units in the x-dimension
two-element row vector

Limits of image in intrinsic units in the x-dimension, specified as a two-element row
vector [xMin xMax]. For an m-by-n image (or an m-by-n-by-p image),
XIntrinsicLimits equals [0.5, n+0.5].
Data Types: double

YIntrinsicLimits — Limits of image in intrinsic units in the y-dimension
two-element row vector

Limits of image in intrinsic units in the y-dimension, specified as a two-element row
vector [yMin yMax]. For an m-by-n image (or an m-by-n-by-p image),
YIntrinsicLimits equals [0.5, m+0.5].
Data Types: double

 imref2d

1-1817

Object Functions
contains Determine if image contains points in world coordinate system
intrinsicToWorld Convert from intrinsic to world coordinates
sizesMatch Determine if object and image are size-compatible
worldToIntrinsic Convert from world to intrinsic coordinates
worldToSubscript Convert world coordinates to row and column subscripts

Examples

Create 2-D Spatial Referencing Object Knowing Image Size and World Limits

Read a 2-D grayscale image into the workspace.

A = imread('pout.tif');

Create an imref2d object, specifying the size and world limits of the image associated
with the object.

xWorldLimits = [2 5];
yWorldLimits = [3 6];
RA = imref2d(size(A),xWorldLimits,yWorldLimits)

RA =
 imref2d with properties:

 XWorldLimits: [2 5]
 YWorldLimits: [3 6]
 ImageSize: [291 240]
 PixelExtentInWorldX: 0.0125
 PixelExtentInWorldY: 0.0103
 ImageExtentInWorldX: 3
 ImageExtentInWorldY: 3
 XIntrinsicLimits: [0.5000 240.5000]
 YIntrinsicLimits: [0.5000 291.5000]

Display the image, specifying the spatial referencing object. The axes coordinates reflect
the world coordinates.

figure
imshow(A,RA);

1 Functions — Alphabetical List

1-1818

Create 2-D Spatial Referencing Object Knowing Image Size and Resolution

Read a 2-D grayscale image into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The
DICOM file contains a metadata field PixelSpacing that specifies the image resolution
in each dimension in millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 imref2d

1-1819

 XWorldLimits: [0.1563 160.1563]
 YWorldLimits: [0.1563 160.1563]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

Display the image, specifying the spatial referencing object. The axes coordinates reflect
the world coordinates.

figure
imshow(A,RA,'DisplayRange',[0 512])

1 Functions — Alphabetical List

1-1820

Compare the width of the image in world coordinates and intrinsic coordinates. This
image width in intrinsic coordinates, with units of pixels, is:

RA.ImageSize(1)

ans = 512

 imref2d

1-1821

The image width in world coordinates, with units of millimeters, is:

RA.ImageExtentInWorldX

ans = 160

Definitions

Intrinsic Coordinate System
The intrinsic coordinate values (x,y) of the center point of any pixel are identical to the
values of the column and row subscripts for that pixel. For example, the center point of
the pixel in row 5, column 3 has intrinsic coordinates x = 3.0, y = 5.0.

The order of coordinate specification (3.0,5.0) is reversed in intrinsic coordinates relative
to pixel subscripts (5,3). Intrinsic coordinates are defined on a continuous plane, while
the subscript locations are discrete locations with integer values.

Tips
• You can create an imref2d object for an RGB image. If you create the object

specifying the ImageSize on page 1-0 property as a three-element vector
(such as that returned by the size function), only the first two elements are used to
set ImageSize.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imref2d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

1 Functions — Alphabetical List

1-1822

• When generating code, you can only specify singular objects—arrays of objects are not
supported.

See Also
imref3d | imshow | imwarp

Topics
“Specify Fill Values in Geometric Transformation Output”

Introduced in R2013a

 imref2d

1-1823

imref3d
Reference 3-D image to world coordinates

Description
An imref3d object encapsulates the relationship between the intrinsic coordinates
anchored to the columns, rows, and planes of a 3-D image and the spatial location of the
same column, row, and plane locations in a world coordinate system.

The image is sampled regularly in the planar world-x, world-y, and world-z coordinates of
the coordinate system such that intrinsic-x, -y and -z values align with world-x, -y, and -z
values, respectively. The resolution in each dimension can be different.

Creation

Syntax
R = imref3d
R = imref3d(imageSize)
R =
imref3d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY,pixelExten
tInWorldZ)
R = imref3d(imageSize,xWorldLimits,yWorldLimits,zWorldLimits)

Description
R = imref3d creates an imref2d object with default property settings.

R = imref3d(imageSize) sets the optional ImageSize on page 1-0 property.

R =
imref3d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY,pixelExten
tInWorldZ) sets the optional ImageSize on page 1-0 , PixelExtentInWorldX

1 Functions — Alphabetical List

1-1824

on page 1-0 , PixelExtentInWorldY on page 1-0 , and
PixelExtentInWorldZ on page 1-0 properties.

R = imref3d(imageSize,xWorldLimits,yWorldLimits,zWorldLimits) sets the
optional ImageSize on page 1-0 , XWorldLimits on page 1-0 ,
YWorldLimits on page 1-0 , and ZWorldLimits on page 1-0 properties.

Properties
ImageExtentInWorldX — Span of image in the x-dimension in the world
coordinate system
numeric scalar

Span of image in the x-dimension in the world coordinate system, specified as a numeric
scalar. The imref3d object calculates this value as PixelExtentInX *
ImageSize(2).
Data Types: double

ImageExtentInWorldY — Span of image in the y-dimension in the world
coordinate system
numeric scalar

Span of image in the y-dimension in the world coordinate system, specified as a numeric
scalar. The imref3d object calculates this value as PixelExtentInY *
ImageSize(1).
Data Types: double

ImageExtentInWorldZ — Span of image in the z-dimension in the world
coordinate system
numeric scalar

Span of image in the z-dimension in the world coordinate system, specified as a numeric
scalar. The imref3d object calculates this value as PixelExtentInZ *
ImageSize(3).
Data Types: double

ImageSize — Number of elements in each spatial dimension
three-element positive row vector

 imref3d

1-1825

Number of elements in each spatial dimension, specified as a three-element positive row
vector. ImageSize is the same form as that returned by the size function.
Data Types: double

PixelExtentInWorldX — Size of a single pixel in the x-dimension measured in
the world coordinate system
positive scalar

Size of a single pixel in the x-dimension measured in the world coordinate system,
specified as a positive scalar.
Data Types: double

PixelExtentInWorldY — Size of a single pixel in the y-dimension measured in
the world coordinate system
positive scalar

Size of a single pixel in the y-dimension measured in the world coordinate system,
specified as a positive scalar.
Data Types: double

PixelExtentInWorldZ — Size of a single pixel in the z-dimension measured in
the world coordinate system
positive scalar

Size of a single pixel in the z-dimension measured in the world coordinate system,
specified as a positive scalar.
Data Types: double

XWorldLimits — Limits of image in world x-dimension
two-element numeric row vector

Limits of image in world x, specified as a two-element row vector, [xMin xMax].
Data Types: double

YWorldLimits — Limits of image in world y-dimension
two-element numeric row vector

Limits of image in world y, specified as a two-element row vector, [yMin yMax].
Data Types: double

1 Functions — Alphabetical List

1-1826

ZWorldLimits — Limits of image in world z-dimension
two-element numeric row vector

Limits of image in world z, specified as a two-element row vector, [zMin zMax].
Data Types: double

XIntrinsicLimits — Limits of image in intrinsic units in the x-dimension
two-element row vector

Limits of image in intrinsic units in the x-dimension, specified as a two-element row
vector [xMin xMax]. For an m-by-n-by-p image, it equals [0.5, n+0.5].
Data Types: double

YIntrinsicLimits — Limits of image in intrinsic units in the y-dimension
two-element row vector

Limits of image in intrinsic units in the y-dimension, specified as a two-element row
vector [yMin yMax]. For an m-by-n-by-p image, it equals [0.5, m+0.5].
Data Types: double

ZIntrinsicLimits — Limits of image in intrinsic units in the z-dimension
two-element row vector

Limits of image in intrinsic units in the z-dimension, specified as a two-element row
vector [zMin zMax]. For an m-by-n-by-p image, it equals [0.5, p+0.5].
Data Types: double

Object Functions
contains Determine if image contains points in world coordinate system
intrinsicToWorld Convert from intrinsic to world coordinates
sizesMatch Determine if object and image are size-compatible
worldToIntrinsic Convert from world to intrinsic coordinates
worldToSubscript Convert world coordinates to row and column subscripts

Examples

 imref3d

1-1827

Create imref3d Object Knowing Image Size and Resolution in Each Dimension

Read image.

m = analyze75info('brainMRI.hdr');
A = analyze75read(m);

Create an imref3d object associated with the image, specifying the size of the pixels.
The PixelDimensions field of the metadata of the file specifies the resolution in each
dimension in millimeters/pixel.

RA = imref3d(size(A),m.PixelDimensions(2),m.PixelDimensions(1),m.PixelDimensions(3));

RA =

 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Examine the extent of the image in each dimension in millimeters.

RA.ImageExtentInWorldX
RA.ImageExtentInWorldY
RA.ImageExtentInWorldZ

ans =

 128

ans =

 128

1 Functions — Alphabetical List

1-1828

ans =

 27

Definitions

Intrinsic Coordinate System
The intrinsic coordinate values (x,y,z) of the center point of any pixel are identical to the
values of the column, row, and plane subscripts for that pixel. For example, the center
point of the pixel in row 5, column 3, plane 4 has intrinsic coordinates x = 3.0, y = 5.0, z
= 4.0.

The order of the coordinate specification (3.0,5.0,4.0) is reversed in intrinsic coordinates
relative to pixel subscripts (5,3,4). Intrinsic coordinates are defined on a continuous
plane, while the subscript locations are discrete locations with integer values.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imref3d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not
supported.

See Also
imref2d | imregister

Introduced in R2013a

 imref3d

1-1829

imregionalmax
Regional maxima

Syntax
BW = imregionalmax(I)
BW = imregionalmax(I,conn)

Description
BW = imregionalmax(I) returns the binary image BW that identifies the regional
maxima in grayscale image I. Regional minima are connected components of pixels with
a constant intensity value, surrounded by pixels with a lower value.

You optionally can identify regional maxima of 2-D images using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

BW = imregionalmax(I,conn) specifies the pixel connectivity, conn.

Examples

Find Regional Maxima in Simple Sample Image

Create a simple sample image with several regional maxima.

A = 10*ones(10,10);
A(2:4,2:4) = 22;
A(6:8,6:8) = 33;
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44

A = 10×10

 10 10 10 10 10 10 10 10 10 10

1 Functions — Alphabetical List

1-1830

 10 22 22 22 10 10 44 10 10 10
 10 22 22 22 10 10 10 45 10 10
 10 22 22 22 10 10 10 10 44 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Find the regional maxima. Note that the result includes the regional maxima at (3,8).

regmax = imregionalmax(A)

regmax = 10x10 logical array

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 1 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Find Regional Maxima in Simple Sample Image on a GPU

Create a 10-by-10 pixel sample image that contains two regional maxima.

A = 10*gpuArray(ones(10,10));
A(2:4,2:4) = 22; % maxima 12 higher than surrounding pixels
A(6:8,6:8) = 33; % maxima 23 higher than surrounding pixels
A(2,7) = 44;
A(3,8) = 45; % maxima 1 higher than surrounding pixels
A(4,9) = 44

A =

 imregionalmax

1-1831

 10 10 10 10 10 10 10 10 10 10
 10 22 22 22 10 10 44 10 10 10
 10 22 22 22 10 10 10 45 10 10
 10 22 22 22 10 10 10 10 44 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Pass the sample image A to imregionalmax. The function returns a binary image, the
same size as A, in which pixels with the value 1 represent the regional maxima in A.
imregionalmax sets all other pixels in to 0.

regmax = imregionalmax(A)

regmax =

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 1 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale image
numeric array | gpuArray

Input array, specified as a numeric array of any dimension.

To calculate regional maxima using a GPU, specify I as a gpuArray that contains a 2-D
numeric matrix.
Example: I = imread('cameraman.tif');
Example: I = gpuArray(imread('cameraman.tif'));

1 Functions — Alphabetical List

1-1832

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 imregionalmax

1-1833

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imregionalmax uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Locations of regional maxima
logical array | gpuArray

Locations of regional maxima, returned as a logical array of the same size as I. Pixels
with the value 1 indicate regional maxima; all other pixels are set to 0.

If the regional maxima are computed using a GPU, then BW is returned as a gpuArray
that contains a logical matrix of the same size as I.
Data Types: logical

1 Functions — Alphabetical List

1-1834

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imregionalmax supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imregionalmax generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the optional second input argument, conn, must be a compile-
time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).

For more information, see “Image Processing on a GPU”.

See Also
conndef | imextendedmax | imhmax | imreconstruct | imregionalmin

Introduced before R2006a

 imregionalmax

1-1835

imregionalmin
Regional minima

Syntax
BW = imregionalmin(I)
BW = imregionalmin(I,conn)

Description
BW = imregionalmin(I) returns the binary image BW that identifies the regional
minima in grayscale image I. Regional minima are connected components of pixels with a
constant intensity value, surrounded by pixels with a lower value.

You optionally can identify regional minima of 2-D images using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

BW = imregionalmin(I,conn) specifies the desired connectivity, conn.

Examples

Find Regional Minima in Simple Sample Image

Create a simple sample array with several regional minima.

A = 10*ones(10,10);
A(2:4,2:4) = 3;
A(6:8,6:8) = 8

A = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10

1 Functions — Alphabetical List

1-1836

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Calculate the regional minima. The function returns a binary image, the same size as the
input image, in which pixels with the value 1 represent the regional minima.
imregionalmin sets all other pixels in to 0.

regmin = imregionalmin(A)

regmin = 10x10 logical array

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Find Regional Minima in Simple Sample Image on a GPU

Create a 10-by-10 pixel sample image that contains two regional minima.

A = 10*gpuArray(ones(10,10));
A(2:4,2:4) = 3; % minima 3 lower than surround
A(6:8,6:8) = 8 % minima 8 lower than surroundA(6:8,6:8) = 7;

A =

 10 10 10 10 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10

 imregionalmin

1-1837

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Pass the sample image A to imregionalmin. The function returns a binary image, the
same size as A, in which pixels with the value 1 represent the regional minima in A.
imregionalmin sets all other pixels in to 0.

regmin = imregionalmin(A)

regmin =

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale image
numeric array | gpuArray

Input array, specified as a numeric array of any dimension.

To calculate regional minima using a GPU, specify I as a gpuArray that contains a 2-D
numeric matrix.
Example: I = imread('cameraman.tif');
Example: I = gpuArray(imread('cameraman.tif'));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-1838

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 imregionalmin

1-1839

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, imregionalmin uses the default value
conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Locations of regional minima
logical array | gpuArray

Locations of regional minima, returned as a logical array of the same size as I. Pixels with
the value 1 indicate regional maxima; all other pixels are set to 0.

If the regional minima are computed using a GPU, then BW is returned as a gpuArray
that contains a logical matrix of the same size as I.
Data Types: logical

1 Functions — Alphabetical List

1-1840

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imregionalmin supports the generation of C code (requires MATLAB Coder). Note
that if you choose the generic MATLAB Host Computer target platform,
imregionalmin generates code that uses a precompiled, platform-specific shared
library. Use of a shared library preserves performance optimizations but limits the
target platforms for which code can be generated. For more information, see “Code
Generation Using a Shared Library”.

• When generating code, the optional second input argument, conn, must be a compile-
time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).

For more information, see “Image Processing on a GPU”.

See Also
conndef | imextendedmin | imhmin | imimposemin | imreconstruct |
imregionalmax

Introduced before R2006a

 imregionalmin

1-1841

imregconfig
Configurations for intensity-based registration

Syntax
[optimizer,metric] = imregconfig(modality)

Description
[optimizer,metric] = imregconfig(modality) creates optimizer and metric
configurations that you pass to imregister to perform intensity-based image
registration, where modality specifies the image capture modality. imregconfig
returns optimizer and metric with default settings to provide a basic registration
configuration.

Examples

Register Multimodal MRI Images with Optimizer

Read two images. This example uses two magnetic resonance (MRI) images of a knee.
The fixed image is a spin echo image, while the moving image is a spin echo image with
inversion recovery. The two sagittal slices were acquired at the same time but are slightly
out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

1 Functions — Alphabetical List

1-1842

Create the optimizer and metric, setting the modality to 'multimodal' since the images
come from different sensors.

[optimizer, metric] = imregconfig('multimodal')

 imregconfig

1-1843

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima
and to allow for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving, fixed, 'affine', optimizer, metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

1 Functions — Alphabetical List

1-1844

 imregconfig

1-1845

Input Arguments
modality — Image capture modality
'monomodal' | 'multimodal'

Image capture modality describes how your images have been captured, specified as
either 'monomodal' on page 1-1846 (with similar brightness and contrast) or
'multimodal' on page 1-1846 (with different brightness or contrast).
Data Types: char | string

Output Arguments
optimizer — Optimization configuration
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Optimization configuration, returned as a RegularStepGradientDescent or
OnePlusOneEvolutionary optimizer object.

metric — Metric configuration
MeanSquares or MattesMutualInformation metric object

Metric configuration describes the image similarity metric to be optimized during
registration, returned as a MeanSquares or MattesMutualInformation metric object.

Definitions

Monomodal
Monomodal images have similar brightness and contrast. The images are captured on the
same type of scanner or sensor.

Multimodal
Multimodal images have different brightness and contrast. The images can come from
two different types of devices, such as two camera models or two types of medical
imaging modalities (like CT and MRI). The images can also come from a single device,

1 Functions — Alphabetical List

1-1846

such as a camera using different exposure settings, or an MRI scanner using different
imaging sequences.

Tips
• If you adjust the optimizer or metric parameters, the registration results can improve.

For example, if you increase the number of iterations in the optimizer, reduce the
optimizer step size, or change the number of samples in a stochastic metric, the
registration improves to a point, at the expense of performance.

See Also
Apps
Registration Estimator

Functions
imregister | imshowpair

Objects
MattesMutualInformation | MeanSquares | OnePlusOneEvolutionary |
RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”
“Intensity-Based Automatic Image Registration”

Introduced in R2012a

 imregconfig

1-1847

imregcorr
Estimate geometric transformation that aligns two 2-D images using phase correlation

Syntax
tform = imregcorr(moving,fixed)
tform = imregcorr(moving,fixed,transformtype)
tform = imregcorr(moving,Rmoving,fixed,Rfixed, ___)
tform = imregcorr(___ ,Name,Value, ___)

Description
tform = imregcorr(moving,fixed) estimates the geometric transformation that
aligns an image, moving, with a reference image, fixed. The function returns a
geometric transformation object, tform, that maps pixels in moving to pixels in fixed.

tform = imregcorr(moving,fixed,transformtype) estimates the geometric
transformation, where transformtype is a string scalar or character vector that
specifies the type of transformation.

tform = imregcorr(moving,Rmoving,fixed,Rfixed, ___) estimates the
geometric transformation that aligns an image, moving, with a reference image, fixed.
Rmoving and Rfixed are spatial referencing objects that contain spatial information
about the moving and fixed images, respectively. The transformation object returned,
tform, defines the point mapping in the world coordinate system.

tform = imregcorr(___ ,Name,Value, ___) registers the moving image to the fixed
image using name-value pairs to control various aspects of the registration algorithm.

Examples

Register Images Using Phase Correlation

Read a reference image into the workspace.

1 Functions — Alphabetical List

1-1848

fixed = imread('cameraman.tif');

Create a synthetic moving image by scaling and rotating the fixed image.

theta = 20;
S = 2.3;
tform = affine2d([S.*cosd(theta) -S.*sind(theta) 0; ...
 S.*sind(theta) S.*cosd(theta) 0; ...
 0 0 1]);
moving = imwarp(fixed,tform);
moving = moving + uint8(10*rand(size(moving)));

Display the fixed and the moving image alongside each other.

imshowpair(fixed,moving,'montage')

Estimate the transformation needed to align the images using imregcorr.

tformEstimate = imregcorr(moving,fixed);

Apply estimated geometric transform to the moving image. This example uses the
'OutputView' parameter to obtain a registered image the same size and with the same
world limits as the reference image.

 imregcorr

1-1849

Rfixed = imref2d(size(fixed));
movingReg = imwarp(moving,tformEstimate,'OutputView',Rfixed);

View the original image and the registered image side-by-side to check the registration.
Then view the registered image overlaid on the original using the 'falsecolor' option
to highlight any areas where the images differ.

imshowpair(fixed,movingReg,'montage')

imshowpair(fixed,movingReg,'falsecolor');

1 Functions — Alphabetical List

1-1850

Input Arguments
moving — Image to be registered
grayscale image | binary image | RGB image

Image to be registered, specified as a grayscale, binary, or RGB image. If you specify an
RGB image, imregcorr converts it to a grayscale image using rgb2gray before
processing.

Note The aspect ratio of moving affects the output transform tform. For best results,
use a square image.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

 imregcorr

1-1851

fixed — Reference image in the target orientation
grayscale image | binary image | RGB image

Reference image in the target orientation, specified as a grayscale, binary, or RGB image.
If you specify an RGB image, imregcorr converts it to a grayscale image using
rgb2gray before processing.

Note The aspect ratio of fixed affects the output transform tform. For best results, use
a square image.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

transformtype — Type of transformation to estimate
'similarity' (default) | 'rigid' | 'translation'

Type of transformation to estimate, specified as one of the following values.

Value Description
'translation' Translation
'rigid' Translation and rotation
'similarity' Translation, rotation, and scaling

When using the 'similarity' option, the phase correlation
algorithm is only scale invariant within some range of scale
difference between the fixed and moving images. imregcorr
limits the search space to scale differences within the range
[1/4, 4]. imregcorr does not detect scale differences less than
1/4 or greater than 4.

Data Types: char | string

Rmoving — Spatial referencing information associated with the image to be
registered
imref2d object

Spatial referencing information associated with the image to be registered, specified as
an imref2d object.

1 Functions — Alphabetical List

1-1852

Rfixed — Spatial referencing information associated with the reference (fixed)
image
imref2d object

Spatial referencing information associated with the reference (fixed) image, specified as
an imref2d object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: tformEstimate = imregcorr(moving,fixed,'Window',true);

Window — Logical flag to control use of windowing to suppress spectral leakage
effects in frequency domain
true (default) | scalar logical

Logical flag to control use of windowing to suppress spectral leakage effects in frequency
domain, specified as the comma-separated pair consisting of 'Window' and a logical
scalar. When set to true, imregcorr uses a Blackman window to increase the stability of
registration results. If the common features you are trying to align in your images are
oriented along the edges, setting 'Window' to false can sometimes provide superior
registration results.
Example: tformEstimate = imregcorr(moving,fixed,'Window',true);
Data Types: logical

Output Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, returned as a geometric transformation object of type
affine2d.

 imregcorr

1-1853

Tips
• If your image is of type double, you can achieve performance improvements by

casting the image to single with im2single before registration. Input images of
type double cause the algorithm to compute FFTs in double.

References
[1] Reddy, B. S. and Chatterji, B. N., An FFT-Based Technique for Translation, Rotation,

and Scale-Invariant Image Registration, IEEE Transactions on Image Processing,
Vol. 5, No. 8, August 1996

See Also
Apps
Registration Estimator

Functions
imregister | imregtform | imshowpair | imwarp

Introduced in R2014a

1 Functions — Alphabetical List

1-1854

imregdemons
Estimate displacement field that aligns two 2-D or 3-D images

Syntax
[D,moving_reg] = imregdemons(moving,fixed)
[D,moving_reg] = imregdemons(moving,fixed,N)
[D,moving_reg] = imregdemons(___,Name,Value)

Description
[D,moving_reg] = imregdemons(moving,fixed) estimates the displacement field D
that aligns the image to be registered, moving, with the reference image, fixed. The
displacement vectors at each pixel location map locations from the fixed image grid to a
corresponding location in the moving image. moving_reg is a warped version of the
moving image that is warped according to the displacement field D and resampled using
linear interpolation.

You optionally can estimate the displacement field using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

[D,moving_reg] = imregdemons(moving,fixed,N) specifies the number of
iterations to be computed. This function does not use a convergence criterion and
therefore is always guaranteed to run for the specified or default number of iterations.

[D,moving_reg] = imregdemons(___,Name,Value) registers the moving image
using name-value pairs to control aspects of weight computation.

Examples

 imregdemons

1-1855

Register Two Images with Local Distortions

This example shows how to solve a registration problem in which the same hand has been
photographed in two different poses. The misalignment of the images varies locally
throughout each image. This is therefore a non-rigid registration problem.

Read the two images into the workspace.

fixed = imread('hands1.jpg');
moving = imread('hands2.jpg');

Convert the images to grayscale for processing.

fixed = rgb2gray(fixed);
moving = rgb2gray(moving);

Observe the initial misalignment. Fingers are in different poses.

imshowpair(fixed,moving,'montage')

Overlay the two images to make it easy to see where the images differ. The differences
are highlighted in green and magenta.

imshowpair(fixed,moving)

1 Functions — Alphabetical List

1-1856

Correct illumination differences between the moving and fixed images using histogram
matching. This is a common pre-processing step.

moving = imhistmatch(moving,fixed);

Estimate the transformation needed to bring the two images into alignment.

[~,movingReg] = imregdemons(moving,fixed,[500 400 200],...
 'AccumulatedFieldSmoothing',1.3);

Display the results of the registration. In the first figure, the images are overlaid to show
the alignment.

imshowpair(fixed,movingReg)

 imregdemons

1-1857

imshowpair(fixed,movingReg,'montage')

1 Functions — Alphabetical List

1-1858

Register Two Images with Local Distortions on a GPU

Perform a nonrigid registration on a GPU.

Read images into the workspace.

fixed = imread('hands1.jpg');
moving = imread('hands2.jpg');

Observe the initial misalignment. (Fingers are in different positions.)

figure
imshowpair(fixed,moving,'montage')
figure
imshowpair(fixed,moving)

Create gpuArrays and convert the images to grayscale.

fixedGPU = gpuArray(fixed);
movingGPU = gpuArray(moving);

fixedGPU = rgb2gray(fixedGPU);
movingGPU = rgb2gray(movingGPU);

Use histogram matching to correct illumination differences between the moving and fixed
images. This is a common preprocessing step.

fixedHist = imhist(fixedGPU);
movingGPU = histeq(movingGPU,fixedHist);

Perform the registration.

[~,movingReg] = imregdemons(movingGPU,fixedGPU,[500 400 200],'AccumulatedFieldSmoothing',1.3);

Bring the registered image back to the CPU.

 movingReg = gather(movingReg);

View the results.

figure
imshowpair(fixed,movingReg)

 imregdemons

1-1859

figure
imshowpair(fixed,movingReg,'montage')

Input Arguments
moving — Image to be registered
2-D or 3-D grayscale image | gpuArray

Image to be registered, specified as a 2-D or 3-D grayscale image.

To perform the computation using a GPU, specify moving as a gpuArray that contains a
2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

fixed — Reference image in the target orientation
2-D or 3-D grayscale image | gpuArray

Reference image in the target orientation, specified as a 2-D or 3-D grayscale image.

To perform the computation using a GPU, specify fixed as a gpuArray that contains a 2-
D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

N — Number of iterations
100 (default) | positive integer scalar or vector

Number of iterations, specified as a positive integer scalar or vector.

When you specify a vector, N is the number of iterations per pyramid level (resolution
level). For example, if there are 3 pyramid levels, then you can specify the vector
[100,50,25], where imregdemons performs 100 iterations at the lowest resolution
level, 50 iterations at the next pyramid level, and 25 iterations at the last iteration level—
the level with full resolution. Because it takes less time to process the lower resolution
levels, running more iterations at low resolution and fewer iterations at the higher
resolutions of the pyramid can help performance.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Functions — Alphabetical List

1-1860

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [D,movingReg] = imregdemons(moving,fixed,[500 400
200],'AccumulatedFieldSmoothing',1.5);

AccumulatedFieldSmoothing — Smoothing applied at each iteration
1.0 (default) | positive scalar

Smoothing applied at each iteration, specified as the comma-separated pair consisting of
'AccumulatedFieldSmoothing' and a numeric value. This parameter controls the
amount of diffusion-like regularization.imregdemons applies the standard deviation of
the Gaussian smoothing to regularize the accumulated field at each iteration. Larger
values result in smoother output displacement fields. Smaller values result in more
localized deformation in the output displacement field. Values typically are in the range
[0.5, 3.0]. When you specify multiple PyramidLevels, the standard deviation used in the
Gaussian smoothing remains the same at each pyramid level.
Data Types: double

PyramidLevels — Number of multi-resolution image pyramid levels to use
3 (default) | positive integer scalar

Number of multi-resolution image pyramid levels to use, specified as the comma-
separated pair consisting of 'PyramidLevels' and a positive integer scalar.
Data Types: double

DisplayWaitbar — Display waitbar to indicate progress
true (default) | false

Display waitbar to indicate progress, specified as the comma-separated pair consisting of
'DisplayWaitbar' and the value true or false. When set to true, imregdemons
displays a waitbar to indicate progress for long-running operations. To prevent
imregdemons from displaying a waitbar, set DisplayWaitbar to false.

Note The 'DisplayWaitbar' parameter is not supported on a GPU.

 imregdemons

1-1861

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
D — Displacement field
numeric array | gpuArray

Displacement field, specified as a numeric array. Displacement values are in units of
pixels.

• If fixed is a 2-D grayscale image of size m-by-n, then the displacement field array is
m-by-n-by-2. D(:,:,1) contains displacements along the x-axis and D(:,:,2)
contains displacements along the y-axis.

• If fixed is a 3-D grayscale image of size m-by-n-by-p, then the displacement field
array is m-by-n-by-p-by-3. D(:,:,:,1) contains displacements along the x-axis,
D(:,:,:,2) contains displacements along the y-axis. and D(:,:,:,3) contains
displacements along the z-axis.

If the displacement field is computed using a GPU, then D is returned as a gpuArray
containing a numeric array.
Data Types: double

moving_reg — Aligned image
2-D or 3-D grayscale image | gpuArray

Registered image, returned as a 2-D or 3-D grayscale image, warped according to the
displacement field D and resampled using linear interpolation.

If the displacement field is computed using a GPU, then moving_reg is returned as a
gpuArray containing a 2-D or 3-D grayscale image.

Tips
• To transform an image using the displacement field D, use imwarp.

1 Functions — Alphabetical List

1-1862

References
[1] Thirion, J.-P. "Image matching as a diffusion process: an analogy with Maxwell’s

demons". Medical Image Analysis. Vol. 2, Number 3, 1998, pp. 243–260.

[2] Vercauteren, T., X. Pennec, A. Perchant, N. Ayache, "Diffeomorphic Demons: Efficient
Non-parametric Image Registration", NeuroImage. Vol. 45, Number 1,
Supplement 1, March 2009, pp. 61–72.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The parameter 'DisplayWaitbar' is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Apps
Registration Estimator

Functions
imregcorr | imregister | imregtform | imshowpair | imwarp

Introduced in R2014b

 imregdemons

1-1863

imregister
Intensity-based image registration

Syntax
moving_reg = imregister(moving,fixed,transformType,optimizer,metric)
[moving_reg,R_reg] = imregister(moving,Rmoving,fixed,Rfixed,
transformType,optimizer,metric)
___ = imregister(___ ,Name,Value)

Description
moving_reg = imregister(moving,fixed,transformType,optimizer,metric)
transforms the 2-D or 3-D image, moving, so that it is registered with the reference
image, fixed. Both moving and fixed images must be of the same dimensionality,
either 2-D or 3-D. transformType is a string scalar or character vector that defines the
type of transformation to perform. optimizer is an object that describes the method for
optimizing the metric. metric is an object that defines the quantitative measure of
similarity between the images to optimize. Returns the aligned image, moving_reg.

[moving_reg,R_reg] = imregister(moving,Rmoving,fixed,Rfixed,
transformType,optimizer,metric) transforms the spatially referenced image
moving so that it is registered with the spatially referenced image fixed. Rmoving and
Rfixed are spatial referencing objects that describe the world coordinate limits and the
resolution of moving and fixed.

___ = imregister(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments.

Examples

Register Multimodal MRI Images with Optimizer

Read two images. This example uses two magnetic resonance (MRI) images of a knee.
The fixed image is a spin echo image, while the moving image is a spin echo image with

1 Functions — Alphabetical List

1-1864

inversion recovery. The two sagittal slices were acquired at the same time but are slightly
out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

 imregister

1-1865

Create the optimizer and metric, setting the modality to 'multimodal' since the images
come from different sensors.

[optimizer, metric] = imregconfig('multimodal')

1 Functions — Alphabetical List

1-1866

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima
and to allow for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving, fixed, 'affine', optimizer, metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

 imregister

1-1867

1 Functions — Alphabetical List

1-1868

Input Arguments
moving — Image to be registered
grayscale image

Image to be registered, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rmoving — Spatial referencing information associated with the image to be
registered
imref2d or imref3d object

Spatial referencing information associated with the image to be registered, specified as
an imref2d or imref3d object.

fixed — Reference image in the target orientation
grayscale image

Reference image in the target orientation, specified as a grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rfixed — Spatial referencing information associated with the reference image
imref2d or imref3d object

Spatial referencing information associated with the reference (fixed) image, specified as
an imref2d or imref3d object.

transformType — Geometric transformation to be applied to the image to be
registered
'translation' | 'rigid' | 'similarity' | 'affine'

Geometric transformation to be applied to the moving image, specified as one of the
following values:

Value Description
'translation' (x,y) translation in 2-D, or (x,y,z) translation in 3-D.
'rigid' Rigid transformation consisting of translation and rotation.
'similarity' Nonreflective similarity transformation consisting of translation,

rotation, and scale.

 imregister

1-1869

Value Description
'affine' Affine transformation consisting of translation, rotation, scale,

and shear.

The 'similarity' and 'affine' transformation types always involve nonreflective
transformations.
Data Types: char | string

optimizer — Method for optimizing the similarity metric
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Method for optimizing the similarity metric, specified as a
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object.

metric — Image similarity metric to be optimized during registration
MeanSquares or MattesMutualInformation metric object

Image similarity metric to be optimized during registration, specified as a MeanSquares
or MattesMutualInformation metric object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayOptimization',1 enables the verbose optimization mode.

DisplayOptimization — Verbose optimization flag
false (default) | true

Verbose optimization flag, specified as the comma-separated pair consisting of
'DisplayOptimization', and the logical value true or false. Controls whether
imregister displays optimization information in the command window during the
registration process.
Data Types: logical

InitialTransformation — Starting geometric transformation
affine2d or affine3d object

1 Functions — Alphabetical List

1-1870

Starting geometric transformation, specified as the comma-separated pair consisting of
'InitialTransformation' and an affine2d or affine3d object.

PyramidLevels — Number of pyramid levels used during registration process
3 (default) | positive integer

Number of pyramid levels used during the registration process, specified as the comma-
separated pair consisting of 'PyramidLevels' and a positive integer.
Example: 'PyramidLevels',4 sets the number of pyramid levels to 4.
Data Types: double

Output Arguments
moving_reg — Transformed image
numeric matrix

Transformed image, returned as a matrix. Any fill pixels introduced that do not
correspond to locations in the original image are 0.

R_reg — Spatial referencing information associated with output image
imref2d or imref3d object

Spatial referencing information associated with output image, returned as an imref2d or
imref3d object.

Tips
• Both imregtform and imregister use the same underlying registration algorithm.

imregister performs the additional step of resampling moving to produce the
registered output image from the geometric transformation estimate calculated by
imregtform. Use imregtform when you want access to the geometric
transformation that relates moving to fixed. Use imregister when you want a
registered output image.

• Create an optimizer and metric with the imregconfig function before calling
imregister. Getting good results from optimization-based image registration usually
requires modifying optimizer or metric settings for the pair of images being
registered. The imregconfig function provides a default configuration that should

 imregister

1-1871

only be considered a starting point. For example, if you increase the number of
iterations in the optimizer, reduce the optimizer step size, or change the number of
samples in a stochastic metric, the registration improves to a point, at the expense of
performance. See the output of imregconfig for more information on the different
parameters that you can modify.

• If the spatial scaling of your images differs by more than 10%, resize them with
imresize before registering them.

• Use imshowpair or imfuse to visualize the results of registration.
• You can use imregister in an automated workflow to register several images.
• When you have spatial referencing information about the image to be registered,

specify the information to imregister using spatial referencing objects. This helps
imregister converge to better results more quickly because scale differences can be
taken into account.

See Also
Apps
Registration Estimator

Functions
imfuse | imregconfig | imregcorr | imregtform | imshowpair | imwarp

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”
“Intensity-Based Automatic Image Registration”

Introduced in R2012a

1 Functions — Alphabetical List

1-1872

imregmtb
Register 2-D images using median threshold bitmaps

Syntax
[R1,R2,...,Rn,shift] = imregmtb(M1,M2,...,Mn,F)

Description
[R1,R2,...,Rn,shift] = imregmtb(M1,M2,...,Mn,F) registers an arbitrary
number of moving images M1,M2,...,Mn with respect to the fixed (reference) image, F,
using the median threshold bitmap technique. The registered images are returned in
R1,R2,...,Rn, and the estimated displacement of the registered images is returned in
shift.

The median threshold bitmap technique is effective for registering images captured with
variable exposures. imregmtb considers only translations, not rotations or other types of
geometric transformations.

Examples

Register Images with Jitter Using Median Threshold Bitmaps

Read a series of images with different exposures.

I1 = imread('office_1.jpg');
I2 = imread('office_2.jpg');
I3 = imread('office_3.jpg');
I4 = imread('office_4.jpg');
I5 = imread('office_5.jpg');
I6 = imread('office_6.jpg');

The images were captured from a fixed camera, and there are no moving objects in the
scene. For this example, simulate camera motion, or jitter, by translating each image

 imregmtb

1-1873

horizontally and vertically by a random amount in the range [–30, 30] pixels. Store the
translation values for all five moving images in the 5-by-2 matrix t. Designate the sixth
image, I6, as the fixed (or reference) image. Do not apply jitter to this image.

t = randi([-30 30],5,2);
I1 = imtranslate(I1,t(1,:));
I2 = imtranslate(I2,t(2,:));
I3 = imtranslate(I3,t(3,:));
I4 = imtranslate(I4,t(4,:));
I5 = imtranslate(I5,t(5,:));

To compare the image positions, display a region of interest (ROI) from the center of each
image. The vector roi specifies the x- and y-coordinate of the top left corner, and the
width and height of the ROI.

roi = [140 260 200 200];
montage({imcrop(I1,roi),imcrop(I2,roi),imcrop(I3,roi), ...
 imcrop(I4,roi),imcrop(I5,roi),imcrop(I6,roi)})
title('Misaligned Images')

1 Functions — Alphabetical List

1-1874

Register the spatially shifted images using median threshold bitmaps. Display an ROI
from the center of each image.

[R1,R2,R3,R4,R5,shift] = imregmtb(I1,I2,I3,I4,I5,I6);
montage({imcrop(R1,roi),imcrop(R2,roi),imcrop(R3,roi), ...
 imcrop(R4,roi),imcrop(R5,roi),imcrop(I6,roi)})
title('Registered Images')

 imregmtb

1-1875

The images look well-aligned.

Examine the estimated displacement, shift, of each moving image with respect to the
fixed image. shift represents the estimated transformation that must be applied to the
moving image to align it with the fixed image.

shift

shift = 5×2

 -26 25
 -25 14
 23 -3
 -25 -28
 -8 -28

1 Functions — Alphabetical List

1-1876

Compare the estimated displacement to the actual displacement. Recall that the
transformation t was applied to the fixed image to simulate the jitter of each moving
image. Therefore, the transformation -t is analogous to the transformation returned by
shift.

-t

ans = 5×2

 -19 25
 -25 14
 23 -3
 -25 -28
 -8 -28

The imregmtb function does a good job estimating the displacement of each frame.

Input Arguments
M1,M2,...,Mn — Moving images
grayscale images | RGB images

Moving images, specified as a series of grayscale images or RGB images with identical or
variable exposures. The images must have the same size and data type.
Data Types: single | double | uint8 | uint16

F — Fixed image
grayscale image | RGB image

Fixed image, specified as a grayscale image or RGB image. F must have the same size and
data type as the moving images, M1,M2,...,Mn.
Data Types: single | double | uint8 | uint16

Output Arguments
R1,R2,...,Rn — Registered images
grayscale images | RGB images

 imregmtb

1-1877

Registered images, returned as a series of grayscale images or RGB images. The
registered images have the same size and data type as the moving images,
M1,M2,...,Mn.

shift — Estimated displacement
n-by-2 numeric matrix

Estimated displacement in the horizontal and vertical direction of the n registered
images, returned as an n-by-2 numeric matrix.

References
[1] Reinhard, E., W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, K. Myszkowski. High

Dynamic Range Imaging, Second Edition. San Francisco, CA: Morgan Kaufmann
Publishers Inc., 2010, pp. 155–170.

See Also
blendexposure | imregcorr | imregister | imtranslate

Introduced in R2018a

1 Functions — Alphabetical List

1-1878

imregtform
Estimate geometric transformation that aligns two 2-D or 3-D images

Syntax
tform = imregtform(moving,fixed,transformType,optimizer,metric)
tform = imregtform(moving,Rmoving,fixed,Rfixed,transformType,
optimizer,metric)
tform = imregtform(___ ,Name,Value)

Description
tform = imregtform(moving,fixed,transformType,optimizer,metric)
estimates the geometric transformation that aligns the moving image moving with the
fixed image fixed. transformType is a string scalar or character vector that defines
the type of transformation to estimate. optimizer is an object that describes the method
for optimizing the metric. metric is an object that defines the quantitative measure of
similarity between the images to optimize. The output tform is a geometric
transformation object that maps moving to fixed.

tform = imregtform(moving,Rmoving,fixed,Rfixed,transformType,
optimizer,metric) estimates the geometric transformation where Rmoving and
Rfixed specify the spatial referencing objects associated with the moving and fixed
images. The output tform is a geometric transformation object in units defined by the
spatial referencing objects Rmoving and Rfixed.

tform = imregtform(___ ,Name,Value) estimates the geometric transformation
using name-value pairs to control aspects of the operation.

Examples

Estimate Transformation Needed for Image Registration

Read two images. This example uses two magnetic resonance (MRI) images of a knee.
The fixed image is a spin echo image, while the moving image is a spin echo image with

 imregtform

1-1879

inversion recovery. The two sagittal slices were acquired at the same time but are slightly
out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

1 Functions — Alphabetical List

1-1880

Create the optimizer and metric, setting the modality to 'multimodal' since the images
come from different sensors.

[optimizer, metric] = imregconfig('multimodal')

 imregtform

1-1881

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima
and to allow for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Find the geometric transformation that maps the image to be registered (moving) to the
reference image (fixed).

tform = imregtform(moving, fixed, 'affine', optimizer, metric)

tform =
 affine2d with properties:

 Dimensionality: 2
 T: [3x3 double]

Apply the transformation to the image being registered (moving) using the imwarp
function. The example uses the 'OutputView' parameter to preserve world limits and
resolution of the reference image when forming the transformed image.

movingRegistered = imwarp(moving,tform,'OutputView',imref2d(size(fixed)));

View the registered images.

1 Functions — Alphabetical List

1-1882

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

 imregtform

1-1883

Input Arguments
moving — Image to be registered
2-D or 3-D grayscale image

Image to be registered, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rmoving — Spatial referencing information associated with the image to be
registered
imref2d or imref3d object

Spatial referencing information associated with the image to be registered, specified as
an imref2d or imref3d object.

fixed — Reference image in the target orientation
2-D or 3-D grayscale image

Reference image in the target orientation, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rfixed — Spatial referencing information associated with the reference (fixed)
image
imref2d or imref3d object

Spatial referencing information associated with the reference (fixed) image, specified as
an imref2d or imref3d object.

transformType — Geometric transformation to be applied to the image to be
registered
'translation' | 'rigid' | 'similarity' | 'affine'

Geometric transformation to be applied to the image to be registered, specified as one of
the following values:

Value Description
'translation' (x,y) translation.
'rigid' Rigid transformation consisting of translation and rotation.

1 Functions — Alphabetical List

1-1884

Value Description
'similarity' Nonreflective similarity transformation consisting of translation,

rotation, and scale.
'affine' Affine transformation consisting of translation, rotation, scale,

and shear.

The 'similarity' and 'affine' transformation types always involve nonreflective
transformations.
Data Types: char | string

optimizer — Method for optimizing the similarity metric
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Method for optimizing the similarity metric, specified as a
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object.

metric — Image similarity metric to be optimized during registration
MeanSquares or MattesMutualInformation metric object

Image similarity metric to be optimized during registration, specified as a MeanSquares
or MattesMutualInformation metric object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayOptimization',1 enables verbose optimization mode.

DisplayOptimization — Verbose optimization flag
false (default) | true

Verbose optimization flag, specified as the comma-separated pair consisting of
'DisplayOptimization', and the logical value true or false. Controls whether
imregister displays optimization information in the command window during the
registration process.
Data Types: logical

 imregtform

1-1885

InitialTransformation — Starting geometric transformation
affine2d or affine3d object

Starting geometric transformation, specified as the comma-separated pair consisting of
'InitialTransformation' and an affine2d or affine3d object.

PyramidLevels — Number of multi-level image pyramid levels used during the
registration process
3 (default) | positive integer

Number of pyramid levels used during the registration process, specified as the comma-
separated pair consisting of 'PyramidLevels' and a positive integer.
Example: 'PyramidLevels',4 sets the number of pyramid levels to 4.

Output Arguments
tform — Geometric transformation
affine2d or affine3d object

Geometric transformation, returned as an affine2d or affine3d object. If the input
matrices are 3-D, imregtform returns an affine3d object.

Tips
• When you have spatial referencing information available, it is important to provide this

information to imregtform, using spatial referencing objects. This information helps
imregtform converge to better results more quickly because scale differences can be
considered.

• Both imregtform and imregister use the same underlying registration algorithm.
imregister performs the additional step of resampling moving to produce the
registered output image from the geometric transformation estimate calculated by
imregtform. Use imregtform when you want access to the geometric
transformation that relates moving to fixed. Use imregister when you want a
registered output image.

• Getting good results from optimization-based image registration usually requires
modifying optimizer and/or metric settings for the pair of images being registered. The
imregconfig function provides a default configuration that should only be

1 Functions — Alphabetical List

1-1886

considered a starting point. See the output of the imregconfig for more information
on the different parameters that can be modified.

See Also
Apps
Registration Estimator

Functions
imregconfig | imregister | imshowpair | imwarp

Objects
affine2d | affine3d

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2013a

 imregtform

1-1887

imresize
Resize image

Syntax
J = imresize(I,scale)
J = imresize(I,[numrows numcols])
[Y,newmap] = imresize(X,map, ___)
___ = imresize(___ ,method)
___ = imresize(___ ,Name,Value)

Description
J = imresize(I,scale) returns image J that is scale times the size of grayscale,
RGB, or binary image I. If I has more than two dimensions, then imresize only resizes
the first two dimensions. By default, imresize uses bicubic interpolation and performs
antialiasing.

You optionally can resize images using a GPU (requires Parallel Computing Toolbox). For
more information, see “Image Processing on a GPU”.

J = imresize(I,[numrows numcols]) returns image J that has the number of rows
and columns specified by the vector [numrows numcols].

[Y,newmap] = imresize(X,map, ___) resizes the indexed image X with colormap
map. By default, imresize returns an optimized colormap, newmap, with the resized
image. To return a colormap that is the same as the original colormap, use the Colormap
name-value pair argument.

This syntax is not supported on a GPU.

___ = imresize(___ ,method) specifies the interpolation method used.

Only the 'bicubic' and 'cubic' interpolation methods are supported on a GPU.

___ = imresize(___ ,Name,Value) uses name-value pair arguments to control
various aspects of the resizing operation.

1 Functions — Alphabetical List

1-1888

This syntax is not supported on a GPU.

Examples

Resize Image Specifying Scale Factor

Read image into the workspace.

I = imread('rice.png');

Resize the image, specifying scale factor and using default interpolation method and
antialiasing.

J = imresize(I, 0.5);

Display the original and the resized image.

figure
imshow(I)
title('Original Image')

 imresize

1-1889

figure
imshow(J)
title('Resized Image')

1 Functions — Alphabetical List

1-1890

Resize Image on GPU

Read image into the workspace in a gpuArray.

I = im2double(gpuArray(imread('rice.png')));

Resize the image, performing the operation on a GPU.

J = imresize(I, 0.5);

Display the original image and the resized image.

figure
imshow(I)
title('Original')
figure
imshow(J)
title('Resized Image')

Resize Image Specifying Scale Factor and Interpolation Method

Read image into the workspace.

I = imread('rice.png');

 imresize

1-1891

Resize the image, specifying scale factor and the interpolation method.

J = imresize(I, 0.5, 'nearest');

Display the original and the resized image.

figure
imshow(I)
title('Original Image')

figure
imshow(J)
title('Resized Image Using Nearest-Neighbor')

1 Functions — Alphabetical List

1-1892

Resize Indexed Image

Read image into the workspace.

[X, map] = imread('trees.tif');

Resize the image, specifying a scale factor. By default, imresize returns an optimized
color map with the resized indexed image.

[Y, newmap] = imresize(X, map, 0.5);

Display the original image and the resized image.

figure
imshow(X,map)
title('Original Image')

 imresize

1-1893

figure
imshow(Y,newmap)
title('Resized Image')

1 Functions — Alphabetical List

1-1894

Resize RGB Image Specifying Size of Output Image

Read image into the workspace.

RGB = imread('peppers.png');

Resize the image, specifying that the output image have 64 rows. Let imresize calculate
the number of columns necessary to preserve the aspect ratio.

RGB2 = imresize(RGB, [64 NaN]);

Display the original image and the resized image.

figure
imshow(RGB)
title('Original Image')

 imresize

1-1895

figure
imshow(RGB2)
title('Resized Image')

1 Functions — Alphabetical List

1-1896

Resize RGB Image on GPU

Read image into the workspace in a gpuArray.

RGB = gpuArray(im2single(imread('peppers.png')));

Resize the image, performing the operation on a GPU.

RGB2 = imresize(RGB, 0.5);

Display the original image and the resized image.

figure
imshow(RGB)
title('Original')
figure
imshow(RGB2)
title('Resized Image')

Input Arguments
I — Image to be resized
numeric array | logical array | gpuArray

Image to be resized, specified as a numeric or logical array of any dimension.

To resize images using a GPU, specify I as a gpuArray that contains a numeric array of
data type double or single.

 imresize

1-1897

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

scale — Resize factor
positive number

Resize factor, specified as a positive number.

• If scale is less than 1, then the output image (J or Y) is smaller than the input image
(I or X).

• If scale is greater than 1, then the output image is larger than the input image.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

[numrows numcols] — Row and column dimensions of output image
2-element vector of positive numbers

Row and column dimensions of output image, specified as a 2-element vector of positive
numbers. Either numrows or numcols can be NaN, in which case imresize computes the
number of rows or columns automatically to preserve the image aspect ratio.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

X — Indexed image to be resized
numeric array

Indexed image to be resized, specified as a numeric array.
Data Types: double | uint8 | uint16

map — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix.
Data Types: double

method — Interpolation method
'bicubic' (default) | string scalar | character vector | 2-element cell array

Interpolation method, specified as a string scalar, character vector or 2-element cell array.

1 Functions — Alphabetical List

1-1898

When method is a string scalar or character vector, it identifies a particular method or
named interpolation kernel, listed in the following table.

Method Description
'nearest' Nearest-neighbor interpolation; the output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

'bilinear' Bilinear interpolation; the output pixel value is a weighted average
of pixels in the nearest 2-by-2 neighborhood

'bicubic' Bicubic interpolation; the output pixel value is a weighted average
of pixels in the nearest 4-by-4 neighborhood

Note Bicubic interpolation can produce pixel values outside the
original range.

Interpolation
Kernel

Description

'box' Box-shaped kernel
'triangle' Triangular kernel (equivalent to 'bilinear')
'cubic' Cubic kernel (equivalent to 'bicubic')
'lanczos2' Lanczos-2 kernel
'lanczos3' Lanczos-3 kernel

When method is a 2-element cell array, it defines a custom interpolation kernel. The cell
array has the form {f,w}, where f is a function handle for a custom interpolation kernel
and w is the width of the custom kernel. f(x) must be zero outside the interval -w/2 <= x
< w/2. The function handle f can be called with a scalar or a vector input. For user-
specified interpolation kernels, the output image can have some values slightly outside
the range of pixel values in the input image.
Data Types: char | string | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 imresize

1-1899

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: I2 = imresize(I,0.5,'Antialiasing',false);

Antialiasing — Perform antialiasing when shrinking an image
true | false

Perform antialiasing when shrinking an image, specified as the comma-separated pair
consisting of 'Antialiasing' and true or false.

• If method is nearest-neighbor ('nearest'), then the default value of
'Antialiasing' is false.

• For all other interpolation methods, the default is true.

Data Types: logical

Colormap — Return optimized colormap
'optimized' (default) | 'original'

Return optimized colormap for indexed image X, specified as the comma-separated pair
consisting of 'Colormap' and one of the following.

• 'original' — The output colormap newmap is the same as the input colormap map.
• 'optimized' — imresize returns a new optimized colormap.

This argument is valid only when resizing indexed images.
Data Types: char | string

Dither — Perform color dithering
true (default) | false

Perform color dithering, specified as the comma-separated pair consisting of 'Dither'
and true or false. In dithering, you apply a form of noise to the image to randomize
quantization error and prevent large-scale patterns.

This argument is valid only when resizing indexed images, X.
Data Types: logical

Method — Interpolation method
'bicubic' (default) | string scalar | character vector | 2-element cell array

1 Functions — Alphabetical List

1-1900

Interpolation method, specified as the comma-separated pair consisting of 'Method' and
a scalar string, character vector, or 2-element cell array. For details, see method.
Data Types: char | string | cell

OutputSize — Size of output image
2-element numeric vector

Size of the output image, specified as the comma-separated pair consisting of
'OutputSize' and a 2-element numeric vector of the form [numrows numcols].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Scale — Resize scale factor
positive number | 2-element vector of positive numbers

Resize scale factor, specified as the comma-separated pair consisting of 'Scale' and a
positive number or 2-element vector of positive numbers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
J — Resized image
numeric array | logical array | gpuArray

Resized image, returned as a numeric or logical array of the same class as the input
image, I.

If the image is resized using a GPU, then J is returned as a gpuArray containing a
numeric array.

Y — Resized indexed image
numeric array

Resized indexed image, returned as a numeric array of the same class as the input
indexed image, X.

newmap — Optimized colormap
c-by-3 numeric array

 imresize

1-1901

Optimized colormap, returned as an c-by-3 numeric array.

Tips
• The function imresize changed in version 5.4 (R2007a). Previous versions of the

Image Processing Toolbox used a different algorithm by default. If you need the same
results produced by the previous implementation, use the function imresize_old.

• There is a slight numerical difference between the results of imresize on the CPU
and the GPU. These differences occur on the right and bottom borders of the image
and are barely noticeable to the naked eye.

• If the size of the output image is not an integer, then imresize does not use the scale
specified. imresize uses ceil when calculating the output image size.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imresize supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• Syntaxes that support indexed images are not supported, including the named
parameters 'Colormap' and 'Dither'.

• Custom interpolation kernels are not supported.
• All name-value pairs must be compile-time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-1902

• gpuArray input must be of type single or double.
• Only bicubic interpolation is supported on GPU and the function always performs

antialiasing.

For more information, see “Image Processing on a GPU”.

See Also
imresize3 | imrotate | imtransform | interp2 | tformarray

Introduced before R2006a

 imresize

1-1903

imresize3
Resize 3-D volumetric intensity image

Syntax
B = imresize3(V,scale)
B = imresize3(V,[numrows numcols numplanes])
B = imresize3(___ ,method)
B = imresize3(___ ,Name,Value)

Description
B = imresize3(V,scale) returns the volume B that is scale times the size of V. The
input volume V must be a 3-D volumetric intensity image (called a volume). By default,
imresize3 uses cubic interpolation.

B = imresize3(V,[numrows numcols numplanes]) returns the volume B that has
the number of rows, columns, and planes specified by the three-element vector [numrows
numcols numplanes].

B = imresize3(___ ,method) returns the volume B, where method specifies the
interpolation method used.

B = imresize3(___ ,Name,Value) returns a resized volume where Name,Value
pairs control aspects of the operation.

Examples

Resize 3-D Volumetric Image

Read MRI volume into the workspace.

1 Functions — Alphabetical List

1-1904

s = load('mri');
mriVolumeOriginal = squeeze(s.D);
sizeO = size(mriVolumeOriginal);

Visualize the volume.

figure;
slice(double(mriVolumeOriginal),sizeO(2)/2,sizeO(1)/2,sizeO(3)/2);
shading interp, colormap gray;
title('Original');

Resize the volume, reducing the size all all dimensions by one-half. This example uses the
default interpolation method and antialiasing.

 imresize3

1-1905

mriVolumeResized = imresize3(mriVolumeOriginal, 0.5);
sizeR = size(mriVolumeResized);

Visualize the resized volume.

figure;
slice(double(mriVolumeResized),sizeR(2)/2,sizeR(1)/2,sizeR(3)/2);
shading interp, colormap gray;
title('Resized');

1 Functions — Alphabetical List

1-1906

Input Arguments
V — Volume to be resized
3-D volumetric intensity image

Volume to be resized, specified as a 3-D volumetric intensity image. V is numeric array
with three dimensions.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

scale — Scale factor
numeric scalar

Scale factor, specified as a numeric scalar. To make the resized volume smaller than the
input volume, specify a scale value from 0 through 1.0. To make the resized volume
bigger than the input volume, specify a scale value greater than 1.0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

[numrows numcols numplanes] — Size of output volume
three-element vector of real, positive, numeric values

Size of output image, specified as a three-element vector of real, positive, numeric values,
in the form [rows columns planes]. If you specify one numeric value and the other
two values as NaNs, imresize3 computes the other two elements automatically to
preserve the aspect ratio.
Data Types: single | double

method — Interpolation method
'cubic' (default) | 'nearest' | 'linear' | 'box' | 'triangle' | 'lanczos2' |
'lanczos3'

Interpolation method, specified as one of the values in the following table that identifies a
general method or a named interpolation kernel.

Method Description
'nearest' Nearest-neighbor interpolation
'linear' Linear interpolation

 imresize3

1-1907

Method Description
'cubic' Cubic interpolation

Note Cubic interpolation can produce pixel values outside the
original range.

Interpolation
Kernel

Description

'box' Box-shaped kernel
'triangle' Triangular kernel (equivalent to 'linear')
'lanczos2' Lanczos-2 kernel
'lanczos3' Lanczos-3 kernel

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: mriVolumeResized = imresize3(mristack,
0.5,'Antialiasing',false);

Antialiasing — Perform antialiasing when shrinking a volume
true | false

Perform antialiasing when shrinking a volume, specified as the comma-separated pair
consisting of 'Antialiasing' and the logical Boolean value true or false. The default
value depends on the interpolation method. If the method is nearest-neighbor
('nearest'), the default is false. For all other interpolation methods, the default is
true.
Data Types: logical

Method — Interpolation method
'cubic' (default) | character vector

1 Functions — Alphabetical List

1-1908

Interpolation method, specified as the comma-separated pair consisting of 'Method' and
string scalar or character vector. For details, see method.
Data Types: char | string

OutputSize — Size of output volume
three-element numeric vector of positive values

Size of the output volume, specified as the comma-separated pair consisting of
'OutputSize' and a three-element numeric vector of positive values, of the form [rows
cols planes]. For details, see [numrows numcols numplanes].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Scale — Resize scale factor
numeric scalar or three-element vector of positive values

Resize scale factor, specified as a numeric scalar or three-element vector of positive
values. If it is a scalar, the same scale factor is applied to each dimension. If it is a vector,
it contains the scale factors for the row, column, and plane dimensions, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Resized volume
real, nonsparse numeric array

Resized volume, returned as a real, nonsparse numeric array, the same class as the input
volume.

See Also
imresize | imrotate | imrotate3 | imwarp

Introduced in R2017a

 imresize3

1-1909

imroi class

Region-of-interest (ROI) base class

Description
The imroi class is an abstract base class that specifies the Image Processing Toolbox
interface for working with regions of interest (ROIs). You can use classes that inherit from
the imroi interface to create interactive ROIs over an image.

The imroi class is a handle class.

Class Attributes
Abstract

true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation
The imroi class is abstract, and creating an instance of the imroi class is not allowed.
To learn how to create an ROI object from a concrete subclass of imroi, see imellipse,
imfreehand, imline, impoint, impoly, or imrect.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.

1 Functions — Alphabetical List

1-1910

Attributes:

GetAccess
public

SetAccess
public

Data Types: logical

Methods

Public Methods
<infotypegroup type="method"> addNewPositionCallback createMask getColor
getPosition getPositionConstraintFcn removeNewPositionCallback resume
setColor setConstrainedPosition setPositionConstraintFcn wait </
infotypegroup>

Specialized Operators and Functions
These methods specialize standard MATLAB operators and functions for objects in this
class.

delete

See Also
imellipse | imfreehand | imline | impoint | impoly | imrect |
makeConstrainToRectFcn

Introduced in R2008a

 imroi class

1-1911

addNewPositionCallback
Add new-position callback to ROI object

Note addNewPositionCallback is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
id = addNewPositionCallback(h,fcn)

Description
id = addNewPositionCallback(h,fcn) adds the function handle fcn to the list of
new-position callback functions of the ROI object h. Whenever the ROI object changes its
position, each function in the list is called with the syntax:

fcn(pos)

pos is of the form returned by the object's getPosition method. The return value, id, is
used only with removeNewPositionCallback.

Examples

Display Updated Position in Title
Create a rectangle ROI object. Display the position of the rectangle in the title. The title
updates when you move the rectangle.

imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Now drag the rectangle using the mouse to observe the callback behavior.

1 Functions — Alphabetical List

1-1912

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or
imrect object.

fcn — Function handle
handle

Function handle, specified as a handle. The function must accept a numeric array as
input. The array must have the same form as returned when calling getPosition on the
object. For more information, see “Create Function Handle” (MATLAB).

Output Arguments
id — Identifier of new-position callback function
struct

Identifier of new-position callback function, returned as a struct.

See Also
getPosition | getPositionConstraintFcn | imroi | makeConstrainToRectFcn |
removeNewPositionCallback | setPositionConstraintFcn

Topics
“Create Function Handle” (MATLAB)
“Anonymous Functions” (MATLAB)
“Parameterizing Functions” (MATLAB)

Introduced in R2008a

 addNewPositionCallback

1-1913

createMask
Create mask within image

Note createMask is not recommended. Use the createMask method associated with
the ROI classes instead, described in “ROI Creation Overview”.

Syntax
BW = createMask(h)
BW = createMask(h,himage)

Description
BW = createMask(h) returns a mask, or binary image, with 1s inside the ROI object h
and 0s everywhere else. The input image must be contained within the same axes as the
ROI object.

“Create Binary Mask from Ellipse” on page 1-1914

BW = createMask(h,himage) returns a mask the same size as the image himage, with
1s inside the ROI object h and 0s everywhere else. This syntax is required when the axes
that contains the ROI holds more than one image.

Examples

Create Binary Mask from Ellipse
Create an ellipse ROI.

imshow('coins.png');
e = imellipse;

1 Functions — Alphabetical List

1-1914

Use the mouse to reshape and reposition the ellipse. Then, create a binary mask from the
ROI. Pixels inside the ROI have the value 1, and pixels outside the ROI have the value 0.
Display the mask in a new figure.

BW = createMask(e);
figure; imshow(BW)

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

himage — Handle to image
handle

Handle to one image, specified as a handle.

Output Arguments
BW — Mask
binary matrix

Mask, returned as a binary matrix. The mask is the same size as the input image
contained in the same axes as h, or the image himage.

See Also
imroi | regionfill | roifilt2

Topics
“Create a Binary Mask”

Introduced in R2008a

 createMask

1-1915

getAngleFromHorizontal
Return angle between Distance tool and horizontal axis

Note getAngleFromHorizontal is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
angle = getAngleFromHorizontal(h)

Description
angle = getAngleFromHorizontal(h) returns the angle, in degrees, between the
line defined by the Distance tool, h, and the horizontal axis.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
angle — Angle
numeric scalar

Angle, returned as a numeric scalar in the range [0, 180] degrees.
Data Types: double

1 Functions — Alphabetical List

1-1916

Algorithms
To understand how imdistline calculates the angle returned by
getAngleToHorizontal, draw an imaginary horizontal vector from the bottom endpoint
of the distance line, extending to the right. The value returned by
getAngleToHorizontal is the angle from this horizontal vector to the distance line,
which can range from 0 to 180 degrees.

See Also
getDistance

Introduced before R2006a

 getAngleFromHorizontal

1-1917

getColor
Get color used to draw ROI object

Note getColor is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
color = getColor(h)

Description
color = getColor(h) gets the color used to draw the ROI object h.

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or
imrect object.

Output Arguments
color — RGB color value
3-element numeric vector

RGB color value, returned as a 3-element numeric vector.

See Also
imroi | setColor

1 Functions — Alphabetical List

1-1918

Introduced before R2006a

 getColor

1-1919

getDistance
Return distance between endpoints of Distance tool

Note getDistance is not recommended. Use one of the ROI classes instead, described
in “ROI Creation Overview”.

Syntax
dist = getDistance(h)

Description
dist = getDistance(h) returns the distance between the endpoints of the Distance
tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
dist — Distance between endpoints
numeric scalar

Distance between endpoints, returned as a numeric scalar. The data units of the distance
are determined by the XData and YData properties of the underlying image. By default,
the distance is measured in pixels.

1 Functions — Alphabetical List

1-1920

See Also
getAngleFromHorizontal | getPosition

Introduced before R2006a

 getDistance

1-1921

getLabelHandle
Return handle to text label of Distance tool

Note getLabelHandle is not recommended. Use one of the ROI classes instead,
described in “ROI Creation Overview”.

Syntax
hlabel = getLabelHandle(h)

Description
hlabel = getLabelHandle(h) returns a handle to the text label of the Distance tool,
h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
hlabel — Handle to text label
handle

Handle to text label, returned as a handle to a Text object.

See Also
Text

1 Functions — Alphabetical List

1-1922

Introduced before R2006a

 getLabelHandle

1-1923

getLabelTextFormatter
Return format of text label of Distance tool

Note getLabelTextFormatter is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
str = getLabelTextFormatter(h)

Description
str = getLabelTextFormatter(h) returns a character array specifying the format
used to display the label text of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
str — Text format
character array

Text format of Distance tool label, returned as a character array in a format expected by
sprintf.

1 Functions — Alphabetical List

1-1924

See Also
getLabelVisible | setLabelTextFormatter | setLabelVisible

Introduced before R2006a

 getLabelTextFormatter

1-1925

getLabelVisible
Return visibility of text label of Distance tool

Note getLabelVisible is not recommended. Use one of the ROI classes instead,
described in “ROI Creation Overview”.

Syntax
visible = getLabelVisible(h)

Description
visible = getLabelVisible(h) returns the visibility of the text label of the Distance
tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
visible — Label visibility
'on' | 'off'

Label visibility, returned as 'on' or 'off'.

See Also
getLabelTextFormatter | setLabelTextFormatter | setLabelVisible

1 Functions — Alphabetical List

1-1926

Introduced before R2006a

 getLabelVisible

1-1927

getPosition
Return current position of ROI object

Note getPosition is not recommended. Use one of the ROI classes instead, described
in “ROI Creation Overview”.

Syntax
pos = getPosition(h)

Description
pos = getPosition(h) returns the current position of the ROI object, h.

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or
imrect object.

Output Arguments
pos — Position of ROI object
numeric array

Position of the ROI object, returned as a numeric array. The shape of the array depends
on the type of ROI object.

1 Functions — Alphabetical List

1-1928

ROI Object Returned position
imellipse 4-element vector of the form [xmin ymin width

height], representing the size and position of a bounding
box around the ellipse. The initial size of the bounding box
is width-by-height pixels. The upper-left corner of the box
is at the (x,y) coordinate (xmin,ymin).

imfreehand n-by-2 matrix. The two columns define the x- and y-
coordinates, respectively, of the n points along the boundary
of the freehand region.

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing
the position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the x- and y-

coordinates, respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width

height]. The initial size of the rectangle is width-by-
height pixels. The upper-left corner of the rectangle is at
the (x,y) coordinate (xmin,ymin).

See Also
getPositionConstraintFcn | imroi | setPosition

Introduced in R2008a

 getPosition

1-1929

getPositionConstraintFcn
Return function handle to current position constraint function

Note getPositionConstraintFcn is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
fcn = getPositionConstraintFcn(h)

Description
fcn = getPositionConstraintFcn(h) returns a function handle fcn to the current
position constraint function of the ROI object h.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

Output Arguments
fcn — Function handle
handle

Function handle, returned as a handle. For more information, see “Create Function
Handle” (MATLAB).

1 Functions — Alphabetical List

1-1930

See Also
getPosition | imroi | makeConstrainToRectFcn | setConstrainedPosition |
setPositionConstraintFcn

Introduced in R2008a

 getPositionConstraintFcn

1-1931

getVertices
Return vertices on perimeter of ellipse ROI object

Note getVertices is not recommended. Use one of the ROI classes instead, described
in “ROI Creation Overview”.

Syntax
v = getVertices(h)

Description
v = getVertices(h) returns a set of vertices that lie along the perimeter of an ellipse
ROI object.

Input Arguments
h — ROI object
imellipse

ROI object, specified as an imellipse object.

Output Arguments
v — Vertices
n-by-2 matrix

Vertices, returned as an n-by-2 matrix. The two columns define the x- and y-coordinates,
respectively, of each of the n vertices.

1 Functions — Alphabetical List

1-1932

See Also
getColor | getPosition | wait

Introduced in R2007b

 getVertices

1-1933

removeNewPositionCallback
Remove new-position callback from ROI object

Note removeNewPositionCallback is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
removeNewPositionCallback(h,id)

Description
removeNewPositionCallback(h,id) removes the corresponding function from the
new-position callback list of the ROI object, h.

Examples

Add and Remove New Position Callback
Create a line ROI object. Display the position of the line in the title. Use
addNewPositionCallback to update the title each time you move the line.

imshow('pout.tif')
h = imline(gca,[10 100],[100 100]);
id = addNewPositionCallback(h,@(pos) title(mat2str(pos,3)));

Move the line to observe the callback behavior.

After observing the callback behavior, remove the callback. The title no longer changes
when you move the line.

removeNewPositionCallback(h,id);

1 Functions — Alphabetical List

1-1934

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

id — Identifier of new-position callback function
struct

Identifier of new-position callback function, specified as a struct.

See Also
addNewPositionCallback | getPositionConstraintFcn | imroi |
makeConstrainToRectFcn | setPositionConstraintFcn

Introduced in R2008a

 removeNewPositionCallback

1-1935

resume
(Not recommended) Resume execution of MATLAB command line

Note resume is not recommended. For more information, see “Compatibility
Considerations”.

Syntax
resume(h)

Description
resume(h) resumes execution of the MATLAB command line.

The resume function is useful when you need to exit wait from a callback function. When
called after a call to wait, resume causes wait to return the ROI position or coordinates
of vertices.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

Compatibility Considerations
resume is not recommended
Not recommended starting in R2018b

Starting in R2018b, new ROI functions and classes replaced the existing ROI functions
and objects, as described in the table. The new classes provide more functional

1 Functions — Alphabetical List

1-1936

capabilities, such as face color transparency. The new classes also support events that you
can use to respond to changes in your ROI such as moving or being clicked. Switch to the
new ROIs to take advantage of the additional capabilities and flexibility. For more
information on creating ROIs using the new ROI functions, see “ROI Creation Overview”.

Not Recommended Recommended
imellipse drawellipse or drawcircle
imfreehand drawassisted or drawfreehand
imline drawline
impoint drawpoint
impoly drawpolygon or drawpolyline
imrect drawrectangle

The resume function operates on the old ROI objects and is no longer recommended. For
the new ROI objects, you can define a custom wait function that blocks the MATLAB
command line until you have finished positioning the ROI. The new ROI objects enable
you to resume execution of the command line after several types of actions, such as
clicking the ROI while pressing the Shift key or clicking a specific part of the ROI such as
the label. For an example, see “Use Wait Function After Drawing ROI”.

There are no plans to remove the old ROI objects or the resume function at this time.

See Also

Topics
“ROI Creation Overview”
“Use Wait Function After Drawing ROI”

Introduced in R2008a

 resume

1-1937

setClosed
Set closure behavior of ROI object

Note setClosed is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
setClosed(h,TF)

Description
setClosed(h,TF) sets whether the ROI object, h, is closed after the last point is
selected.

Input Arguments
h — ROI object
imfreehand | impoly

ROI object, specified as an imfreehand or impoly object.

TF — ROI object is closed
true | false

ROI object is closed, specified as true or false. When set to true, a straight line
connect the endpoints of the ROI object to create a closed region. If set to false, the
endpoints are not connected and the region is open.
Data Types: logical

1 Functions — Alphabetical List

1-1938

See Also
Introduced in R2007b

 setClosed

1-1939

setColor
Set color used to draw ROI object

Note setColor is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
setColor(h,color)

Description
setColor(h,color) sets the color used to draw the ROI object h.

Examples

Set Color of Polygon ROI

Display an image. Draw a polygon on the image, specifying the location of five vertices.

imshow('gantrycrane.png')
h = impoly(gca,[188,30; 189,142; 93,141; 13,41; 14,29]);

1 Functions — Alphabetical List

1-1940

Set the color of the polygon to yellow.

setColor(h,'yellow');

 setColor

1-1941

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or
imrect object.

1 Functions — Alphabetical List

1-1942

color — RGB color value
3-element numeric vector | predefined color name

RGB color value, specified as a 3-element numeric vector, or the long or short name of a
predefined color, such as 'white' or 'w'. See ColorSpec for a list of predefined colors.

See Also
ColorSpec | getColor | imroi

Introduced in R2008a

 setColor

1-1943

setConstrainedPosition
Set ROI object to new position

Note setConstrainedPosition is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
setConstrainedPosition(h,pos)

Description
setConstrainedPosition(h,pos) sets the ROI object h to a new position. The
candidate position, pos, is subject to the position constraint function specified by
setPositionConstraintFcn.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

pos — Candidate position of ROI object
numeric array

Candidate position of the ROI object, specified as a numeric array. The shape of the array
depends on the type of ROI object, and is consistent with the form returned by the
setPosition function.

1 Functions — Alphabetical List

1-1944

ROI Object Position
imellipse 4-element vector of the form [xmin ymin width

height], representing the new size and position of a
bounding box around the ellipse. The new size of the
bounding box is width-by-height pixels. The upper-left
corner of the box is at the new (x,y) coordinate
(xmin,ymin).

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing
the new position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the new x- and y-

coordinates, respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width

height]. The new size of the rectangle is width-by-
height pixels. The upper-left corner of the rectangle is at
the new (x,y) coordinate (xmin,ymin).

See Also
getPosition | getPositionConstraintFcn | imroi | setPosition |
setPositionConstraintFcn

Introduced in R2008a

 setConstrainedPosition

1-1945

setFixedAspectRatioMode
Preserve aspect ratio when resizing ROI object

Note setFixedAspectRatioMode is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
setFixedAspectRatioMode(h,TF)

Description
setFixedAspectRatioMode(h,TF) sets whether the aspect ratio of the ROI object is
preserved during interactive resizing.

Examples

Fix Aspect Ratio of Ellipse
Create an ellipse ROI object. Specify a position constraint function using
makeConstrainToRectFcn to keep the ellipse inside the boundary of the image.
imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Try resizing and reshaping the ellipse.

Now, fix the aspect ratio of the ellipse.
setFixedAspectRatioMode(h,true);

Try resizing the ellipse. The aspect ratio of the ellipse does not change.

1 Functions — Alphabetical List

1-1946

Input Arguments
h — ROI object
imellipse | imrect

ROI object, specified as an imellipse or imrect object.

TF — Fix aspect ratio
true | false

Fix the aspect ratio when resizing ROI object, specified as true or false.
Data Types: logical

See Also
setResizable

Introduced before R2006a

 setFixedAspectRatioMode

1-1947

setLabelTextFormatter
Set format used to display text label of Distance tool

Note setLabelTextFormatter is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
setLabelTextFormatter(h,str)

Description
setLabelTextFormatter(h,str) sets the format used to display the label text of the
Distance tool, h.

Examples

Format Label of Distance Tool
Display an image and create a Distance tool.
imshow('pout.tif')
hline = imdistline(gca,[71 171],[108 150]);

Modify the format of the label to indicate that distance is measured in pixels.
setLabelTextFormatter(hline,'%02.0f pixels');

Input Arguments
h — Distance tool
imdistline

1 Functions — Alphabetical List

1-1948

Distance tool, specified as an imdistline object.

str — Text format
character array

Text format of Distance tool label, specified as a character array in a format expected by
sprintf.

See Also
getLabelTextFormatter | getLabelVisible | setLabelVisible

Introduced before R2006a

 setLabelTextFormatter

1-1949

setLabelVisible
Set visibility of text label of Distance tool

Note setLabelVisible is not recommended. Use one of the ROI classes instead,
described in “ROI Creation Overview”.

Syntax
setLabelVisible(h,TF)

Description
setLabelVisible(h,TF) sets the visibility of the text label of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

TF — Text label is visible
true | false

Text label is visible, specified as true or false.
Data Types: logical

See Also
getLabelTextFormatter | getLabelVisible | setLabelTextFormatter

Introduced before R2006a

1 Functions — Alphabetical List

1-1950

setPosition
Move ROI object to new position

Note setPosition is not recommended. Use one of the ROI classes instead, described
in “ROI Creation Overview”.

Syntax
setPosition(h,pos)
setPosition(h,x,y)

Description
setPosition(h,pos) moves the position of the ROI object, h, to the location specified
by pos.

setPosition(h,x,y) specifies the new x- and y-coordinates of points of a line or point
ROI object.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

pos — New position of ROI object
numeric array

New position of the ROI object, specified as a numeric array. The shape of the array
depends on the type of ROI object.

 setPosition

1-1951

ROI Object Position
imellipse 4-element vector of the form [xmin ymin width

height], representing the new size and position of a
bounding box around the ellipse. The new size of the
bounding box is width-by-height pixels. The upper-left
corner of the box is at the new (x,y) coordinate
(xmin,ymin).

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing
the new position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the new x- and y-

coordinates, respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width

height]. The new size of the rectangle is width-by-
height pixels. The upper-left corner of the rectangle is at
the new (x,y) coordinate (xmin,ymin).

x, y — New x- or y-coordinates of points
2-element vector | numeric scalar

New x- or y-coordinates of points.

• If h is an imline object, then x and y are 2-element vectors that represent the x- and
y-coordinates of the two line endpoints.

• If h is an impoint object, then x and y are numeric scalars that represent the x- and
y-coordinate of the single point.

See Also
getPosition | setPositionConstraintFcn

Introduced in R2008a

1 Functions — Alphabetical List

1-1952

setPositionConstraintFcn
Set position constraint function of ROI object

Note setPositionConstraintFcn is not recommended. Use one of the ROI classes
instead, described in “ROI Creation Overview”.

Syntax
setPositionConstraintFcn(h,fcn)

Description
setPositionConstraintFcn(h,fcn) sets the position constraint function of the ROI
object h to be the specified function handle, fcn. Whenever the object is moved because
of a mouse drag, the constraint function is called using the syntax:

constrained_position = fcn(pos)

Examples

Update Title when Rectangle Moves
Display a rectangle ROI over an image. Display the position of the rectangle in the title.
The title updates when you move the rectangle. Try dragging one side of the rectangle
outside the boundary of the image.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Specify a position constraint function using makeConstrainToRectFcn to keep the
rectangle inside the original XLim and YLim ranges.

 setPositionConstraintFcn

1-1953

fcn = makeConstrainToRectFcn('imrect',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Now drag the rectangle using the mouse. Observe that the rectangle can no longer
extend past the image boundary.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

fcn — Function handle
handle

Function handle, specified as a handle. You can use the makeConstrainToRectFcn to
create this function. The function must accept a numeric array as input, and it must
return a numeric array as output. Both arrays must have the same form as returned when
calling getPosition on the object. For more information, see “Create Function Handle”
(MATLAB).

See Also
addNewPositionCallback | getPosition | getPositionConstraintFcn | imroi |
makeConstrainToRectFcn | setConstrainedPosition

Topics
“Create Function Handle” (MATLAB)
“Anonymous Functions” (MATLAB)
“Parameterizing Functions” (MATLAB)

Introduced in R2008a

1 Functions — Alphabetical List

1-1954

setResizable
Set resize behavior of ROI object

Note setResizable is not recommended. Use one of the ROI classes instead, described
in “ROI Creation Overview”.

Syntax
setResizable(h,TF)

Description
setResizable(h,TF) sets whether the ROI object may be resized interactively.

Examples

Fix Size of Ellipse
Create an ellipse ROI object. Specify a position constraint function using
makeConstrainToRectFcn to keep the ellipse inside the boundary of the image.
imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Click and drag with the mouse to try resizing, reshaping, and moving the ellipse.

Now, disable resizing the ellipse.
setResizable(h,false);

Click and drag the ellipse again. You can move it, but not change the size or shape of it.

 setResizable

1-1955

Input Arguments
h — ROI object
imellipse | imrect

ROI object, specified as an imellipse or imrect object.

TF — Enable resizing of ROI object
true | false

Enable resizing of ROI object, specified as true or false.
Data Types: logical

See Also
setFixedAspectRatioMode

Introduced before R2006a

1 Functions — Alphabetical List

1-1956

setString
Set text label for point ROI object

Note setString is not recommended. Use one of the ROI classes instead, described in
“ROI Creation Overview”.

Syntax
setString(h,text)

Description
setString(h,text) places a text label, text, to the lower right of the point ROI object,
h.

Examples

Set Label of Point ROI
imshow('rice.png')
h = impoint(gca,100,200);
setString(h,'My point label');

Input Arguments
h — Point ROI object
impoint

Point ROI object, specified as an impoint object.

text — Text label
character vector

 setString

1-1957

Text label, specified as a character vector.
Data Types: char

See Also
Introduced before R2006a

1 Functions — Alphabetical List

1-1958

setVerticesDraggable
Set vertex behavior of ROI object

Note setVerticesDraggable is not recommended. Use one of the ROI classes instead,
described in “ROI Creation Overview”.

Syntax
setVerticesDraggable(h,TF)

Description
setVerticesDraggable(h,TF) sets whether the vertices of the ROI object, h, can be
dragged after placement.

Input Arguments
h — ROI object
impoly

ROI object, specified as an impoly object.

TF — Polygon ROI vertices are draggable
true | false

Polygon ROI vertices are draggable, specified as true or false.
Data Types: logical

See Also
getVertices

 setVerticesDraggable

1-1959

Introduced in R2007b

1 Functions — Alphabetical List

1-1960

wait
(Not recommended) Block MATLAB command line until ROI creation is finished

Note wait is not recommended. For more information, see “Compatibility
Considerations”.

Syntax
pos = wait(h)
v = wait(he)

Description
pos = wait(h) blocks execution of the MATLAB command line until you finish
positioning the ROI object h. Indicate completion by double-clicking on the ROI object.
The function returns the position, pos, of the ROI object.

v = wait(he) blocks execution of the MATLAB command line until you finish
positioning the ellipse ROI object he. Indicate completion by double-clicking on the ROI
object. The function returns the coordinates of vertices, v, along the perimeter of the
ellipse.

Examples

Click and Drag to Place Rectangle
Interactively place a rectangle by clicking and dragging. Use wait to block the MATLAB
command line. Double-click on the rectangle to resume execution of the MATLAB
command line.

imshow('pout.tif')
h = imrect;
position = wait(h)

 wait

1-1961

Click and Drag to Place Ellipse
Interactively place an ellipse by clicking and dragging. Use wait to block the MATLAB
command line. Double-click on the ellipse to resume execution of the MATLAB command
line.
imshow('coins.png')
h = imellipse;
position = wait(h)

Input Arguments
h — ROI object
imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imfreehand, imline, impoint, impoly, or imrect object.

he — Ellipse ROI object
imellipse

Ellipse ROI object, specified as an imellipse object.

Output Arguments
pos — Position of ROI object
numeric array

Position of the ROI object, returned as a numeric array. The shape of the array depends
on the type of ROI object, and is consistent with the output of getPosition.

ROI Object Returned position
imfreehand n-by-2 matrix. The two columns define the x- and y-

coordinates, respectively, of the n points along the boundary
of the freehand region.

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing
the position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].

1 Functions — Alphabetical List

1-1962

ROI Object Returned position
impoly n-by-2 matrix. The two columns define the x- and y-

coordinates, respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width

height]. The initial size of the rectangle is width-by-
height pixels. The upper-left corner of the rectangle is at
the (x,y) coordinate (xmin,ymin).

v — Vertices of ellipse ROI object
n-by-2 matrix

Vertices of ellipse ROI object, returned as an n-by-2 matrix. The two columns define the x-
and y-coordinates, respectively, of each of the n vertices. The form of the matrix is
consistent with the output of getVertices.

Compatibility Considerations

wait is not recommended
Not recommended starting in R2018b

Starting in R2018b, new ROI functions and classes replaced the existing ROI functions
and objects, as described in the table. The new classes provide more functional
capabilities, such as face color transparency. The new classes also support events that you
can use to respond to changes in your ROI such as moving or being clicked. Switch to the
new ROIs to take advantage of the additional capabilities and flexibility. For more
information on creating ROIs using the new ROI functions, see “ROI Creation Overview”.

Not Recommended Recommended
imellipse drawellipse or drawcircle
imfreehand drawassisted or drawfreehand
imline drawline
impoint drawpoint
impoly drawpolygon or drawpolyline
imrect drawrectangle

 wait

1-1963

The wait function operates on the old ROI objects and is no longer recommended. For
the new ROI objects, you can define a custom wait function that blocks the MATLAB
command line until you have finished positioning the ROI. The new ROI objects enable
you to resume execution of the command line after several types of actions, such as
clicking the ROI while pressing the Shift key or clicking a specific part of the ROI such as
the label. For an example, see “Use Wait Function After Drawing ROI”.

There are no plans to remove the old ROI objects or the wait function at this time.

See Also

Topics
“ROI Creation Overview”
“Use Wait Function After Drawing ROI”

Introduced in R2008a

1 Functions — Alphabetical List

1-1964

imrotate
Rotate image

Syntax
J = imrotate(I,angle)
J = imrotate(I,angle,method)
J = imrotate(I,angle,method,bbox)

Description
J = imrotate(I,angle) rotates image I by angle degrees in a counterclockwise
direction around its center point. To rotate the image clockwise, specify a negative value
for angle. imrotate makes the output image J large enough to contain the entire
rotated image. imrotate uses nearest neighbor interpolation, setting the values of pixels
in J that are outside the rotated image to 0 (zero).

You optionally can perform the rotation using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = imrotate(I,angle,method) rotates image I, using the interpolation method
specified by method.

Note The 'bicubic' interpolation method may give slightly different results on a GPU
and CPU.

J = imrotate(I,angle,method,bbox) rotates image I, where bbox specifies the
size of the output image. If you specify 'crop', then imrotate makes the output image
the same size as the input image. If you specify 'loose', then imrotate makes the
output image large enough to include the entirety of the rotated image.

Examples

 imrotate

1-1965

Rotate Image Clockwise for Better Horizontal Alignment

Read an image into the workspace, and convert it to a grayscale image.

I = fitsread('solarspectra.fts');
I = rescale(I);

Display the original image.

figure
imshow(I)
title('Original Image')

Rotate the image 1 degree clockwise to bring it into better horizontal alignment. The
example specified bilinear interpolation and requests that the result be cropped to be the
same size as the original image.

J = imrotate(I,-1,'bilinear','crop');

Display the rotated image.

figure
imshow(J)
title('Rotated Image')

1 Functions — Alphabetical List

1-1966

Rotate Image on GPU

Read image into a gpuArray object.

 X = gpuArray(imread('pout.tif'));

Rotate the image, performing the operation on the graphics processing unit (GPU).

Y = imrotate(X,37,'bilinear','loose');

Display the rotated image.

figure; imshow(Y)

Input Arguments
I — Image to be rotated
numeric array | logical array | gpuArray

Image to be rotated, specified as a numeric or logical array.

 imrotate

1-1967

To perform the computation using a GPU, specify I as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

angle — Amount of rotation in degrees
numeric scalar

Amount of rotation in degrees, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Interpolation method
'nearest' (default) | 'bilinear' | 'bicubic'

Interpolation method, specified as one of the following values:

Value Description
'nearest' Nearest-neighbor interpolation; the output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

'bilinear' Bilinear interpolation; the output pixel value is a weighted
average of pixels in the nearest 2-by-2 neighborhood

'bicubic' Bicubic interpolation; the output pixel value is a weighted average
of pixels in the nearest 4-by-4 neighborhood

Note Bicubic interpolation can produce pixel values outside the
original range.

Data Types: char | string

bbox — Bounding box defining size of output image
'loose' (default) | 'crop'

Bounding box that defines the size of output image, specified as either of the following
values:

1 Functions — Alphabetical List

1-1968

Value Description
'crop' Make output image J the same size as the input image I, cropping the

rotated image to fit.
'loose' Make output image J large enough to contain the entire rotated

image. J is larger than I.

Data Types: char | string

Output Arguments
J — Rotated image
numeric array | logical array | gpuArray

Rotated image, returned as a numeric or logical array.

If the image is rotated using a GPU, then J is returned as a gpuArray containing a
numeric or logical array.

Tips
• This function changed in version 9.3 (R2015b). Previous versions of the Image

Processing Toolbox use different spatial conventions. If you need the same results
produced by the previous implementation, use the function imrotate_old.

• In some instances, this function takes advantage of hardware optimization for data
types uint8, uint16, single, and double to run faster.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 imrotate

1-1969

• imrotate supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imrotate
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• The method and bbox arguments must be compile-time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The 'bicubic' interpolation mode used in the GPU implementation of this function
differs from the default (CPU) bicubic mode. The GPU and CPU versions of this
function are expected to give slightly different results.

For more information, see “Image Processing on a GPU”.

See Also
imcrop | imresize | imrotate3 | imtransform | tformarray

Introduced before R2006a

1 Functions — Alphabetical List

1-1970

imrotate3
Rotate 3-D volumetric grayscale image

Syntax
B = imrotate3(V,angle,W)
B = imrotate3(V,angle,W,method)
B = imrotate3(V,angle,W,method,bbox)
B = imrotate3(___ ,Name,Value)

Description
B = imrotate3(V,angle,W) rotates the 3-D volumetric grayscale image V (referred to
as a volume) by angle degrees counterclockwise around an axis passing through the
origin [0 0 0]. W is a 1-by-3 vector which specifies the direction of the axis of rotation in
3-D space. By default, imrotate3 uses trilinear interpolation and sets the values of
voxels in B that are outside the boundaries of the rotated volume to 0.

B = imrotate3(V,angle,W,method) rotates the volume V, where method specifies
the interpolation method.

B = imrotate3(V,angle,W,method,bbox) rotates the volume V, where bbox
specifies the size of the output volume. If you specify 'crop', imrotate3 makes the
output volume the same size as the input volume. If you specify 'loose', imrotate3
makes the output volume large enough to include the entirety of the rotated volume.

B = imrotate3(___ ,Name,Value) specifies additional parameters that control
various aspects of the geometric transformation. Parameter names can be abbreviated.

Examples

Rotate 3-D Volume

Load a 3-D volumetric grayscale image into the workspace, and display it.

 imrotate3

1-1971

s = load('mri');
mriVolume = squeeze(s.D);
volshow(mriVolume);

Rotate the volume 90 degress around the Z axis.

B = imrotate3(mriVolume,90,[0 0 1],'nearest','loose','FillValues',0);

Display the rotated output volume. You can also explore the volume in the Volume Viewer
app.

volshow(B);

1 Functions — Alphabetical List

1-1972

Input Arguments
V — Volume to be rotated
3-D volumetric grayscale image

Volume to be rotated, specified as a 3-D volumetric grayscale image.

imrotate3 assumes that the input volume V is centered on the origin [0 0 0]. If your
volume is not centered on the origin, use imtranslate to translate the volume to [0 0
0] before using imrotate3. You can translate the output volume B back to the original
position with the opposite translation vector.

 imrotate3

1-1973

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

angle — Rotation angle in degrees
numeric scalar

Rotation angle in degrees, specified as numeric scalar. To rotate the volume clockwise,
specify a negative value for angle. imrotate3 makes the output volume B large enough
to contain the entire rotated 3-D volume.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

W — Direction of the axis of rotation in 3-D space in Cartesian coordinates
1-by-3 vector of numeric values

Direction of the axis of rotation in 3-D space in Cartesian coordinates, specified as a 1-
by-3 vector of numeric values.

If you want to specify the direction of the axis of rotation in spherical coordinates, use
sph2cart to convert values to Cartesian coordinates before passing it to imrotate3.
Example: [0 0 1] rotate the volume around the Z axis
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

method — Interpolation method
'linear' (default) | 'cubic' | 'nearest'

Interpolation method, specified as one of the following values.

Method Description
'cubic' Tricubic interpolation

Note Tricubic interpolation can produce pixel values
outside the original range.

'linear' Trilinear interpolation
'nearest' Nearest neighbor interpolation

Data Types: char | string

1 Functions — Alphabetical List

1-1974

bbox — Size of the output volume
'loose' (default) | 'crop'

Size of the output volume, specified as either of the following values.

Method Description
'crop' Make the output volume the same size as the input volume,

cropping the rotated volume to fit.
'loose' Make the output volume large enough to contain the entire

rotated volume. Usually, the rotated volume is larger than the
input volume.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = imrotate3(V,angle,W,'nearest','loose','FillValues',5);

FillValues — Value used to fill voxels in the output volume that are outside the
limits of the rotated volume
0 (default) | numeric scalar

Value used to fill voxels in the output volume that are outside the limits of the rotated
volume, specified as the comma-separated pair consisting of 'FillValues' and a
numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
B — Rotated volume
numeric array

Rotated volume, returned as a numeric array the same class as the input volume.

 imrotate3

1-1975

See Also
Volume Viewer | imresize | imresize3 | imrotate | imtranslate | imwarp

Introduced in R2017a

1 Functions — Alphabetical List

1-1976

imsave
Save Image Tool

Use the imsave function to create a Save Image tool. The Save Image tool displays an
interactive file chooser dialog box (shown below) in which you can specify a path and
filename. When you click Save, the Save Image tool writes the target image to a file using
the image file format you select in the Files of Type menu. For more information about
using the tool, see “Tips” on page 1-1979.

Select image file format.

Syntax
imsave
imsave(h)
[filename,user_canceled] = imsave(___)

 imsave

1-1977

Description
imsave creates a Save Image tool in a separate figure that is associated with the image
in the current figure, called the target image.

imsave(h) creates a Save Image tool associated with the image specified by the handle
h.

[filename,user_canceled] = imsave(___) returns the full path to the file
selected in filename and indicates whether you canceled the save operation.

Examples
Save Displayed Image
imshow peppers.png
imsave

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is
an axes or figure handle, imsave uses the first image returned by
findobj(H,'Type','image').

Output Arguments
filename — Full path to file
character vector | ''

Full path to file, returned as a character vector. If you cancel the save operation,
filename is returned as an empty character array, ''.

user_canceled — User canceled operation
false (default) | true

1 Functions — Alphabetical List

1-1978

User canceled operation, returned as false or true. If you press the Cancel button or
close the save window, imsave sets user_canceled to true; otherwise, false.

Tips
• In contrast to the Save as option in the figure File menu, the Save Image tool saves

only the image displayed in the figure. The Save as option in the figure window File
menu saves the entire figure window, not just the image.

• imsave uses imwrite to save the image, using default options.
• If you specify a filename that already exists, imsave displays a warning message.

Select Yes to use the filename or No to return to the dialog to select another filename.
If you select Yes, the Save Image tool attempts to overwrite the target file.

• The Save Image tool is modal; it blocks the MATLAB command line until you respond.

See Also
imformats | imgetfile | imputfile | imwrite

Introduced in R2007b

 imsave

1-1979

imscrollpanel
Scroll panel for interactive image navigation

Use the imscrollpanel function to add a scroll panel to an image. If the size or
magnification makes an image too large to display in a figure on the screen, then the
scroll panel displays a portion of the image at 100% magnification (one screen pixel
represents one image pixel). The scroll panel adds horizontal and vertical scroll bars to
enable navigation around the image.

Syntax
hpanel = imscrollpanel(hparent,himage)

Description
hpanel = imscrollpanel(hparent,himage) creates a scroll panel containing the
target image (the image to be navigated). himage is a handle to the target image.
hparent is a handle to the figure or uipanel that will contain the scroll panel. The
function returns hpanel, a handle to the scroll panel.

Examples

Create Scroll Panel with Magnification Box and Overview Tool

Display an image in a figure. The example suppresses the standard toolbar and menubar
in the figure window because these do not work with the scroll panel.

hFig = figure('Toolbar','none',...
 'Menubar','none');
hIm = imshow('saturn.png');

Create a scroll panel to contain the image.

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .1 1 .9])

1 Functions — Alphabetical List

1-1980

 imscrollpanel

1-1981

Add a Magnification Box and an Overview tool to the figure.

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])
imoverview(hIm)

1 Functions — Alphabetical List

1-1982

 imscrollpanel

1-1983

Get the scroll panel API so that you can control the view programmatically.

api = iptgetapi(hSP);

Get the current magnification and position.

mag = api.getMagnification()
r = api.getVisibleImageRect()

mag =

 1

r =

 125.0072 201.5646 716.0000 709.0000

Use the scroll panel object API function setVisibleLocation to view the top left
corner of the image.

api.setVisibleLocation(0.5,0.5)

1 Functions — Alphabetical List

1-1984

 imscrollpanel

1-1985

Change the magnification of the image so that the image fits entirely in the scroll panel.
In the following figure, note that the scroll bars are no longer visible.

api.setMagnification(api.findFitMag())

1 Functions — Alphabetical List

1-1986

 imscrollpanel

1-1987

Zoom in to 1600% on the dark spot.

api.setMagnificationAndCenter(16,306,800)

1 Functions — Alphabetical List

1-1988

Input Arguments
hparent — Handle to figure or uipanel object
handle

 imscrollpanel

1-1989

Handle to a figure or uipanel object that contains the scroll panel, specified as a handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle.

Output Arguments
hpanel — Handle to scroll panel
handle

Handle to scroll panel, returned as a handle. A scroll panel is a type of uipanel object.

Definitions

Scroll Panel API Structure
A scroll panel contains a structure of function handles, called an API. You can use the
functions in this API to manipulate the scroll panel. To retrieve this structure, use the
iptgetapi function, as in the following example.

api = iptgetapi(hpanel)

This table lists the scroll panel API functions, in the order they appear in the structure.

Function Description
setMagnification Set the magnification of the target image in units of

screen pixels per image pixel.

mag = api.setMagnification(new_mag)

new_mag is a scalar magnification factor.

1 Functions — Alphabetical List

1-1990

Function Description
getMagnification Return the current magnification factor of the target

image in units of screen pixels per image pixel.

mag = api.getMagnification()

Multiply mag by 100 to convert to percentage. For
example if mag is 2, then the magnification is 200%.

setMagnificationAndCenter Change the magnification and make the point with
(x,y) coordinate (cx,cy) in the target image appear in
the center of the scroll panel. This operation is
equivalent to a simultaneous zoom and recenter.

api.setMagnificationAndCenter(mag,cx,cy)

findFitMag Return the magnification factor that would make the
target image just fit in the scroll panel.

mag = api.findFitMag()

setVisibleLocation Move the target image so that the specified location is
visible, and update the scroll bars.

api.setVisibleLocation(xmin, ymin)
api.setVisibleLocation([xmin ymin])

getVisibleLocation Return the location of the currently visible portion of
the target image.

loc = api.getVisibleLocation()

loc is a vector [xmin ymin].
getVisibleImageRect Return the current visible portion of the image.

r = api.getVisibleImageRect()

r is a rectangle [xmin ymin width height].

 imscrollpanel

1-1991

Function Description
addNewMagnificationCallback Add the function handle fcn to the list of new-

magnification callback functions.

id = api.addNewMagnificationCallback(fcn)

Whenever the scroll panel magnification changes, each
function in the list is called with the syntax:

fcn(mag)

mag is a scalar magnification factor.

The return value, id, is used only with
removeNewMagnificationCallback.

removeNewMagnificationCallback Remove the corresponding function from the new-
magnification callback list.

api.removeNewMagnificationCallback(id)

id is the identifier returned by
addNewMagnificationCallback.

addNewLocationCallback Add the function handle fcn to the list of new-location
callback functions.

id = api.addNewLocationCallback(fcn)

Whenever the scroll panel location changes, each
function in the list is called with the syntax:

fcn(loc)

loc is [xmin ymin].

The return value, id, is used only with
removeNewLocationCallback.

1 Functions — Alphabetical List

1-1992

Function Description
removeNewLocationCallback Remove the corresponding function from the new-

location callback list.

api.removeNewLocationCallback(id)

id is the identifier returned by
addNewLocationCallback.

replaceImage api.replaceImage(...,PARAM1,VAL1,PARAM2,VA
L2,...) replaces the image displayed in the scroll
panel.

api.replaceImage(I)
api.replaceImage(BW)
api.replaceImage(RGB)
api.replaceImage(I,MAP)
api.replaceImage(filename)

By default, the new image data is displayed centered,
at 100% magnification. The image handle is
unchanged.

The parameters you can specify include many of the
parameters supported by imshow, including
'Colormap', 'DisplayRange', and
'InitialMagnification'. In addition, you can use
the 'PreserveView' parameter to preserve the
current magnification and centering of the image
during replacement. Specify the logical scalar True to
preserve current centering and magnification.
Parameter names can be abbreviated, and case does
not matter.

Tips
• imscrollpanel changes the object hierarchy of the target image. Instead of the

familiar figure→axes→image object hierarchy, imscrollpanel inserts several uipanel
and uicontrol objects between the figure and the axes object.

 imscrollpanel

1-1993

• Scrollbar navigation as provided by imscrollpanel is incompatible with the default
MATLAB figure navigation buttons (pan, zoom in, zoom out). The corresponding menu
items and toolbar buttons should be removed in a custom GUI that includes a
scrollable uipanel created by imscrollpanel.

• When you run imscrollpanel, it appears to take over the entire figure because, by
default, an uipanel object has 'Units' set to 'normalized' and 'Position' set to
[0 0 1 1]. If you want to see other children of hparent while using your new scroll
panel, you must manually set the 'Position' property of hpanel.

See Also
immagbox | imoverview | imoverviewpanel | imtool | iptgetapi

Topics
“Adding Navigation Aids to a GUI”

Introduced before R2006a

1 Functions — Alphabetical List

1-1994

imsegfmm
Binary image segmentation using Fast Marching Method

Syntax
BW = imsegfmm(W,mask,thresh)
BW = imsegfmm(W,C,R,thresh)
BW = imsegfmm(W,C,R,P,thresh)
[BW,D] = imsegfmm(___)

Description
BW = imsegfmm(W,mask,thresh) returns a segmented image BW, which is computed
using the Fast Marching Method. The array W specifies weights for each pixel. mask is a
logical array that specifies seed locations. thresh is a non-negative scalar in the range
[0 1] that specifies the threshold level.

BW = imsegfmm(W,C,R,thresh) returns a segmented image, with seed locations
specified by the vectors C and R, which contain column and row indices. C and R must
contain values which are valid pixel indices in W.

BW = imsegfmm(W,C,R,P,thresh) returns a segmented image, with seed locations
specified by the vectors C, R, and P, which contain column, row, and plane indices. C, R,
and P must contain values which are valid pixel indices in W.

[BW,D] = imsegfmm(___) returns the normalized geodesic distance map D computed
using the Fast Marching Method. BW is a thresholded version of D, where all the pixels
that have normalized geodesic distance values less than thresh are considered
foreground pixels and set to true. D can be thresholded at different levels to obtain
different segmentation results.

Examples

 imsegfmm

1-1995

Segment Image Using Fast Marching Method Algorithm

This example shows how to segment an object in an image using Fast Marching Method
based on differences in grayscale intensity as compared to the seed locations.

Read image.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

Create mask and specify seed location. You can also use roipoly to create the mask
interactively.

mask = false(size(I));
mask(170,70) = true;

Compute the weight array based on grayscale intensity differences.

W = graydiffweight(I, mask, 'GrayDifferenceCutoff', 25);

1 Functions — Alphabetical List

1-1996

Segment the image using the weights.

thresh = 0.01;
[BW, D] = imsegfmm(W, mask, thresh);
figure
imshow(BW)
title('Segmented Image')

You can threshold the geodesic distance matrix D using different thresholds to get
different segmentation results.

figure
imshow(D)
title('Geodesic Distances')

 imsegfmm

1-1997

Segment Object in Volume Based on Intensity Differences

This example segments the brain from MRI data of the human head.

Load the MRI data.

load mri
V = squeeze(D);

Visualize the data.

sizeO = size(V);
figure;
slice(double(V),sizeO(2)/2,sizeO(1)/2,sizeO(3)/2);
shading interp, colormap gray;
title('Original');

1 Functions — Alphabetical List

1-1998

Set the seed locations.

seedR = 75;
seedC = 60;
seedP = 10;

Compute weights based on grayscale intensity differences.

W = graydiffweight(V, seedC, seedR, seedP , 'GrayDifferenceCutoff', 25);

Segment the image using the weights.

thresh = 0.002;
BW = imsegfmm(W, seedC, seedR, seedP, thresh);

 imsegfmm

1-1999

Visualize the segmented image using an iso surface.

figure;
p = patch(isosurface(double(BW)));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 27/64]);
camlight;
lighting phong;

1 Functions — Alphabetical List

1-2000

Input Arguments
W — Weight array
nonsparse, non-negative numeric array

Weight array, specified as a nonsparse, non-negative numeric array. Use the
graydiffweight or gradientweight functions to compute this weight array. High
values in W identify the foreground (object) and low values identify the background.
Example: W = graydiffweight(I, mask,'GrayDifferenceCutoff', 25);
Data Types: single | double | uint8 | int8 | int16 | uint16 | int32 | uint32

mask — Seed locations mask
logical array

Seed locations mask, specified as a logical array, the same size as W. Locations where
mask is true are seed locations. If you used graydiffweight to create the weight matrix
W, it is recommended that you use the same value of mask with imsegfmm that you used
with graydiffweight.
Example: mask = false(size(I)); mask(170,70) = true;
Data Types: logical

thresh — Threshold level used to obtain the binary image
non-negative scalar in the range [0 1]

Threshold level used to obtain the binary image, specified as a non-negative scalar in the
range [0 1]. Low values typically result in large foreground regions (logical true) in BW,
and high values produce small foreground regions.
Example: 0.5
Data Types: double

C — Column index of reference pixels
numeric vector

Column index of reference pixels, specified as a numeric vector.
Example: [50 75 93]
Data Types: double

 imsegfmm

1-2001

R — Row index of reference pixels
numeric vector

Row index of reference pixels, specified as a numeric vector.
Example: [48 71 89]
Data Types: double

P — Plane index of reference pixels
numeric vector

Plane index of reference pixels, specified as a numeric vector.
Example:]
Data Types: double

Output Arguments
BW — Segmented image
logical array

Segmented image, returned as a logical array of the same size as W.
Example:
Data Types: logical

D — Normalized geodesic distance map
double | single

Normalized geodesic distance map, returned as an array of double the same size as W. If
W is of class single, D is of class single.

Tips
• imsegfmm uses double-precision floating point operations for internal computations

for all classes except class single. If W is of class single, imsegfmm uses single-
precision floating point operations internally.

1 Functions — Alphabetical List

1-2002

• imsegfmm sets pixels with 0 or NaN weight values to Inf in the geodesic distance
image D. These pixels are part of the background (logical false) in the segmented
image BW.

References
[1] Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science, Cambridge University Press, 2nd Edition, 1999.

See Also
Image Segmenter | activecontour | gradientweight | graydiffweight |
graydist

Introduced in R2014b

 imsegfmm

1-2003

imseggeodesic
Segment image into two or three regions using geodesic distance-based color
segmentation

Syntax
L = imseggeodesic(RGB,BW1,BW2)
L = imseggeodesic(RGB,BW1,BW2,BW3)
[L,P] = imseggeodesic(___)
[L,P] = imseggeodesic(___ ,Name,Value)

Description
L = imseggeodesic(RGB,BW1,BW2) segments the color image RGB, returning a
segmented binary image with labels L. BW1 and BW2 are binary images that specify the
location of the initial seed regions, called scribbles, for the two regions (foreground and
background).

imseggeodesic uses the scribbles specified in BW1 and BW2 as representative samples
for computing the statistics for their respective regions, which it then uses in
segmentation. The scribbles specified by BW1 and BW2 (regions that are logical true)
should not overlap. The underlying algorithm uses the statistics estimated over the
regions marked by the scribbles for segmentation. The greater the number of pixels
marked by scribbles, the more accurate the estimation of the region statistics, which
typically leads to more accurate segmentation. Therefore, it is a good practice to provide
as many scribbles as possible. Typically, provide at least a few hundred pixels as scribbles
for each region.

L = imseggeodesic(RGB,BW1,BW2,BW3) segments the color image RGB, returning a
segmented image with three segments (trinary segmentation) with the region labels
specified by label matrix L. BW1, BW2, and BW3 are binary images that specify the location
of the initial seed regions or scribbles for the three regions. The scribbles specified by
BW1, BW2, and BW3 (regions that are logical true) should not overlap.

[L,P] = imseggeodesic(___) also returns the probability for each pixel belonging to
each of the labels in matrix P.

1 Functions — Alphabetical List

1-2004

[L,P] = imseggeodesic(___ ,Name,Value) uses name-value pairs to control
aspects of segmentation.

Examples

Segment Image into Two Regions Using Color Information

Read image into workspace and display it.

RGB = imread('yellowlily.jpg');
imshow(RGB,'InitialMagnification',50)
hold on

 imseggeodesic

1-2005

1 Functions — Alphabetical List

1-2006

Specify the initial seed regions or "scribbles" for the foreground object, in the form
[left_topR left_topC bottom_rightR bottom_rightC].

bbox1 = [700 350 820 775];
BW1 = false(size(RGB,1),size(RGB,2));
BW1(bbox1(1):bbox1(3),bbox1(2):bbox1(4)) = true;

Specify the initial seed regions or "scribbles" for the background.

bbox2 = [1230 90 1420 1000];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(bbox2(1):bbox2(3),bbox2(2):bbox2(4)) = true;

Display seed regions. The foreground is in red and the background is blue.

visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','b');

 imseggeodesic

1-2007

1 Functions — Alphabetical List

1-2008

Segment the image.

[L,P] = imseggeodesic(RGB,BW1,BW2);

Display results.

figure
imshow(label2rgb(L),'InitialMagnification', 50)
title('Segmented image')

 imseggeodesic

1-2009

1 Functions — Alphabetical List

1-2010

figure
imshow(P(:,:,1),'InitialMagnification', 50)
title('Probability that a pixel belongs to the foreground')

 imseggeodesic

1-2011

1 Functions — Alphabetical List

1-2012

Segment Image into Three Regions Using Color Information

Read image into the workspace and display it.

RGB = imread('yellowlily.jpg');
imshow(RGB,'InitialMagnification', 50)
hold on

 imseggeodesic

1-2013

1 Functions — Alphabetical List

1-2014

Creates scribbles for three regions. Note that you can specify the scribbles interactively
using tools such as roipoly, imfreehand, imrect, impoly, and imellipse. Region 1
is the yellow flower. Region 2 is the green leaves. Region 3 is the background.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions.

visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');

 imseggeodesic

1-2015

1 Functions — Alphabetical List

1-2016

Segment the image.

[L,P] = imseggeodesic(RGB,BW1,BW2,BW3, 'AdaptiveChannelWeighting', true);

Display results.

figure
imshow(label2rgb(L),'InitialMagnification', 50)
title('Segmented image with three regions')

 imseggeodesic

1-2017

1 Functions — Alphabetical List

1-2018

figure
imshow(P(:,:,2),'InitialMagnification', 50)
title('Probability that a pixel belongs to region/label 2')

 imseggeodesic

1-2019

1 Functions — Alphabetical List

1-2020

Input Arguments
RGB — Image to be segmented
RGB image

Image to be segmented, specified as an RGB image. imseggeodesic converts the input
RGB image to the YCbCr color space before performing the segmentation.
Example: RGB = imread('peppers.png');
Data Types: double | uint8 | uint16

BW1 — Scribble image for first region
logical matrix

Scribble image, specified as a logical matrix. BW1 must have the same number of rows
and columns as the input image RGB. To specify the scribbles interactively, use roipoly,
imfreehand, imrect, impoly, or imellipse.
Example: bbox1 = [700 350 820 775]; BW1 =
false(size(RGB,1),size(RGB,2));
BW1(bbox1(1):bbox1(3),bbox1(2):bbox1(4)) = true;

Data Types: logical

BW2 — Scribble image for second region
logical matrix

Scribble image, specified as a logical matrix. BW2 must have the same number of rows
and columns as the input image RGB. To specify the scribbles interactively, use roipoly,
imfreehand, imrect, impoly, or imellipse.
Example: bbox2 = [1230 90 1420 1000]; BW2 =
false(size(RGB,1),size(RGB,2));
BW2(bbox2(1):bbox2(3),bbox2(2):bbox2(4)) = true;

Data Types: logical

BW3 — Scribble image for third region
logical matrix

 imseggeodesic

1-2021

Scribble image, specified as a logical matrix. BW3 must have the same number of rows
and columns as the input image RGB. To specify the scribbles interactively, use roipoly,
imfreehand, imrect, impoly, or imellipse.
Example: bbox3 = [20 1320 480 200; 1010 290 180 240]; BW3 =
false(size(RGB,1),size(RGB,2));
BW3(bbox3(1,2):bbox3(1,2)+bbox3(1,4),bbox3(1,1):bbox3(1,1)+bbox3(1,3
)) = true;

Data Types: logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [L,P] =
imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

AdaptiveChannelWeighting — Use adaptive channel weighting
false (default) | true

Use adaptive channel weighting, specified as a logical scalar. When true,
imseggeodesic weights the channels proportional to the amount of discriminatory
information they have that is useful for segmentation (based on the scribbles provided as
input). When false (the default), imseggeodesic weights all the channels equally.
Example: [L,P] = imseggeodesic(RGB,BW1,BW2,BW3,
'AdaptiveChannelWeighting', true);

Data Types: logical

Output Arguments
L — Label matrix
matrix of nonnegative integers

Label matrix, returned as a matrix of nonnegative integers. Pixels labeled 0 are the
background and pixels labeled 1 identify a segmented region. Pixels labeled 2 identify
another segmented region in trinary segmentation.

1 Functions — Alphabetical List

1-2022

Data Types: double

P — Probability a pixel belongs to a labeled region
M-by-N-by-2 matrix (binary segmentation) | M-by-N-by-3 matrix (trinary segmentation)

Probability a pixel belongs to a labeled region, specified as an M-by-N-by-2 matrix for
binary segmentation or an M-by-N-by-3 matrix for trinary segmentation. M and N are the
number of rows and columns in the input image. P(i,j,k) specifies the probability of
pixel at location (i,j) belonging to label k.
Data Types: double

Tips
• The scribbles for the two (or three) regions should not overlap each other. Each

scribble matrix (BW1, BW2, and BW3) should be nonempty, that is, there should be at
least one pixel (although the more the better) marked as logical true in each of the
scribbles.

Algorithms
imseggeodesic uses a geodesic distance-based color segmentation algorithm (similar to
[1] on page 1-2023).

References
[1] A. Protiere and G. Sapiro, Interactive Image Segmentation via Adaptive Weighted

Distances, IEEE Transactions on Image Processing. Volume 16, Issue 4, 2007.

See Also
Color Thresholder | activecontour | imsegfmm | rgb2ycbcr | visboundaries

Introduced in R2015a

 imseggeodesic

1-2023

imsegkmeans
K-means clustering based image segmentation

Syntax
L = imsegkmeans(I,k)
[L,centers] = imsegkmeans(I,k)
L = imsegkmeans(I,k,Name,Value)

Description
L = imsegkmeans(I,k) segments image I into k clusters by performing k-means
clustering and returns the segmented labeled output in L.

[L,centers] = imsegkmeans(I,k) also returns the cluster centroid locations,
centers.

L = imsegkmeans(I,k,Name,Value) uses name-value arguments to control aspects of
the k-means clustering algorithm.

Examples

Segment Grayscale Image using k-Means Clustering

Read an image into the workspace.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

1 Functions — Alphabetical List

1-2024

Segment the image into three regions using k-means clustering.

[L,Centers] = imsegkmeans(I,3);
B = labeloverlay(I,L);
imshow(B)
title('Labeled Image')

 imsegkmeans

1-2025

Improve k-Means Segmentation Using Texture and Spatial Information

Read an image into the workspace. Reduce the image size to make the example run more
quickly.

RGB = imread('kobi.png');
RGB = imresize(RGB,0.5);
imshow(RGB)

1 Functions — Alphabetical List

1-2026

Segment the image into two regions using k-means clustering.

L = imsegkmeans(RGB,2);
B = labeloverlay(RGB,L);
imshow(B)
title('Labeled Image')

 imsegkmeans

1-2027

Several pixels are mislabeled. The rest of the example shows how to improve the k-means
segmentation by supplementing the information about each pixel.

Supplement the image with information about the texture in the neighborhood of each
pixel. To obtain the texture information, filter a grayscale version of the image with a set
of Gabor filters.

Create a set of 24 Gabor filters, covering 6 wavelengths and 4 orientations.

wavelength = 2.^(0:5) * 3;
orientation = 0:45:135;
g = gabor(wavelength,orientation);

1 Functions — Alphabetical List

1-2028

Convert the image to grayscale.

I = rgb2gray(im2single(RGB));

Filter the grayscale image using the Gabor filters. Display the 24 filtered images in a
montage.

gabormag = imgaborfilt(I,g);
montage(gabormag,'Size',[4 6])

Smooth each filtered image to remove local variations. Display the smoothed images in a
montage.

for i = 1:length(g)
 sigma = 0.5*g(i).Wavelength;
 gabormag(:,:,i) = imgaussfilt(gabormag(:,:,i),3*sigma);
end
montage(gabormag,'Size',[4 6])

 imsegkmeans

1-2029

Supplement the information about each pixel with spatial location information. This
additional information allows the k-means clustering algorithm to prefer groupings that
are close together spatially.

Get the x and y coordinates of all pixels in the input image.

nrows = size(RGB,1);
ncols = size(RGB,2);
[X,Y] = meshgrid(1:ncols,1:nrows);

Concatenate the intensity information, neighborhood texture information, and spatial
information about each pixel.

For this example, the feature set includes intensity image I instead of the original color
image, RGB. The color information is omitted from the feature set because the yellow
color of the dog's fur is similar to the yellow hue of the tiles. The color channels do not
provide enough distinct information about the dog and the background to make a clean
segmentation.

featureSet = cat(3,I,gabormag,X,Y);

1 Functions — Alphabetical List

1-2030

Segment the image into two regions using k-means clustering with the supplemented
feature set.

L2 = imsegkmeans(featureSet,2,'NormalizeInput',true);
C = labeloverlay(RGB,L2);
imshow(C)
title('Labeled Image with Additional Pixel Information')

 imsegkmeans

1-2031

Compress Color Image Using k-Means Segmentation

Read an image into the workspace.

I = imread('peppers.png');
imshow(I)
title('Original Image')

Segment the image into 50 regions by using k-means clustering. Return the label matrix L
and the cluster centroid locations C. The cluster centroid locations are the RGB values of
each of the 50 colors.

[L,C] = imsegkmeans(I,50);

1 Functions — Alphabetical List

1-2032

Convert the label matrix into an RGB image. Specify the cluster centroid locations, C, as
the colormap for the new image.

J = label2rgb(L,im2double(C));

Display the quantized image.

imshow(J)
title('Color Quantized Image')

Write the original and compressed images to file. The quantized image file is approximate
one quarter the size of the original image file.

 imsegkmeans

1-2033

imwrite(I,'peppersOriginal.png');
imwrite(J,'peppersQuantized.png');

Input Arguments
I — Image to segment
2-D grayscale image | 2-D color image | 2-D multispectral image

Image to segment, specified as a 2-D grayscale image, 2-D color image, or 2-D
multispectral image.
Data Types: single | int8 | int16 | uint8 | uint16

k — Number of clusters
positive integer

Number of clusters to create, specified as a positive integer.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: L = imsegkmeans(I,5,'NumAttempts',5);

NormalizeInput — Normalize input data
true (default) | false

Normalize input data to zero mean and unit variance, specified as the comma-separated
pair consisting of 'NormalizeInput' and true or false. If you specify true, then
imsegkmeans normalizes each channel of the input individually.

NumAttempts — Number of times to repeat the clustering process
3 (default) | positive integer

Number of times to repeat the clustering process using new initial cluster centroid
positions, specified as the comma-separated pair consisting of 'NumAttempts' and a
positive integer.

1 Functions — Alphabetical List

1-2034

MaxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.

Threshold — Accuracy threshold
1e-4 (default) | positive number

Accuracy threshold, specified as the comma-separated pair consisting of 'Threshold'
and a positive number. The algorithm stops when each of the cluster centers move less
than the threshold value in consecutive iterations.

Output Arguments
L — Label matrix
matrix of positive integers

Label matrix, specified as a matrix of positive integers. Pixels with label 1 belong to the
first cluster, label 2 belong to the second cluster, and so on for each of the k clusters. L
has the same first two dimensions as image I. The class of L depends on number of
clusters.

Class of L Number of Clusters
'uint8' k <= 255
'uint16' 256 <= k <= 65535
'uint32' 65536 <= k <= 2^32-1
'double' 2^32 <= k

centers — Cluster centroid locations
numeric matrix

Cluster centroid locations, returned as a numeric matrix of size k-by-c, where k is the
number of clusters and c is the number of channels. centers is the same class as the
image I.

 imsegkmeans

1-2035

Tips
• The function yields reproducible results. The output will not vary in multiple runs

given the same input arguments.

References
[1] Arthur, D. and S. Vassilvitskii. "k-means++: The Advantages of Careful Seeding."

SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. New Orleans, LA, January 2007, pp. 1027–1035.

See Also
Apps
Image Segmenter

Functions
gabor | imgaborfilt | imsegkmeans3 | label2rgb | labelmatrix | labeloverlay |
lazysnapping | superpixels | watershed

Topics
“Color-Based Segmentation Using K-Means Clustering”

Introduced in R2018b

1 Functions — Alphabetical List

1-2036

imsegkmeans3
K-means clustering based volume segmentation

Syntax
L = imsegkmeans3(V,k)
[L,centers] = imsegkmeans3(V,k)
L = imsegkmeans3(V,k,Name,Value)

Description
L = imsegkmeans3(V,k) segments volume V into k clusters by performing k-means
clustering and returns the segmented labeled output in L.

[L,centers] = imsegkmeans3(V,k) also returns the cluster centroid locations,
centers.

L = imsegkmeans3(V,k,Name,Value)uses name-value pairs to control aspects of the
k-means clustering algorithm.

Examples

Segment Volume Using k-Means Clustering

Load a 3-D grayscale MRI volume and display it using volshow.

load mristack
volshow(mristack);

 imsegkmeans3

1-2037

Segment the volume into three clusters.

L = imsegkmeans3(mristack,3);

Display the segmented volume using volshow. To explore slices of the segmented
volume, use the Volume Viewer app.

figure
volshow(L);

1 Functions — Alphabetical List

1-2038

Input Arguments
V — Volume to segment
3-D grayscale volume | 3-D multispectral volume

Volume to segment, specified as a 3-D grayscale volume of size m-by-n-by-p or a 3-D
multispectral volume of size m-by-n-by-p-by-c, where p is the number of planes and c is
number of channels.

 imsegkmeans3

1-2039

Note imsegkmeans2 treats 2-D color images like 3-D volumes of size m-by-n-by-3. If you
want 2-D behavior, use imsegkmeans instead.

Data Types: single | int8 | int16 | uint8 | uint16

k — Number of clusters
positive number

Number of clusters to create, specified as a numeric scalar.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: L = imsegkmeans3(V,5,'NumAttempts',5);

NormalizeInput — Normalize input data
true (default) | false

Normalize input data to zero mean and unit variance, specified as the comma-separated
pair consisting of 'NormalizeInput' and true or false. If you specify true, then
imsegkmeans3 normalizes each channel of the input individually.

NumAttempts — Number of times to repeat the clustering process
3 (default) | positive integer

Number of times to repeat the clustering process using new initial cluster centroid
positions, specified as the comma-separated pair consisting of 'NumAttempts' and a
positive integer.

MaxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.

Threshold — Accuracy threshold
1e-4 (default) | positive number

1 Functions — Alphabetical List

1-2040

Accuracy threshold, specified as the comma-separated pair consisting of 'Threshold'
and a positive number. The algorithm stops when each of the cluster centers move less
than the threshold value in consecutive iterations.

Output Arguments
L — Label matrix
matrix of positive integers

Label matrix, specified as a matrix of positive integers. Pixels with label 1 belong to the
first cluster, label 2 belong to the second cluster, and so on for each of the k clusters. L
has the same first three dimensions as volume V. The class of L depends on number of
clusters.

Class of L Number of Clusters
'uint8' k <= 255
'uint16' 256 <= k <= 65535
'uint32' 65536 <= k <= 2^32-1
'double' 2^32 <= k

centers — Cluster centroid locations
numeric matrix

Cluster centroid locations, returned as a numeric matrix of size k-by-c, where k is the
number of clusters and c is the number of channels. centers is the same class as the
image I.

Tips
• The function yields reproducible results. The output will not vary in multiple runs

given the same input arguments.

References
[1] Arthur, D. and S. Vassilvitskii. "k-means++: The Advantages of Careful Seeding."

SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. New Orleans, LA, January 2007, pp. 1027–1035.

 imsegkmeans3

1-2041

See Also
Apps
Volume Viewer

Functions
imsegkmeans | lazysnapping | superpixels3 | watershed

Introduced in R2018b

1 Functions — Alphabetical List

1-2042

imsharpen
Sharpen image using unsharp masking

Syntax
B = imsharpen(A)
B = imsharpen(A,Name,Value)

Description
B = imsharpen(A) sharpens the grayscale or truecolor (RGB) input image A by using
the unsharp masking on page 1-2049 method.

B = imsharpen(A,Name,Value) uses name-value pairs to control aspects of the
unsharp masking.

Examples

Sharpen Image

Read an image into the workspace and display it.

a = imread('hestain.png');
imshow(a)
title('Original Image');

 imsharpen

1-2043

Sharpen the image using the imsharpen function and display it.

b = imsharpen(a);
figure, imshow(b)
title('Sharpened Image');

1 Functions — Alphabetical List

1-2044

Control the Amount of Sharpening at the Edges

Read an image into the workspace and display it.

a = imread('rice.png');
imshow(a), title('Original Image');

 imsharpen

1-2045

Sharpen image, specifying the radius and amount parameters.

b = imsharpen(a,'Radius',2,'Amount',1);
figure, imshow(b)
title('Sharpened Image');

1 Functions — Alphabetical List

1-2046

Input Arguments
A — Image to be sharpened
grayscale image | RGB image

Image to be sharpened, specified as a grayscale or RGB image.

If A is a truecolor (RGB) image, then imsharpen converts the image to the L*a*b* color
space, applies sharpening to the L* channel only, and then converts the image back to the
RGB color space before returning it as the output image B.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 imsharpen

1-2047

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Radius',1.5

Radius — Standard deviation of the Gaussian lowpass filter
1 (default) | positive number

Standard deviation of the Gaussian lowpass filter, specified as a positive number. This
value controls the size of the region around the edge pixels that is affected by sharpening.
A large value sharpens wider regions around the edges, whereas a small value sharpens
narrower regions around edges.
Example: 'Radius',1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Amount — Strength of the sharpening effect
0.8 (default) | numeric scalar

Strength of the sharpening effect, specified as a numeric scalar. A higher value leads to
larger increase in the contrast of the sharpened pixels. Typical values for this parameter
are within the range [0 2], although values greater than 2 are allowed. Very large values
for this parameter may create undesirable effects in the output image.
Example: 'Amount',1.2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Threshold — Minimum contrast required for a pixel to be considered an edge
pixel
0 (default) | scalar in the range [0 1]

Minimum contrast required for a pixel to be considered an edge pixel, specified as a
scalar in the range [0 1]. Higher values (closer to 1) allow sharpening only in high-
contrast regions, such as strong edges, while leaving low-contrast regions unaffected.
Lower values (closer to 0) additionally allow sharpening in relatively smoother regions of
the image. This parameter is useful in avoiding sharpening noise in the output image.

1 Functions — Alphabetical List

1-2048

Example: 'Threshold',0.7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Sharpened image
numeric array

Sharpened image, returned as a numeric array of the same size and class as the input
image A.

Definitions

Sharpening
Sharpness is actually the contrast between different colors. A quick transition from black
to white looks sharp. A gradual transition from black to gray to white looks blurry.
Sharpening images increases the contrast along the edges where different colors meet.

Unsharp masking
The unsharp masking technique comes from a publishing industry process in which an
image is sharpened by subtracting a blurred (unsharp) version of the image from itself.
Do not be confused by the name of this filter: an unsharp filter is an operator used to
sharpen an image.

See Also
fspecial | imadjust | imcontrast

Introduced in R2013a

 imsharpen

1-2049

imshow
Display image

Syntax
imshow(I)
imshow(I,[low high])
imshow(I,[])
imshow(RGB)
imshow(BW)
imshow(X,map)
imshow(filename)
imshow(___,Name,Value)

himage = imshow(___)

imshow(I,RI)
imshow(X,RX,map)
imshow(gpuarrayIM, ___)

Description
imshow(I) displays the grayscale image I in a figure. imshow uses the default display
range for the image data type and optimizes figure, axes, and image object properties for
image display.

imshow(I,[low high]) displays the grayscale image I, specifying the display range as
a two-element vector, [low high]. For more information, see the DisplayRange
parameter.

imshow(I,[]) displays the grayscale image I, scaling the display based on the range of
pixel values in I. imshow uses [min(I(:)) max(I(:))] as the display range. imshow
displays the minimum value in I as black and the maximum value as white. For more
information, see the DisplayRange parameter.

imshow(RGB) displays the truecolor image RGB in a figure.

1 Functions — Alphabetical List

1-2050

imshow(BW) displays the binary image BW in a figure. For binary images, imshow
displays pixels with the value 0 (zero) as black and 1 as white.

imshow(X,map) displays the indexed image X with the colormap map. A colormap matrix
can have any number of rows, but it must have exactly 3 columns. Each row is interpreted
as a color, with the first element specifying the intensity of red, the second green, and the
third blue. Color intensity can be specified on the interval [0, 1].

imshow(filename) displays the image stored in the graphics file specified by
filename.

imshow(___,Name,Value) displays an image, using name-value pairs to control aspects
of the operation.

himage = imshow(___) returns the image object created by imshow.

imshow(I,RI) displays the image I with associated 2-D spatial referencing object RI.

imshow(X,RX,map) displays the indexed image X with associated 2-D spatial referencing
object RX and colormap map.

imshow(gpuarrayIM, ___) displays the image contained in a gpuArray. This syntax
requires the Parallel Computing Toolbox.

Examples

Display Grayscale, RGB, Indexed, or Binary Image

Display a grayscale, RGB (truecolor), indexed or binary image using imshow. MATLAB®
includes a TIF file, named corn.tif, that contains three images: a grayscale image, an
indexed image, and a truecolor (RGB) image. This example creates a binary image from
the grayscale image.

Display a Grayscale Image

Read the grayscale image from the corn.tif file into the MATLAB workspace. The
grayscale version of the image is the third image in the file.

corn_gray = imread('corn.tif',3);

Display the grayscale image using imshow.

 imshow

1-2051

imshow(corn_gray)

Display an Indexed Image

Read the indexed image from the corn.tif file into the MATLAB workspace. The
indexed version of the image is the first image in the file.

[corn_indexed,map] = imread('corn.tif',1);

1 Functions — Alphabetical List

1-2052

Display the indexed image using imshow.

imshow(corn_indexed,map)

Display an RGB Image

Read the RGB image from the corn.tif file into the MATLAB workspace. The RGB
version of the image is the second image in the file.

 imshow

1-2053

[corn_rgb] = imread('corn.tif',2);

Display the RGB image using imshow.

imshow(corn_rgb)

1 Functions — Alphabetical List

1-2054

Display a Binary Image

Read the grayscale image from the corn.tif file into the MATLAB workspace and use
thresholding to convert it into a binary image. The grayscale version of the image is the
third image in the file.

[corn_gray] = imread('corn.tif',3);

Determine the mean value of pixels in the grayscale image.

meanIntensity = mean(corn_gray(:));

Create a binary image by thresholding, using the mean intensity value as the threshold.

corn_binary = corn_gray > meanIntensity;

Display the binary image using imshow.

imshow(corn_binary)

 imshow

1-2055

Display Image from File

Display an image stored in a file.

imshow('peppers.png');

1 Functions — Alphabetical List

1-2056

Change Colormap of Displayed Image

Read a sample indexed image, corn.tif, into the workspace, and then display it.

[X,map] = imread('corn.tif');
imshow(X,map)

 imshow

1-2057

Change the colormap for the image using the colormap function and specifying the
target axes as the first input argument. Use the original colormap without the red
component.

newmap = map;
newmap(:,1) = 0;
colormap(gca,newmap)

1 Functions — Alphabetical List

1-2058

Display Image Using Associated Spatial Referencing Object

Read image into the workspace.

I = imread('pout.tif');

 imshow

1-2059

Display the image. Note the axes limits reflect the size of the image.

figure; imshow(I)

Create a spatial referencing object associated with the image. Use the referencing object
to set the x- and y-axes limits in the world coordinate system.

RI = imref2d(size(I));
RI.XWorldLimits = [0 3];
RI.YWorldLimits = [2 5];

Display the image, specifying the spatial referencing object. Note the change to the x- and
y-axes limits.

figure; imshow(I,RI);

1 Functions — Alphabetical List

1-2060

Display Image on a GPU

Read image into a gpuArray.

X = gpuArray(imread('pout.tif'));

Display it.

figure; imshow(X)

Input Arguments
I — Input grayscale image
matrix

Input grayscale image, specified as a matrix. A grayscale image can be any numeric data
type.

 imshow

1-2061

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

RGB — Input truecolor image
m-by-n-by-3 array

Input truecolor image, specified as an m-by-n-by-3 array.

If you specify a truecolor image of data type single or double, then values should be in
the range [0, 1]. If pixel values are outside this range, then you can use the rescale
function to scale pixel values to the range [0, 1]. The 'DisplayRange' argument has no
effect when the input image is truecolor.
Data Types: single | double | uint8 | uint16

BW — Input binary image
matrix

Input binary image, specified as a matrix.
Data Types: logical

X — Indexed image
2-D array of real numeric values

Indexed image, specified as a 2-D array of real numeric values. The values in X are indices
into the colormap specified by map.
Data Types: single | double | uint8 | logical

map — Colormap
c-by-3 array

Colormap, specified as an c-by-3 array of type single or double in the range [0 1], or
a c-by-3 array of type uint8. Each row specifies an RGB color value.
Data Types: single | double | uint8

filename — File name
character vector

File name, specified as a character vector. The image must be readable by imread. The
imshow function displays the image, but does not store the image data in the MATLAB
workspace. If the file contains multiple images, imshow displays the first image in the file.

1 Functions — Alphabetical List

1-2062

Example: imshow('peppers.png')
Data Types: char

[low high] — Grayscale image display range
two-element vector

Grayscale image display range, specified as a two-element vector. For more information,
see the 'DisplayRange' name-value pair argument.
Example: [50 250]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

RI — 2-D spatial referencing object associated with the input image
imref2d object

2-D spatial referencing object associated with input image, specified as an imref2d
object.

RX — 2-D spatial referencing object associated with an indexed image
imref2d object

2-D spatial referencing object associated with an indexed image, specified as a imref2d
object.

gpuarrayIM — Image to be processed on a graphics processing unit (GPU)
gpuArray object

Image to be processed on a graphics processing unit (GPU), specified as a gpuArray.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imshow('board.tif','Border','tight')

Border — Figure window border space
'loose' (default) | 'tight'

 imshow

1-2063

Figure window border space, specified as the comma-separated pair consisting of
'Border' and either 'tight' or 'loose'. When set to 'loose', the figure window
includes space around the image in the figure. When set to 'tight', the figure window
does not include any space around the image in the figure.

If the image is very small or if the figure contains other objects besides an image and its
axes, imshow might use a border regardless of how this parameter is set.
Example: imshow('board.tif','Border','tight')
Data Types: char

Colormap — Colormap
c-by-3 matrix

Colormap, specified as the comma-separated pair consisting of 'Colormap' and a c-by-3
matrix. imshow uses this to set the colormap for the axes. Use this parameter to view
grayscale images in false color. If you specify an empty colormap ([]), then imshow
ignores this parameter.

Note Starting in R2016b, imshow changes the colormap for the axes that contains the
image instead of the figure.

Example: newmap = copper; imshow('board.tif','Colormap',newmap)
Data Types: double

DisplayRange — Grayscale image display range
two-element vector | []

Display range of a grayscale image, specified as a two-element vector of the form [low
high]. The imshow function displays the value low (and any value less than low) as
black, and it displays the value high (and any value greater than high) as white. Values
between low and high are displayed as intermediate shades of gray, using the default
number of gray levels.

If you specify an empty matrix ([]), then imshow uses a display range of [min(I(:))
max(I(:))]. In other words, the minimum value in I is black, and the maximum value is
white.

If you do not specify a display range, then imshow selects a default display range based
on the image data type.

1 Functions — Alphabetical List

1-2064

• If I is an integer type, then 'DisplayRange' defaults to the minimum and maximum
representable values for that integer class. For example, the default display range for
uint16 arrays is [0, 65535].

• If I is data type single or double, then the default display range is [0, 1].

Note Including the parameter name is optional, except when the image is specified by a
file name. The syntax imshow(I,[low high]) is equivalent to
imshow(I,'DisplayRange',[low high]). If you call imshow with a file name, then
you must specify the 'DisplayRange' parameter.

Example: h = imshow(I,'DisplayRange',[0 80]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

InitialMagnification — Initial magnification of image display
100 (default) | numeric scalar | 'fit'

Initial magnification of image display, specified as the comma-separated pair consisting of
'InitialMagnification' and a numeric scalar or 'fit'. If set to 100, then imshow
displays the image at 100% magnification (one screen pixel for each image pixel). If set to
'fit', then imshow scales the entire image to fit in the window.

Initially, imshow attempts to display the entire image at the specified magnification. If the
magnification value is so large that the image is too big to display on the screen, imshow
displays the image at the largest magnification that fits on the screen.

If the image is displayed in a figure with its 'WindowStyle' property set to 'docked',
then imshow displays the image at the largest magnification that fits in the figure.

Note: If you specify the axes position (using subplot or axes), imshow ignores any
initial magnification you might have specified and defaults to the 'fit' behavior.

When you use imshow with the 'Reduce' parameter, the initial magnification must be
'fit'.

In MATLAB Online™, 'InitialMagnification' is set to 'fit' and cannot be
changed.
Example: h = imshow(I,'InitialMagnification','fit');

 imshow

1-2065

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

Parent — Parent axes of image object
axes object

Parent axes of image object, specified as the comma-separated pair consisting of
'Parent' and an axes object. Use the 'Parent' name-value argument to build a UI that
gives you control of the figure and axes properties.

Reduce — Indicator for subsampling
true | false | 1 | 0

Indicator for subsampling image, specified as the comma-separated pair consisting of
'Reduce' and either true, false, 1, or 0. This argument is valid only when you use it
with the name of a TIFF file. Use the Reduce argument to display overviews of very large
images.
Data Types: logical

XData — X-axis limits of nondefault coordinate system
two-element vector

X-axis limits of nondefault coordinate system, specified as the comma-separated pair
consisting of 'XData' and a two-element vector. This argument establishes a nondefault
spatial coordinate system by specifying the image XData. The value can have more than
two elements, but imshow uses only the first and last elements.
Example: 'XData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

YData — Y-axis limits of nondefault coordinate system
two-element vector

Y-axis limits of nondefault coordinate system, specified as the comma-separated pair
consisting of 'YData' and a two-element vector. The value can have more than two
elements, but imshow uses only the first and last elements.
Example: 'YData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-2066

Output Arguments
himage — Image created by imshow
image object

Image created by imshow, specified as an image object.

Tips
• To change the colormap after you create the image, use the colormap command.

Specify the axes that contains the image as the first input argument and the colormap
you want as the second input argument. For an example, see “Change Colormap of
Displayed Image” on page 1-2057.

• You can display multiple images with different colormaps in the same figure using
imshow with the subplot function.

• If you have Image Processing Toolbox, then you can use the Image Viewer app as an
integrated environment for displaying images and performing common image
processing tasks.

• If you have Image Processing Toolbox, then you can use the iptsetpref function to
set toolbox preferences that modify the behavior of imshow.

• The imshow function is not supported when you start MATLAB with the -nojvm
option.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

 imshow

1-2067

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

See Also
image | imagesc | imfinfo | imread | imwrite | iptsetpref

Topics
“Image Types” (MATLAB)

Introduced before R2006a

1 Functions — Alphabetical List

1-2068

imshowpair
Compare differences between images

Syntax
obj = imshowpair(A,B)
obj = imshowpair(A,RA,B,RB)
obj = imshowpair(___ ,method)
obj = imshowpair(___ ,Name,Value)

Description
obj = imshowpair(A,B) creates a composite RGB image showing A and B overlaid in
different color bands. To choose another type of visualization of the two images, use the
method argument. If A and B are different sizes, imshowpair pads the smaller
dimensions with zeros on the bottom and right edges so that the two images are the same
size. By default, imshowpair scales the intensity values of A and B independently from
each other. imshowpair returns obj, an image object.

obj = imshowpair(A,RA,B,RB) displays the differences between images A and B,
using the spatial referencing information provided in RA and RB. RA and RB are spatial
referencing objects.

obj = imshowpair(___ ,method) uses the visualization method specified by method.

obj = imshowpair(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments, using any of the previous syntaxes.

Examples

Display Two Images That Differ by Rotation Offset

Display a pair of grayscale images with two different visualization methods, 'diff' and
'blend'.

 imshowpair

1-2069

Load an image into the workspace. Create a copy with a rotation offset applied.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

Display the difference of A and B.

imshowpair(A,B,'diff')

Display a blended overlay of A and B.

figure
imshowpair(A,B,'blend','Scaling','joint')

1 Functions — Alphabetical List

1-2070

Display Two Spatially Referenced Images with Different Brightness Ranges

Read an image. Create a copy and apply rotation and a brightness adjustment.

A = dicomread('CT-MONO2-16-ankle.dcm');
B = imrotate(A,10,'bicubic','crop');
B = B * 0.2;

In this example, we know that the resolution of images A and B is 0.2mm. Provide this
information using two spatial referencing objects.

RA = imref2d(size(A),0.2,0.2);
RB = imref2d(size(B),0.2,0.2);

Display the images with the default method ('falsecolor') and apply brightness
scaling independently to each image. Specify the axes that will be the parent of the image
object created by imshowpair.

 imshowpair

1-2071

figure;
hAx = axes;
imshowpair(A,RA,B,RB,'Scaling','independent','Parent',hAx);

1 Functions — Alphabetical List

1-2072

Input Arguments
A — Image to be displayed
grayscale image | truecolor image | binary image

Image to be displayed, specified as a grayscale, truecolor, or binary image.

B — Image to be displayed
grayscale image | truecolor image | binary image

Image to be displayed, specified as a grayscale, truecolor, or binary image.

RA — Spatial referencing information about an input image
spatial referencing object

Spatial referencing information about an input image, specified as spatial referencing
object, of class imref2d.

RB — Spatial referencing information about an input image
spatial referencing object

Spatial referencing information about an input image, specified as spatial referencing
object, of class imref2d.

method — Visualization method to display combined images
'falsecolor' (default) | 'blend' | 'diff' | 'montage'

Visualization method to display combined images, specified as one of the following values.

Value Description
'falsecolor' Creates a composite RGB image showing A and B

overlaid in different color bands. Gray regions in the
composite image show where the two images have the
same intensities. Magenta and green regions show
where the intensities are different. This is the default
method.

'blend' Overlays A and B using alpha blending.
'checkerboard' Creates an image with alternating rectangular regions

from A and B.

 imshowpair

1-2073

Value Description
'diff' Creates a difference image from A and B.
'montage' Places A and B next to each other in the same image.

Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','joint' scales the intensity values of A and B together as a single
data set.

ColorChannels — Output color channel for each input image
'green-magenta' (default) | [R G B] | 'red-cyan'

Output color channel for each input image, specified as one of the following values:

[R G B] A three element vector that specifies which image to
assign to the red, green, and blue channels. The R, G,
and B values must be 1 (for the first input image), 2 (for
the second input image), and 0 (for neither image).

'red-cyan' A shortcut for the vector [1 2 2], which is suitable for
red/cyan stereo anaglyphs.

'green-magenta' A shortcut for the vector [2 1 2], which is a high
contrast option, ideal for people with many kinds of
color blindness.

Parent — Parent of image object created by imshowpair
axes object

Parent of image object created by imshowpair, specified as an axes object.

Scaling — Intensity scaling option
'independent' (default) | 'joint' | 'none'

Intensity scaling option, specified as one of the following values:

1 Functions — Alphabetical List

1-2074

'independent' Scales the intensity values of A and B independently
from each other.

'joint' Scales the intensity values in the images jointly as if
they were together in the same image. This option is
useful when you want to visualize registrations of
monomodal images, where one image contains fill
values that are outside the dynamic range of the other
image.

'none' No additional scaling.

Data Types: char | string

Output Arguments
obj — Visualization of two images
image object

Visualization of two images, returned as an image object.

Tips
• Use imfuse to create composite visualizations that you can save to a file. Use

imshowpair to display composite visualizations to the screen.

See Also
imfuse | imregister | imshow | imtransform | montage

Introduced in R2012a

 imshowpair

1-2075

imsplit
Split multichannel image into its individual channels

Syntax
[c1,c2,c3,...,ck] = imsplit(I)

Description
[c1,c2,c3,...,ck] = imsplit(I) returns a set of k images representing the
individual channels in the k-channel image I.

Examples

Split RGB Image into Its Component Channels

Read an RGB image into the workspace and display the image.

I = imread('peppers.png');
imshow(I)

1 Functions — Alphabetical List

1-2076

Split the image into its component red, green, and blue channels.

[r,g,b] = imsplit(I);

Display the three color channels as a montage. Red peppers have a signal predominantly
in the red channel. Yellow and green peppers have a signal in both the red and green
channels. White objects, such as the garlic in the foreground, have a strong signal in all
three channels.

montage({r,g,b},'Size',[1 3])

 imsplit

1-2077

Split Image in HSV Colorspace into Its Component Channels

Read an RGB image into the workspace and display the image.

rgbImage = imread('peppers.png');
imshow(rgbImage)

1 Functions — Alphabetical List

1-2078

Convert the RGB image to the HSV colorspace by using the rgb2hsv function.

hsvImage = rgb2hsv(rgbImage);

Split the HSV image into its compotent hue, saturation, and value channels.

[h,s,v] = imsplit(hsvImage);

Display the three channels as a montage.

montage({h,s,v},'Size',[1 3])

 imsplit

1-2079

Input Arguments
I — Input image
m-by-n-by-k array

Input image, specified as an m-by-n-by-k numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
c1,c2,c3,...,ck — Output images
numeric matrix for each channel

Output images, returned as k individual numeric matrices, where k is the number of
channels in the input image. The output images are the same class as the input image.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-2080

See Also
cat | rgb2gray

Topics
“Display Separated Color Channels of an RGB Image”
“Convert from HSV to RGB Color Space”

Introduced in R2018b

 imsplit

1-2081

imsubtract
Subtract one image from another or subtract constant from image

Syntax
Z = imsubtract(X,Y)

Description
Z = imsubtract(X,Y) subtracts each element in array Y from the corresponding
element in array X and returns the difference in the corresponding element of the output
array Z.

If X is an integer array, elements of the output that exceed the range of the integer type
are truncated, and fractional values are rounded.

Examples

Subtract Two uint8 Arrays

This example shows how to subtract two uint8 arrays. Note that negative results are
rounded to 0.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imsubtract(X,Y)

Z = 2x3 uint8 matrix

 205 0 25
 0 175 50

1 Functions — Alphabetical List

1-2082

Subtract Image Background

Read a grayscale image into the workspace.

I = imread('rice.png');

Estimate the background.

background = imopen(I,strel('disk',15));

Subtract the background from the image.

J = imsubtract(I,background);

Display the original image and the processed image.

imshow(I)

figure
imshow(J)

 imsubtract

1-2083

Subtract a Constant from an Image

Read an image into the workspace.

I = imread('rice.png');

Subtract a constant value from the image.

J = imsubtract(I,50);

Display the original image and the result.

imshow(I)

1 Functions — Alphabetical List

1-2084

figure
imshow(J)

 imsubtract

1-2085

Input Arguments
X — First array
real, nonsparse, numeric or logical array

First array (minuend), specified as a real, nonsparse, numeric or logical array of any
dimension.

Y — Second array
real, nonsparse, numeric or logical array

Second array (subtrahend) to be subtracted from X, specified as a real, nonsparse,
numeric or logical array. Y either has the same size and class as X, or Y is a scalar of type
double.

1 Functions — Alphabetical List

1-2086

Output Arguments
Z — Difference
numeric array

Difference, returned as a numeric array of the same size as X. Z is the same class as X
unless X is logical, in which case Z is data type double. If X is an integer array, elements
of the output that exceed the range of the integer type are truncated, and fractional
values are rounded.

See Also
imabsdiff | imadd | imcomplement | imdivide | imlincomb | immultiply

Introduced before R2006a

 imsubtract

1-2087

imtool
Open Image Viewer app

The Image Viewer presents an integrated environment for displaying images and
performing common image processing tasks.

The Image Viewer provides all the image display capabilities of imshow, which optimizes
figure, axes, and image object property settings for image display. The Image Viewer also
provides access to several tools for navigating and exploring images, such as the Pixel
Region tool, Image Information tool, and the Adjust Contrast tool.

Syntax
imtool
imtool(I)
imtool(I,range)
imtool(RGB)
imtool(BW)
imtool(X,cmap)
imtool(filename)
imtool(___ ,Name,Value)
hfigure = imtool(___)
imtool close all

Description
imtool opens the Image Viewer app in an empty state. Use the File menu options Open
or Import from Workspace to choose an image for display.

imtool(I) displays the grayscale image I in the Image Viewer, using the default display
range of the image data type.

imtool(I,range) displays the grayscale image I in the Image Viewer, specifying the
display range as range. Pixel values outside the display range are clipped to black or
white. Pixel values within the display range are displayed as intermediate shades of gray.
The Image Viewer uses the default number of gray levels.

1 Functions — Alphabetical List

1-2088

imtool(RGB) displays the truecolor image RGB in the Image Viewer.

imtool(BW) displays the binary image BW in the Image Viewer. Pixel values of 0 display
as black; pixel values of 1 display as white.

imtool(X,cmap) displays the indexed image X with colormap cmap in the Image Viewer.

imtool(filename) displays the image contained in the graphics file filename in the
Image Viewer.

imtool(___ ,Name,Value) displays the image, specifying parameters and
corresponding values that control various aspects of the image display. Parameter names
can be abbreviated, and case does not matter.

hfigure = imtool(___) returns hfigure, a handle to the figure created by the
Image Viewer.

imtool close all closes all open Image Viewers.

Examples

Display Different Types of Images
Display a color image from a file.

imtool('board.tif')

Display an indexed image.

[X,map] = imread('trees.tif');
imtool(X,map)

Display a grayscale image.

I = imread('cameraman.tif');
imtool(I)

Display a grayscale image, adjusting the display range.

h = imtool(I,[0 80]);
close(h)

 imtool

1-2089

Input Arguments
I — 2-D grayscale image
m-by-n numeric matrix

2-D grayscale image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

range — Display range
2-element numeric vector | []

Display range of the grayscale image I, specified as one of these values.

Value Description
[low high] Image Viewer displays pixels with the value low (and any value

less than low) as black. Image Viewer displays pixels with the
value high (and any value greater than high) as white.

[] Image Viewer automatically sets the display range to
[min(I(:)) max(I(:))]. The minimum value in I is displayed
as black, and the maximum value is displayed as white.

RGB — 2-D RGB image
m-by-n-by-3 numeric matrix

2-D RGB image, specified as an m-by-n-by-3 numeric matrix.
Data Types: single | double | uint8 | uint16

BW — 2-D binary image
m-by-n logical matrix

2-D binary image, specified as an m-by-n logical matrix.
Data Types: logical

X — 2-D indexed image
m-by-n numeric matrix

2-D indexed image, specified as an m-by-n numeric matrix.
Data Types: single | double | uint8 | logical

1 Functions — Alphabetical List

1-2090

cmap — Color map
c-by-3 numeric matrix

Color map associated with indexed image X, specified as a c-by-3 numeric matrix
containing the RGB values of c colors.
Data Types: single | double | int16 | uint8 | uint16

filename — File name
string scalar | character vector

File name of the graphics file containing the image, specified as a character vector. The
file must contain an image that can be read by imread or dicomread or a reduced
resolution dataset (R-Set) created by rsetwrite. If the file contains multiple images, the
first one is displayed. The file must be in the current directory or on the MATLAB path.
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: imtool(I,'Colormap',jet) displays the grayscale image I using the jet
colormap.

Colormap — Color map
v-by-3 numeric matrix

Color map, specified as the comma-separated pair consisting of 'Colormap' and a v-by-3
numeric matrix. You can also create a colormap matrix using a predefined colormap
function, such as parula or jet.
Example: 'Colormap',repmat([1:256]',1,3);
Example: 'Colormap',jet
Example: 'Colormap',parula(128)

DisplayRange — Display range
2-element vector

 imtool

1-2091

Display range, specified as the comma-separated pair consisting of 'DisplayRange' and
a 2-element vector of the form [low high].

Note Including the parameter name is optional, except when the image is specified by a
filename. The syntax imtool(I,[low high]) is equivalent to
imtool(I,'DisplayRange',[low high]). However, the 'DisplayRange'
parameter must be specified when calling imtool with a filename, as in the syntax
imtool(filename,'DisplayRange',[low high]).

InitialMagnification — Initial magnification
'adaptive' | 'fit' | numeric scalar

Initial magnification, specified as the comma-separated pair consisting of
'InitialMagnification' and one of these values.

Parameter Value
'adaptive' The entire image is visible on initial display. If the image is too

large to display on the screen, the Image Viewer displays the
image at the largest magnification that fits on the screen.

'fit' The Image Viewer scales the entire image to fit in the window.
numeric scalar The Image Viewer scales the entire image as a percentage of the

original image size. For example, if you specify 100, the Image
Viewer displays the image at 100% magnification (one screen
pixel for each image pixel).

Note When the image aspect ratio is such that less than one pixel
would be displayed in either dimension at the requested
magnification, the Image Viewer issues a warning and displays
the image at 100%.

By default, the initial magnification parameter is set to the value returned by
iptgetpref('ImtoolInitialMagnification').

1 Functions — Alphabetical List

1-2092

Output Arguments
hfigure — Handle to Image Viewer
handle

Handle to Image Viewer figure, returned as a handle.

Definitions

Large Data Support
To view very large TIFF or NITF images that will not fit into memory, you can use
rsetwrite to create a reduced resolution dataset (R-Set) viewable in the Image Viewer.
R-Sets can also improve performance of the Image Viewer for large images that fit in
memory.

The following tools can be used with an R-Set: Overview, Zoom, Pan, Image Information,
and Distance. Other tools, however, will not work with an R-Set. You cannot use the Pixel
Region, Adjust Contrast, Crop Image, and Window/Level tools. Please note that the Pixel
Information tool displays only the x and y coordinates of a pixel and not the associated
intensity, index, or RGB values.

Related Toolbox Preferences
You can use the Image Processing Preferences dialog box to set toolbox preferences that
modify the behavior of the Image Viewer. To access the dialog, select File > Preferences
in the MATLAB desktop or Image Viewer menu. You can also set preferences
programmatically with iptsetpref:

Preference Description
'ImtoolInitialMagnificat
ion'

Controls the initial magnification for image display. To override
this toolbox preference, specify the 'InitialMagnification'
parameter when you call imtool, as follows:

imtool(...,'InitialMagnification',initial_mag)

 imtool

1-2093

Preference Description
'ImtoolStartWithOverview
'

Controls whether the Overview tool opens automatically when you
open an image using the Image Viewer. Possible values:

• true — Overview tool opens when you open an image.
• false — Overview tool does not open when you open an

image. This is the default behavior.

For more information about these preferences, see iptprefs.

Tips
• The Image Viewer provides all the image display capabilities of imshow but also

provides access to several other tools for navigating and exploring images, such as the
Pixel Region tool, Image Information tool, and the Adjust Contrast tool. The Image
Viewer presents an integrated environment for displaying images and performing
some common image processing tasks.

• For grayscale images having integer types, the default display range is
[intmin(class(I)) intmax(class(I))].

For grayscale images of class single or double, the default display range is [0 1].
If the data range of a single or double image is much larger or smaller than the
default display range, you might need to experiment with setting the display range to
see features in the image that would not be visible using the default display range.

• You can access the Image Viewer through the Apps tab. Navigate to the Image
Processing and Computer Vision group and select Image Viewer.

• You can close a specific Image Viewer specified by the handle hfigure, by using the
command close(hfigure).

See Also
imageinfo | imcontrast | imoverview | impixelregion | imshow | iptprefs

Introduced before R2006a

1 Functions — Alphabetical List

1-2094

imtophat
Top-hat filtering

Syntax
J = imtophat(I,SE)
J = imtophat(I,nhood)

Description
J = imtophat(I,SE) performs morphological top-hat filtering on the grayscale or
binary image I, returning the filtered image, J. Top-hat filtering computes the
morphological opening of the image (using imopen) and then subtracts the result from
the original image. SE is a single structuring element object returned by the strel or
offsetstrel functions.

You optionally can perform the top-hat filtering using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = imtophat(I,nhood) top-hat filters the image I, where nhood is a matrix of 0s and
1s that specifies the structuring element neighborhood. This is equivalent to the syntax
imtophat(I,strel(nhood)). The imtophat function determines the center element
of the neighborhood by floor((size(nhood)+1)/2).

Examples

Use Top-hat Filtering to Correct Uneven Illumination

This example shows how to use top-hat filtering with a disk-shaped structuring element to
remove uneven background illumination from an image with a dark background.

Read an image and display it.

 imtophat

1-2095

original = imread('rice.png');
imshow(original)

Create the structuring element.

se = strel('disk',12);

Perform the top-hat filtering and display the image.

tophatFiltered = imtophat(original,se);
figure
imshow(tophatFiltered)

1 Functions — Alphabetical List

1-2096

Use imadjust to improve the visibility of the result.

contrastAdjusted = imadjust(tophatFiltered);
figure
imshow(contrastAdjusted)

 imtophat

1-2097

Use Top-Hat Filtering to Correct Uneven Illumination on the GPU

You can use top-hat filtering to correct uneven illumination when the background is dark.
This example uses top-hat filtering with a disk-shaped structuring element to remove the
uneven background illumination from an image.

Read an image and display it.

original = imread('rice.png');
figure, imshow(original)

Create the structuring element.

se = strel('disk',12);

Perform the top-hat filtering and display the image. Note how the example passes the
image to the gpuArray function before passing it to the imtophat function.

1 Functions — Alphabetical List

1-2098

tophatFiltered = imtophat(gpuArray(original),se);
figure, imshow(tophatFiltered)

Use imadjust to improve the visibility of the result. The gather function is used to
retrieve the contents of the gpuArray from the GPU.

contrastAdjusted = imadjust(gather(tophatFiltered));
figure, imshow(contrastAdjusted)

Input Arguments
I — Input image
grayscale image | binary image | gpuArray

Input image, specified as a grayscale image or binary image. I can have any dimension,
and must be real and nonsparse.

To perform the top-hat filtering using a GPU, specify I as a gpuArray that contains an
image of type uint8 or logical.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the
image I is data type logical, the structuring element must be flat.

If you perform the top-hat filtering using a GPU, then SE must be flat and two-
dimensional.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

 imtophat

1-2099

Output Arguments
J — Top-hat filtered image
grayscale image | binary image | gpuArray

Top-hat filtered image, returned as a grayscale image or binary image. J has the same
class as input image I.

If the filtering is performed using a GPU, then J is returned as a gpuArray that contains
a grayscale or binary image of the same class as I.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imtophat supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, imtophat
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, the image input argument, I, must be 2-D or 3-D and the
structuring element input argument, SE, must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical and the structuring element must
be flat and two-dimensional.

1 Functions — Alphabetical List

1-2100

For more information, see “Image Processing on a GPU”.

See Also
Functions
imbothat | imclose | imdilate | imerode | imopen

Objects
offsetstrel | strel

Introduced before R2006a

 imtophat

1-2101

imtransform
Apply 2-D spatial transformation to image

Note imtransform is not recommended. Use imwarp instead.

Syntax
B = imtransform(A,tform)
B = imtransform(A,tform,interp)
B = imtransform(___ ,Name,Value)
[B,xdata,ydata] = imtransform(___)

Description
B = imtransform(A,tform) transforms image A according to the 2-D spatial
transformation defined by tform, and returns the transformed image, B.

If A is a color image, then imtransform applies the same 2-D transformation to each
color channel. Likewise, if A is a volume or image sequence with three or more
dimensions, then imtransform applies the same 2-D transformation to all 2-D planes
along the higher dimensions. For arbitrary-dimensional array transformations, use
tformarray.

B = imtransform(A,tform,interp) specifies the form of interpolation to use.

B = imtransform(___ ,Name,Value) uses name-value pairs to control various
aspects of the spatial transformation.

[B,xdata,ydata] = imtransform(___) also returns the extent of the output image
B in the output X-Y space. By default, imtransform calculates xdata and ydata
automatically so that B contains the entire transformed image A. However, you can
override this automatic calculation by specifying values for the XData and YData name-
value pair input arguments.

1 Functions — Alphabetical List

1-2102

Examples
Simple Transformation
Apply a horizontal shear to a grayscale image.

I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(J)

Projective Transformation
Map a square to a quadrilateral with a projective transformation. Set up an input
coordinate system so that the input image fills the unit square with vertices (0 0), (1 0), (1
1), (0 1).

I = imread('cameraman.tif');
udata = [0 1]; vdata = [0 1];

Transform to a quadrilateral with vertices (-4 2), (-8 3), (-3 -5), (6 3).

tform = maketform('projective',[0 0; 1 0; 1 1; 0 1],...
 [-4 2; -8 -3; -3 -5; 6 3]);

Fill with gray and use bicubic interpolation. Make the output size the same as the input
size.

[B,xdata,ydata] = imtransform(I,tform,'bicubic', ...
 'udata',udata,...

 imtransform

1-2103

 'vdata',vdata,...
 'size',size(I),...
 'fill',128);
subplot(1,2,1); imshow(I,'XData',udata,'YData',vdata)
subplot(1,2,2); imshow(B,'XData',xdata,'YData',ydata)

Image Registration
Read an aerial photo into the MATLAB workspace and view it.

unregistered = imread('westconcordaerial.png');
figure
imshow(unregistered)

1 Functions — Alphabetical List

1-2104

Read an orthophoto into the MATLAB workspace and view it.

figure
imshow('westconcordorthophoto.png')

Load control points that were previously picked.

load westconcordpoints

Create a transformation structure for a projective transformation using the points.

t_concord = cp2tform(movingPoints,fixedPoints,'projective');

Get the width and height of the orthophoto, perform the transformation, and view the
result.

info = imfinfo('westconcordorthophoto.png');

registered = imtransform(unregistered,t_concord,...
 'XData',[1 info.Width],'YData',[1 info.Height]);
figure
imshow(registered)

 imtransform

1-2105

Input Arguments
A — Image to be transformed
numeric array | logical array

Image to be transformed, specified as a numeric or logical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

tform — Transformation structure
struct

Transformation structure, specified as a struct, such as returned by maketform or
cp2tform. The first dimension of the transformation is the horizontal or x-coordinate,
and the second dimension is the vertical or y-coordinate. This convention is the reverse of
the array subscripting convention in MATLAB.

interp — Interpolation method
'bilinear' (default) | 'nearest' | 'bicubic' | resampler structure

Interpolation method, specified as one of these values.

1 Functions — Alphabetical List

1-2106

Interpolation Method Description
'bilinear' Linear interpolation
'nearest' Nearest-neighbor interpolation—the output pixel is assigned

the value of the pixel that the point falls within. No other
pixels are considered.

'bicubic' Cubic interpolation
resampler structure resampler structure returned by makeresampler. This

option allows more control over how imtransform performs
resampling.

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = imtransform(A,T,'FillValues',128)

UData, VData — Spatial extent in U-V input space
2-element numeric vector

Spatial extent of input image A in the U-V input space, specified as 2-element numeric
vectors. The values of UData and VData represent coordinates in the world coordinate
system. The two elements of UData give the u-coordinates (horizontal) of the first and last
columns of A, respectively. The two elements of VData give the v-coordinates (vertical) of
the first and last rows of A.

By default, the spatial extent of A in the U-V space is the same as the image extent in
intrinsic coordinates. In other words, the default value of UData is [1 size(A,2)] and
the default value of VData is [1 size(A,1)].

XData, YData — Spatial extent in X-Y output space
2-element numeric vector

Spatial extent of transformed image B in the X-Y input space, specified as 2-element
numeric vectors. The values of XData and YData represent coordinates in the world

 imtransform

1-2107

coordinate system. The two elements of XData give the x-coordinates (horizontal) of the
first and last columns of B, respectively. The two elements of YData give the y-coordinates
(vertical) of the first and last rows of B.

If you do not specify XData and YData, then imtransform estimates values that contain
the entire transformed output image. To determine these values, imtransform uses the
findbounds function.

XYScale — Size of pixels in X-Y output space
numeric scalar | 2-element numeric vector

Size of pixels in X-Y output space, specified as a numeric scalar or 2-element numeric
vector. If XYScale is a scalar, then output pixels are square and XYScale specifies the
side length. Otherwise, the two elements of XYScale specify the width and height of each
output pixel in X-Y space, respectively.

The default value of XYScale depends on whether you specify Size:

• If you specify Size, then imtransform calculates XYScale from Size, XData, and
YData.

• If you do not specify Size, then imtransform uses the scale of the input pixels for
XYScale, except in cases where an excessively large output image would result.

Note In cases where preserving the scale of the input image would result in an
excessively large output image, the imtransform function automatically increases the
value of XYScale. To ensure that the output pixel scale matches the input pixel scale,
specify the XYScale parameter. For example, call imtransform as shown in the
following syntax:

B = imtransform(A,T,'XYScale',1)

Size — Size of transformed image
2-element vector of positive integers

Size of transformed image B, specified as a 2-element vector of positive integers. The two
elements of Size specify the number of rows and columns of the output image B,
respectively. For higher dimensions, imtransform takes the size of B directly from the
size of input image A. Thus, size(B,k) equals size(A,k) for k > 2.

1 Functions — Alphabetical List

1-2108

If you do not specify Size, then imtransform derives this value from XData, YData, and
XYScale.

FillValues — Fill value
numeric scalar | numeric array

Fill value used for output pixels outside the input image boundaries, specified as the
comma-separated pair consisting of 'FillValues' and a numeric scalar or numeric
array. Fill values are used for output pixels when the corresponding inverse transformed
location in the input image is completely outside the input image boundaries.

• If the input image A is 2-D, then FillValues must be a scalar.
• If A is 3-D or N-D, then FillValues can be an array whose size satisfies the following

constraint: size(FillValues,k) must equal either size(A,k+2) or 1.

For example, if A is a uint8 RGB image that is 200-by-200-by-3, then possibilities for
'FillValues' include the following values.

Value Fill
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

For a second example, if A is 4-D with size 200-by-200-by-3-by-10, then you can specify
'FillValues' as a scalar, 1-by-10 vector, 3-by-1 vector, or 3-by-10 matrix.

Output Arguments
B — Transformed image
numeric array | logical array

Transformed image, returned as a numeric or logical array of the same dimensionality as
the input image A.

 imtransform

1-2109

xdata — Horizontal extent in X-Y output space
2-element numeric vector

Horizontal extent of the transformed image B in X-Y output space, returned as a 2-element
numeric vector. The two elements of xdata give the x-coordinates (horizontal) of the first
and last columns of B in the world coordinate system, respectively.

Note The first element of xdata always equals the first element of the XData argument,
if specified. However, sometimes the second element of xdata does not exactly equal the
second element of XData. The values differ either because of the need for an integer
number of rows and columns, or because you specified values for XData, YData,
XYScale, and Size that are not entirely consistent.

ydata — Vertical extent in X-Y output space
2-element numeric vector

Vertical extent of the transformed image B in X-Y output space, returned as a 2-element
numeric vector. The two elements of ydata give the y-coordinates (vertical) of the first
and last rows of B in the world coordinate system, respectively.

Note The first element of ydata always equals the first element of the YData argument,
if specified. However, sometimes the second element of ydata does not exactly equal the
second element of YData. The values differ either because of the need for an integer
number of rows and columns, or because you specified values for XData, YData,
XYScale, and Size that are not entirely consistent.

Tips
• Image Registration. The imtransform function automatically shifts the origin of

your output image to make as much of the transformed image visible as possible. If
you use imtransform to do image registration, the syntax B =
imtransform(A,tform) can produce unexpected results. To control the spatial
location of the output image, set XData and YData explicitly.

• Pure Translation. Calling the imtransform function with a purely translational
transformation results in an output image that is exactly like the input image unless
you specify XData and YData values in your call to imtransform. For example, if you

1 Functions — Alphabetical List

1-2110

want the output to be the same size as the input revealing the translation relative to
the input image, call imtransform as shown in the following syntax:

B = imtransform(A,T,'XData',[1 size(A,2)],...
 'YData',[1 size(A,1)])

For more information about this topic, see “Perform Simple 2-D Translation
Transformation”.

• Transformation Speed. If you do not specify the output-space location for B using
XData and YData, then imtransform estimates the location automatically using the
function findbounds. You can use findbounds as a quick forward-mapping option
for some commonly used transformations, such as affine or projective. For
transformations that do not have a forward mapping, such as polynomial
transformations computed by fitgeotrans, findbounds can take much longer. If
you can specify XData and YData directly for such transformations, then
imtransform may run noticeably faster.

• Clipping. The automatic estimate of XData and YData using findbounds sometimes
clips the output image. To avoid clipping, set XData and YData directly.

• Arbitrary Dimensional Transformations. Use a 2-D transformation for tform when
using imtransform. For arbitrary-dimensional array transformations, see
tformarray.

See Also
checkerboard | cp2tform | imresize | imrotate | makeresampler | maketform |
tformarray

Topics
“Perform Simple 2-D Translation Transformation”
Exploring Slices from a 3-Dimensional MRI Data Set
Padding and Shearing an Image Simultaneously

Introduced before R2006a

 imtransform

1-2111

imtranslate
Translate image

Syntax
B = imtranslate(A,translation)
[B,RB] = imtranslate(A,RA,translation)
___ = imtranslate(___ ,method)
___ = imtranslate(___ ,Name,Value)

Description
B = imtranslate(A,translation) translates image A by the translation vector
specified in translation. If A has more than two dimensions and translation is a
two-element vector, imtranslate applies a 2-D translation to A, one plane at a time.

[B,RB] = imtranslate(A,RA,translation) translates the spatially referenced
image A with its associated spatial referencing object RA. The translation vector,
translation, is in the world coordinate system. The function returns the translated
spatially referenced image B, with its associated spatial referencing object, RB.

___ = imtranslate(___ ,method) translates image A, using the interpolation
method specified by method.

___ = imtranslate(___ ,Name,Value) translates the input image using name-value
pairs to control various aspects of the translation.

Examples

Translate 2-D Image

Read image into the workspace.

I = imread('pout.tif');

1 Functions — Alphabetical List

1-2112

Translate the image.

J = imtranslate(I,[25.3, -10.1],'FillValues',255);

Display the original image and the translated image.

figure
imshow(I);
title('Original Image');
set(gca,'Visible','on');

figure
imshow(J);
title('Translated Image');
set(gca,'Visible','on');

 imtranslate

1-2113

Translate 2-D Image and View Entire Translated Image

Read image into the workspace.

I = imread('pout.tif');

Translate the image. Use the OutputView parameter to specify that you want the entire
translated image to be visible.

J = imtranslate(I,[25.3, -10.1],'FillValues',255,'OutputView','full');

Display the original image and the translated image.

figure
imshow(I);

1 Functions — Alphabetical List

1-2114

title('Original Image');
set(gca,'Visible','on');

figure
imshow(J);
title('Full Translated Image');
set(gca,'Visible','on');

 imtranslate

1-2115

Translate 3-D MRI Dataset

Load MRI data into the workspace and display it.

s = load('mri');
mriVolume = squeeze(s.D);
sizeIn = size(mriVolume);
hFigOriginal = figure;
hAxOriginal = axes;
slice(double(mriVolume),sizeIn(2)/2,sizeIn(1)/2,sizeIn(3)/2);
grid on, shading interp, colormap gray

1 Functions — Alphabetical List

1-2116

Apply a translation in the X,Y direction.

mriVolumeTranslated = imtranslate(mriVolume,[40,30,0],'OutputView','full');

Visualize the translation by viewing an axial slice plane taken through center of the
volume. Note the shift in the X and Y directions.

sliceIndex = round(sizeIn(3)/2);
axialSliceOriginal = mriVolume(:,:,sliceIndex);
axialSliceTranslated = mriVolumeTranslated(:,:,sliceIndex);

imshow(axialSliceOriginal);

 imtranslate

1-2117

imshow(axialSliceTranslated);

Input Arguments
A — Image to be translated
nonsparse, numeric array | logical array

1 Functions — Alphabetical List

1-2118

Image to be translated, specified as a nonsparse, numeric array of any class, except
uint64 and int64, or a logical array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

RA — Spatial referencing information associated with the input image A
imref2d or imref3d spatial referencing object

Spatial referencing information associated with the input image A, specified as an
imref2d or imref3d spatial referencing object.

translation — Translation vector
two-element or three-element, nonsparse, real-valued, numeric vector

Translation vector, specified as a two-element or three-element, nonsparse, real-valued,
numeric vector, such as [Tx Ty], for 2-D inputs, and [Tx Ty Tz], for 3-D inputs. Values
can be fractional.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

method — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified by one of the following values:

Value Description
'cubic' Cubic interpolation.

Note Cubic interpolation can produce pixel values outside the
original range.

'linear' Linear interpolation
'nearest' Nearest-neighbor interpolation; the output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

Data Types: char | string

 imtranslate

1-2119

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: mriVolumeTranslated = imtranslate(mriVolume,
[40,30,0],'OutputView','full');

OutputView — Output world limits
'same' (default) | 'full'

Output world limits, specified as the comma-separated pair consisting of 'OutputView'
and one of the following values:

Value Description
'same' Output world limits are the same as the input image.
'full' Output world limits are the bounding rectangle that includes

both the input image and the translated output image.

Data Types: char | string

FillValues — Fill values used for output pixels outside the input image
0 (default) | numeric array

Fill values used for output pixels outside the input image, specified as the comma-
separated pair consisting of 'FillValues' and a numeric array containing one or
several fill values. imtranslate uses fill values for output pixels when the corresponding
inverse transformed location in the input image is completely outside the input image
boundaries.

• If A is 2-D,FillValues must be a scalar.
• If A is 3-D and translation is a three-element vector, FillValues must be a scalar.
• If A is N-D and translation is a two-element vector, FillValues can be either

scalar or an array whose size matches dimensions 3-to-N of A. For example, if A is a
uint8 RGB image that is 200-by-200-by-3, FillValues can be a scalar or a 3-by-1
array.

• If A is 4-D, FillValues can be a scalar or an array. For example, if A is 200-by-200-
by-3-by-10, then FillValues can be a scalar or a 3-by-10 array.

1 Functions — Alphabetical List

1-2120

Some example fill values:

Fill Value Description
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
B — Translated image
nonsparse, real-valued, numeric array | logical array

Translated image, returned as a nonsparse, real-valued, numeric array or logical array.
The class of B is the same as the class of A.

RB — Spatial referencing information associated with the output image
imref2d or imref3d spatial referencing object

Spatial referencing information associated with the output image, returned as an
imref2d or imref3d spatial referencing object.

Tips
• imtranslate is optimized for integrally valued translation vectors.
• When 'OutputView' is 'full' and translation is a fractional number of pixels,

imtranslate expands the world limits of the output spatial referencing object to the
nearest full pixel increment. imtranslate does this so that it contains both the
original and translated images at the same resolution as the input image. The
additional image extent in each is added on one side of the image, in the direction that
the translation vector points. For example, when translation is fractional and
positive in both X and Y, then imtranslate expands the maximum of XWorldLimits

 imtranslate

1-2121

and YWorldLimits to enclose the 'full' bounding rectangle at the resolution of the
input image.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imtranslate supports the generation of C code (requires MATLAB Coder). Note that
if you choose the generic MATLAB Host Computer target platform, imtranslate
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• The function supports only 2-D translation vectors, translation. 3-D translations are
not supported.

See Also
imref2d | imref3d | imresize | imrotate | imwarp

Topics
“Translate an Image using imtranslate Function”

Introduced in R2014a

1 Functions — Alphabetical List

1-2122

imwarp
Apply geometric transformation to image

Syntax
B = imwarp(A,tform)
B = imwarp(A,D)
[B,RB] = imwarp(A,RA,tform)
B = imwarp(___ ,interp)
[B,RB] = imwarp(___ ,Name,Value)

Description
B = imwarp(A,tform) transforms the image A according to the geometric
transformation defined by tform, which is a geometric transformation object. B is the
transformed image.

B = imwarp(A,D) transforms the input image A according to the displacement field
defined by D.

[B,RB] = imwarp(A,RA,tform) transforms the spatially referenced image, specified
by the image data A and the associated spatial referencing object RA. The output is a
spatially referenced image specified by the image data B and the associated spatial
referencing object RB.

B = imwarp(___ ,interp) specifies the form of interpolation to use.

[B,RB] = imwarp(___ ,Name,Value) specifies parameters that control various
aspects of the geometric transformation. Parameter names can be abbreviated, and case
does not matter.

Examples

 imwarp

1-2123

Apply Horizontal Shear to Image

Read grayscale image into workspace and display it.

I = imread('cameraman.tif');
imshow(I)

Create a 2-D geometric transformation object.

tform = affine2d([1 0 0; .5 1 0; 0 0 1])

tform =
 affine2d with properties:

 Dimensionality: 2
 T: [3x3 double]

Apply the transformation to the image.

1 Functions — Alphabetical List

1-2124

J = imwarp(I,tform);
figure
imshow(J)

Apply Rotation Transformation to 3-D MRI Dataset

Read 3-D MRI data into the workspace and visualize it.

s = load('mri');
mriVolume = squeeze(s.D);
sizeIn = size(mriVolume);
hFigOriginal = figure;
hAxOriginal = axes;
slice(double(mriVolume),sizeIn(2)/2,sizeIn(1)/2,sizeIn(3)/2);
grid on, shading interp, colormap gray

 imwarp

1-2125

Create a 3-D geometric transformation object. First create a transformation matrix that
rotates the image around the y-axis. Then pass the matrix to the affine3d object
constructor.

 theta = pi/8;
 t = [cos(theta) 0 -sin(theta) 0
 0 1 0 0
 sin(theta) 0 cos(theta) 0
 0 0 0 1]

t = 4×4

 0.9239 0 -0.3827 0
 0 1.0000 0 0

1 Functions — Alphabetical List

1-2126

 0.3827 0 0.9239 0
 0 0 0 1.0000

tform = affine3d(t)

tform =
 affine3d with properties:

 Dimensionality: 3
 T: [4x4 double]

Apply the transformation to the image.

mriVolumeRotated = imwarp(mriVolume,tform);

Visualize three slice planes through the center of the transformed volumes.

sizeOut = size(mriVolumeRotated);
hFigRotated = figure;
hAxRotated = axes;
slice(double(mriVolumeRotated),sizeOut(2)/2,sizeOut(1)/2,sizeOut(3)/2);
grid on, shading interp, colormap gray

 imwarp

1-2127

Link views of both axes together.

linkprop([hAxOriginal,hAxRotated],'View');

1 Functions — Alphabetical List

1-2128

 imwarp

1-2129

Set view to see effect of rotation.

set(hAxRotated,'View',[-3.5 20.0])

1 Functions — Alphabetical List

1-2130

 imwarp

1-2131

Input Arguments
A — Image to be transformed
nonsparse, real-valued array

Image to be transformed, specified as a nonsparse, real-valued array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

tform — 2-D or 3-D geometric transformation to perform
geometric transformation object

1 Functions — Alphabetical List

1-2132

2-D or 3-D geometric transformation to perform, specified as a geometric transformation
object. There are three types of geometric transformation objects: affine2d,
projective2d or affine3d.

• If tform is 2-D and ndims(A) > 2, such as for a truecolor image, imwarp applies the
same 2-D transformation to all 2-D planes along the higher dimensions.

• If tform is 3-D, A must be a 3-D image volume.

D — Displacement field
nonsparse numeric array

Displacement field, specified as nonsparse numeric array. The displacement field defines
the grid size and location of the output image. Displacement values are in units of pixels.
imwarp assumes that D is referenced to the default intrinsic coordinate system. To
estimate the displacement field, use imregdemons.

• If A is a 2-D grayscale image of size m-by-n, then D is m-by-n-by-2. The first plane of
the displacement field, D(:,:,1), describes the x-component of additive
displacement. imwarp adds these values to column and row locations in D to produce
remapped locations in A. Similarly, the second plane of the displacement field,
D(:,:,2), describes the y-component of additive displacement values.

• If A is a 2-D truecolor or 3-D grayscale image of size m-by-n-by-p, then D is:

• m-by-n-by-p-by-3. D(:,:,:,1) contains displacements along the x-axis,
D(:,:,:,2) contains displacements along the y-axis, and D(:,:,:,3) contains
displacements along the z-axis

• m-by-n-by-2, then imwarp applies the displacement field to one plane at a time.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

RA — Spatial referencing information associated with the image to be
transformed
spatial referencing object

Spatial referencing information associated with the image to be transformed, specified as
a spatial referencing object.

• If tform is a 2-D geometric transformation, RA must be a 2-D spatial referencing
object (imref2d).

 imwarp

1-2133

• If tform is a 3-D geometric transformation, RA must be a 3-D spatial referencing
object (imref3d).

interp — Form of interpolation used
'linear' (default) | 'nearest' | 'cubic'

Form of interpolation used, specified as one of these values.

Interpolation Method Description
'linear' Linear interpolation
'nearest' Nearest-neighbor interpolation—the output pixel is assigned

the value of the pixel that the point falls within. No other
pixels are considered.

'cubic' Cubic interpolation

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: J = imwarp(I,tform,'FillValues',255) uses white pixels as fill values.

OutputView — Size and location of output image in world coordinate system
imref2d or imref3d spatial referencing object

Size and location of output image in world coordinate system, specified as the comma-
separated pair consisting of 'OutputView' and an imref2d or imref3d spatial
referencing object. The ImageSize, XWorldLimits, and YWorldLimits properties of
the spatial referencing object define the size of the output image and the location of the
output image in the world coordinate system. The use of 'OutputView' is not available
when applying displacement fields.

FillValues — Value used for output pixels outside image boundaries
numeric scalar or array

Value used for output pixels outside the input image boundaries, specified as the comma-
separated pair consisting of 'FillValues' and a numeric array. Fill values are used for

1 Functions — Alphabetical List

1-2134

output pixels when the corresponding inverse transformed location in the input image is
completely outside the input image boundaries.

• If the input image is 2-D, FillValues must be a scalar.
• If the input image is 3-D and the geometric transformation is 3-D, FillValues must

be a scalar.
• If the input image is N-D and the geometric transformation is 2-D, FillValues can be

a scalar or an array. If you specify an array, the array size must match the higher
dimensions of the input image. For example, if the input image is a uint8 RGB image
that is 200-by-200-by-3, FillValues can be a scalar or a 3-by-1 array. In another
example, if the input image is 4-D with size 200-by-200-by-3-by-10, FillValues can
be a scalar or a 3-by-10 array.

In this RGB image example, possibilities for FillValues include:

FillValue Effect
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

SmoothEdges — Pad image to create smooth edges
false (default) | true

Pad image to create smooth edges, specified as the logical value true or false. When
set to true, imwarp pads the input image (with values specified by FillValues) to
create a smoother edge in the output image. When set to false, imwarp does not pad
the image. Choosing false (not padding) the input image can result in a sharper edge in
the output image. This sharper edge can be useful to minimize seam distortions when
registering two images side by side.

Output Arguments
B — Transformed image
nonsparse real-valued array

 imwarp

1-2135

Transformed image, returned as a nonsparse real-valued array. B is the same class as A.

RB — Spatial referencing information associated with the transformed image
imref2d or imref3d spatial referencing object

Spatial referencing information associated with the transformed image, returned as an
imref2d or imref3d spatial referencing object.

Algorithms
imwarp determines the value of pixels in the output image by mapping locations in the
output image to the corresponding locations in the input image (inverse mapping).
imwarp interpolates within the input image to compute the output pixel value.

The following figure illustrates a translation transformation. By convention, the axes in
input space are labeled u and v and the axes in output space are labeled x and y. In the
figure, note how imwarp modifies the spatial coordinates that define the locations of
pixels in the input image. The pixel at (1,1) is now positioned at (41,41). In the
checkerboard image, each black, white, and gray square is 10 pixels high and 10 pixels
wide. For more information about the distinction between spatial coordinates and pixel
coordinates, see “Image Coordinate Systems”.

Input Image Translated

1 Functions — Alphabetical List

1-2136

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imwarp supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imwarp generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

• The geometric transformation object input, tform, must be either an affine2d or
projective2d object.

• The interpolation method and optional parameter names must be constants.

See Also
Apps
Registration Estimator

Functions
imregdemons | imregister | imregtform | imtranslate

Objects
affine2d | affine3d | geometricTransform2d | geometricTransform3d |
projective2d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2013a

 imwarp

1-2137

ind2gray
Convert indexed image to grayscale image

Syntax
I = ind2gray(X,cmap)

Description
I = ind2gray(X,cmap) converts the indexed image X with colormap cmap to a
grayscale image, I. The ind2gray function removes the hue and saturation information
from the input image while retaining the luminance.

Examples

Convert Indexed Image to Grayscale

Load an indexed image into the workspace.

[X, map] = imread('trees.tif');

Convert the image to grayscale using ind2gray.

I = ind2gray(X,map);

Display the indexed image and the converted grayscale image.

imshow(X,map)
title('Indexed Image')

1 Functions — Alphabetical List

1-2138

figure
imshow(I)
title('Converted Grayscale Image')

 ind2gray

1-2139

Input Arguments
X — Indexed image
numeric array

Indexed image, specified as a numeric array of any size and dimensionality.
Data Types: single | double | uint8 | uint16

cmap — Color map
c-by-3 numeric array

Color map associated with indexed image X, specified as a c-by-3 numeric array, where c
is the number of colors.
Data Types: double

1 Functions — Alphabetical List

1-2140

Output Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array. I has the same size, dimensionality and
class as X.

Algorithms
ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets the hue
and saturation components (I and Q) to zero, creating a gray colormap. ind2gray then
replaces the indices in the image X with the corresponding grayscale intensity values in
the gray colormap.

See Also
gray2ind | imshow | imtool | mat2gray | rgb2gray | rgb2ntsc

Introduced before R2006a

 ind2gray

1-2141

inpaintCoherent
Restore specific image regions using coherence transport based image inpainting

Syntax
J = inpaintCoherent(I,mask)
J = inpaintCoherent(___ ,Name,Value)

Description
J = inpaintCoherent(I,mask) restores specific regions in the input image using the
coherence transport based inpainting method. mask is a logical image that denotes the
target regions in the image to be filled through inpainting.

J = inpaintCoherent(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax.

Examples

Remove Overlayed Text From Image Through Inpainting

Read an image to be inpainted into the workspace. This image contains text overlays to
be removed.

I = imread('overlayimage.png');

Read the mask image into the workspace. This mask image contains the overlayed text
regions present in the image to be inpainted.

mask = imread('text.png');

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

1 Functions — Alphabetical List

1-2142

Inpaint the original image by removing the text overlays.

J = inpaintCoherent(I,mask);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image'])

 inpaintCoherent

1-2143

Remove Objects in Image Regions Through Inpainting

Read an image to be inpainted into the workspace.

I = imread('coloredChips.png');

Display the image.

figure
imshow(I,[])

Use the drawcircle function to select a circular region of interest (ROI) for inpainting.
Use the Center and Radius name-value pairs to specify the location of an ROI.

h = drawcircle('Center',[130,42],'Radius',40);

1 Functions — Alphabetical List

1-2144

Select Multiple ROIs for Inpainting

You can also select multiple ROIs iteratively.

Set the number of regions to be inpainted to 6.

numRegion = 6;

Specify the center and radii for each region.

roiCenter = [130 42;433 78;208 108;334 124;434 167;273 58];
roiRadius = [40 50 40 40 40 30];

 inpaintCoherent

1-2145

Select multiple circular ROIs iteratively by specifying the drawcircle Center and
Radius name-value pairs.

roi = cell([numRegion,1]);
for i = 1:numRegion
 c = roiCenter(i,:);
 r = roiRadius(i);
 h = drawcircle('Center',c,'Radius',r);
 roi{i} = h;
end

Use the createMask function to generate a mask from the selected ROIs.

1 Functions — Alphabetical List

1-2146

mask = zeros(size(I,1),size(I,2));
for i = 1:numRegion
 newmask = createMask(roi{i});
 mask = xor(mask,newmask);
end

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

Remove objects in the ROIs through inpainting. Specify a standard deviation of 0.5 and an
inpainting radius of 1.

J = inpaintCoherent(I,mask,'SmoothingFactor',0.5,'Radius',1);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image']);

 inpaintCoherent

1-2147

Input Arguments
I — Image to inpaint
gray scale image | RGB color image

Image to inpaint, specified as a grayscale image of size m-by-n or an RGB color image of
size m-by-n-by-3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

mask — Spatial mask of target regions
2-D binary image

Spatial mask of target regions, specified as a 2-D binary image of size m-by-n, where m
and n are the dimensions of input image I. The non zero pixels in mask constitute the
target regions to be filled through inpainting.

Note

• You can generate the mask using any of these functions: drawcircle, drawpolygon,
drawrectangle, drawassisted, or drawfreehand. Alternatively, you can use the
segmentation tools in Image Segmenter app.

1 Functions — Alphabetical List

1-2148

Data Types: logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: J = inpaintCoherent(I,mask,'Radius',7)

SmoothingFactor — Standard deviation of Gaussian filter
2 (default) | positive scalar

Standard deviation of Gaussian filter, specified as the comma-separated pair consisting of
'SmoothingFactor' and a positive scalar. This value is used to compute the scales of
the Gaussian filters while estimating the coherence direction.

Radius — Inpainting radius
5 (default) | positive integer

Inpainting radius, specified as the comma-separated pair consisting of 'Radius' and a
positive integer value. The inpainting radius denotes the radius of the circular
neighborhood region centered on the pixel to be inpainted.

Output Arguments
J — Inpainted image
gray scale image | RGB color image

Inpainted image, returned as a grayscale image or RGB color image of the same size and
data type as input image I.

Tips
• The inpainting results depend on the name-value pair specification. You can modify the

values of 'Radius' and 'SmoothingFactor' for varied results.
• Each ROI in the binary mask image must be sufficiently large to enclose the

corresponding region in the image to be inpainted.

 inpaintCoherent

1-2149

Algorithms
The coherence transport based inpainting method is a pixel-based approach for removing
objects and filling regions in images [1]. Inpainting is performed inwards starting from
the boundary pixels of the target region. The inpainting value for a pixel is estimated from
its coherent neighboring pixels with known values. The steps involved are summarized as
follows:

1 Identify target regions from the input image to be filled or inpainted. Generate a
binary mask of the size same as the input image. The non zero pixels in the mask
image must contain the target regions to be inpainted.

The order in which the pixels in the target region are inpainted is calculated from
their Euclidean distance to the boundary of the target region.

2 The inpainting value for a pixel in the target region is the weighted average of known
pixel values within its inpainting radius. The known pixels along the coherence
direction are assigned higher weight value than the incoherent neighboring pixels.
The coherence direction is estimated by using a structure tensor.

References
[1] F. Bornemann and T. März. "Fast Image Inpainting Based on Coherence Transport."

Journal of Mathematical Imaging and Vision. Vol. 28, 2007, pp.259–278.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• inpaintCoherent supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

1 Functions — Alphabetical List

1-2150

See Also
imfill | regionfill

Introduced in R2019a

 inpaintCoherent

1-2151

integralBoxFilter
2-D box filtering of integral images

Syntax
B = integralBoxFilter(intA)
B = integralBoxFilter(intA,filterSize)
B = integralBoxFilter(___ ,Name,Value)

Description
B = integralBoxFilter(intA) filters the integral image intA with a 3-by-3 box
filter. Returns the filtered image, B.

B = integralBoxFilter(intA,filterSize) filters the integral image intA with a
2-D box filter with size specified by filterSize.

B = integralBoxFilter(___ ,Name,Value) filters integral image intA with Name-
Value pairs to control various aspects of the filtering.

Examples

Filter Integral Image

Read image into the workspace.

A = imread('cameraman.tif');

Pad the image by the radius of the filter neighborhood. This example uses an 11-by-11
filter.

filterSize = [11 11];
padSize = (filterSize-1)/2;
Apad = padarray(A, padSize, 'replicate','both');

1 Functions — Alphabetical List

1-2152

Compute the integral image of the padded input image.

intA = integralImage(Apad);

Filter the integral image.

B = integralBoxFilter(intA, filterSize);

Display original image and filtered image.

figure
imshow(A)
title('Original Image')

figure
imshow(B,[])
title('Filtered Image')

 integralBoxFilter

1-2153

Filter Image with Horizontal and Vertical Motion Blur

Read image into the workspace.

 A = imread('cameraman.tif');

Pad the image by radius of the filter neighborhood, calculated (11-1)/2.

padSize = [5 5];
Apad = padarray(A, padSize, 'replicate', 'both');

Calculate the integral image of the padded input.

intA = integralImage(Apad);

Filter the integral image with a vertical [11 1] filter.

1 Functions — Alphabetical List

1-2154

Bvert = integralBoxFilter(intA, [11 1]);

Crop the output to retain input image size and display it.

Bvert = Bvert(:,6:end-5);

Filter the integral image with a horizontal [1 11] filter.

Bhorz = integralBoxFilter(intA, [1 11]);

Crop the output to retain input image size.

Bhorz = Bhorz(6:end-5,:);

Display the original image and the filtered images.

figure,
imshow(A)
title('Original Image')

 integralBoxFilter

1-2155

figure,
imshow(Bvert,[])
title('Filtered with Vertical Filter')

figure,
imshow(Bhorz,[])
title('Filtered with Horizontal Filter')

1 Functions — Alphabetical List

1-2156

Input Arguments
intA — Integral image to be filtered
real, nonsparse double matrix of any dimension

Integral image to be filtered, specified as a real, nonsparse matrix of any dimension. The
integral image must be upright—integralBoxFilter does not support rotated integral
images. The first row and column of the integral image is assumed to be zero-padded, as
returned by integralImage.
Example: B = integralBoxFilter(A);
Data Types: double

filterSize — Size of box filter
3-by-3 box filter (default) | scalar or 2-element vector of positive, odd integers

 integralBoxFilter

1-2157

Size of box filter, specified as a scalar or 2-element vector of positive, odd integers. If
filterSize is scalar, integralBoxFilter uses a square box filter.
Example: B = integralBoxFilter(A,5);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = integralBoxFilter(A,5,'NormalizationFactor',1);

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^2, if scalar, and 1/prod(filterSize), if vector (default) | numeric
scalar

Normalization factor applied to box filter, specified as a numeric scalar or vector.

The default 'NormalizationFactor' has the effect of a mean filter—the pixels in the
output image are the local means of the image. To get local area sums, set
'NormalizationFactor' to 1. To avoid overflow in such circumstances, consider using
double precision images by converting the input image to class double.
Example: B = integralBoxFilter(A,5,'NormalizationFactor',1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
real, nonsparse double matrix

Filtered image, returned as a real, nonsparse matrix of class double.
integralBoxFilter returns only the parts of the filtering that are computed without
padding.

1 Functions — Alphabetical List

1-2158

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• integralBoxFilter supports the generation of C code (requires MATLAB Coder).
For more information, see “Code Generation for Image Processing”.

• The 'NormalizationFactor' parameter must be a compile-time constant.

See Also
imboxfilt | integralImage

Topics
“Integral Image”

Introduced in R2015b

 integralBoxFilter

1-2159

integralBoxFilter3
3-D box filtering of 3-D integral images

Syntax
B = integralBoxFilter3(intA)
B = integralBoxFilter3(intA,filterSize)
B = integralBoxFilter3(___ ,Name,Value)

Description
B = integralBoxFilter3(intA) filters integral image intA with a 3-by-3-by-3 box
filter. B is a 3-D image of class double containing the filtered output.

B = integralBoxFilter3(intA,filterSize) filters integral image intA with a 3-D
box filter with size specified by filterSize.

B = integralBoxFilter3(___ ,Name,Value) filters integral image intA with a 3-D
box filter with Name-Value pairs to control various aspects of the filtering.

Examples

Filter 3-D MRI Volume with Box Filter

Load 3-D MRI data.

volData = load('mri');
vol = squeeze(volData.D);

Pad the image volume by the radius of the filter neighborhood.

filterSize = [5 5 3];
padSize = (filterSize-1)/2;
volPad = padarray(vol, padSize, 'replicate', 'both');

1 Functions — Alphabetical List

1-2160

Calculate the 3-D integral image of the padded input.

intVol = integralImage3(volPad);

Filter the 3-D integral image with a [5 5 3] filter.

volFilt = integralBoxFilter3(intVol, filterSize);

Input Arguments
intA — Integral image to be filtered
real, non-sparse 3-D double array

Integral image to be filtered, specified as a real, non-sparse 3-D array of class double.

integralBoxFilter3 expects the input integral image, intA, to be an upright integral
image computed using integralImage3. integralBoxFilter3 does not support
rotated integral images. The first row, column and page of the integral image is assumed
to be padded, as returned by integralImage3.
Example: B = integralBoxFilter3(A);
Data Types: double

filterSize — Size of box filter
3-by-3-by-3 box filter (default) | scalar or 3-element vector of positive, odd integers

Size of box filter, specified as a scalar or 3-element vector of positive, odd integers. If
filterSize is scalar, integralBoxFilter3 uses a cube box filter.
Example: B = integralBoxFilter3(A,5);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 integralBoxFilter3

1-2161

Example: B = integralBoxFilter3(A,5,'NormalizationFactor',1);

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^3, if scalar, and 1/prod(filterSize), if vector (default) | numeric
scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter—the pixels in the
output image are the local means of the image. To get local area sums, set
'NormalizationFactor' to 1. To avoid overflow in such circumstances, consider using
double precision images by converting the input image to class double.
Example: B = integralBoxFilter3(A,5,'NormalizationFactor',1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
real, nonsparse 3-D array

Filtered image, returned as a real, nonsparse 3-D array of class double.
integralBoxFilter3 returns only the parts of the filtering that are computed without
padding.

See Also
imboxfilt3 | integralimage3

Topics
“Integral Image”

Introduced in R2015b

1 Functions — Alphabetical List

1-2162

integralImage
Calculate integral image

Syntax
J = integralImage(I)
J = integralImage(I,orientation)

Description
J = integralImage(I) calculates the “Integral Image” on page 1-2166 , J, from the
intensity image, I.

J = integralImage(I,orientation) calculates the integral image with the
orientation specified by orientation.

Examples

Create Integral Image

Create a simple sample matrix.

I = magic(5)

I = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

In an integral image, each pixel is the cumulative sum of the pixel directly above it and to
its left. For example, in this trivial matrix, the pixel in the original matrix at row 1, column

 integralImage

1-2163

1 (value 17) would be unchanged in an integral image because you are adding 0s to the
value. (The integralImage function adds a row of 0s above and to the left of the
original matrix.) Calculating the integral image value for pixel (1,2) in the original matrix,
you add the pixel above it (0) and the pixel to its left (17): 24 + 17 +0 = 41. Calculating
the integral image value for Pixel (1,3) in the originl matrix, you add the pixel above it (0)
and the pixel to its left, which has already been summed, 41. Thus the value at pixel (2,4)
in the integral image is 1 + 41 + 0 = 42. This process continues for each pixel in the
original image, as you can see in the integral image of the original matrix calculated by
the integralImage function.

J = integralImage(I)

J = 6×6

 0 0 0 0 0 0
 0 17 41 42 50 65
 0 40 69 77 99 130
 0 44 79 100 142 195
 0 54 101 141 204 260
 0 65 130 195 260 325

Compute Integral Image with Rotated Orientation

Create sample image.

I = magic(5)

I = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

% Define rotated rectangular region as [x, y, width, height] where x, y
% denote the indices of the top corner of the rectangle. Width and height
% are along 45 degree lines from the top corner.
[x, y, w, h] = deal(3, 1, 3, 2);

1 Functions — Alphabetical List

1-2164

Create integral image.

J = integralImage(I, 'rotated');

Compute the sum over the region using the integral image.

regionSum = J(y+w+h,x+w-h+1) + J(y,x+1) - J(y+h,x-h+1) - J(y+w,x+w+1);

Input Arguments
I — Input grayscale image
real, nonsparse 2-D matrix

Input grayscale image, specified as a real, nonsparse 2-D matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

orientation — Image orientation
'upright' (default) | 'rotated'

Image orientation, specified as 'upright' or 'rotated'. If you set the orientation to
'rotated', integralImage returns the integral image for computing sums over
rectangles rotated by 45 degrees. To facilitate computation of pixel sums along all image
boundaries, the integralImage pads the output integral images as follows:

Integral Image Description
Upright integral image Zero-padded on top and left, resulting in size(J) =

size(I)+1
Rotated integral image Zero-padded at the top, left, and right, resulting in size(J)

= size(I)+[1 2]

If the input image has more than two dimensions (ndims(I)>2), such as for an RGB
image, the integralImage function computes the integral image for all 2-D planes along
the higher dimensions.
Data Types: char | string

 integralImage

1-2165

Output Arguments
J — Integral image
real, nonsparse matrix of class double

Integral image, returned as a real, nonsparse matrix of class double. The function zero-
pads the top and left side of the integral image so the size of the output integral image is
the size as the input image, plus 1, size(J) = size(I)+1. Such sizing facilitates easy
computation of pixel sums along all image boundaries. The integral image, J, is
essentially a padded version of the value cumsum(cumsum(I,2)).

Definitions

Integral Image
In an integral image, every pixel is the summation of the pixels above and to the left of it.
Using an integral image, you can rapidly calculate summations over image subregions.
Use of integral images was popularized by the Viola-Jones algorithm. Integral images
facilitate summation of pixels and can be performed in constant time, regardless of the
neighborhood size.

References
[1] Viola, Paul and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of

Simple Features”, Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511–518.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-2166

See Also
cumsum | integralBoxFilter

Topics
“Integral Image”

Introduced in R2015b

 integralImage

1-2167

integralImage3
Calculate 3-D integral image

Syntax
J = integralImage3(I)

Description
J = integralImage3(I) calculates the integral image, J, from the input intensity
image, I.

Examples

Compute Integral Image of 3-D Input Image

Create a 3-D input image.

I = reshape(1:125,5,5,5);

Define a 3-by-3-by-3 sub-volume as [startRow, startCol, startPlane, endRow,
endCol, endPlane].

[sR, sC, sP, eR, eC, eP] = deal(2, 2, 2, 4, 4, 4);

Create an integral image from the input image and compute the sum over a 3-by-3-by-3
sub-volume of I.

J = integralImage3(I);
regionSum = J(eR+1,eC+1,eP+1) - J(eR+1,eC+1,sP) - J(eR+1,sC,eP+1) ...
 - J(sR,eC+1,eP+1) + J(sR,sC,eP+1) + J(sR,eC+1,sP) ...
 + J(eR+1,sC,sP) -J(sR,sC,sP)

regionSum = 1701

1 Functions — Alphabetical List

1-2168

Verify that the sum of pixels is accurate.

sum(sum(sum(I(sR:eR, sC:eC, sP:eP))))

ans = 1701

Input Arguments
I — Input intensity image
real, nonsparse 3-D array

Input intensity image, specified as a real, nonsparse 3-D array of any numeric class.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
J — Integral image
real, nonsparse matrix of class double

Integral image, returned as a real, nonsparse matrix of class double. The function zero-
pads the top, left and along the first plane, resulting in size(J) = size(I) + 1. side
of the integral image. The class of the output is double. The resulting size of the output
integral image equals: size(J) = size(I) + 1. Such sizing facilitates easy
computation of pixel sums along all image boundaries. The integral image, J, is
essentially a padded version of the value cumsum(cumsum(cumsum(I),2),3).

Definitions

Integral Image
In an integral image, every pixel is the summation of the pixels above and to the left of it.
Using an integral image, you can rapidly calculate summations over image subregions.
Use of integral images was popularized by the Viola-Jones algorithm. Integral images
facilitate summation of pixels and can be performed in constant time, regardless of the
neighborhood size.

 integralImage3

1-2169

See Also
integralBoxFilter3 | integralImage

Topics
“Integral Image”

Introduced in R2015b

1 Functions — Alphabetical List

1-2170

interfileinfo
Read metadata from Interfile file

Syntax
info = interfileinfo(filename)

Description
info = interfileinfo(filename) returns a structure whose fields contain
information about an image in a Interfile file. filename is a string scalar or character
vector that specifies the name of the file. The file must be in the current directory or in a
directory on the MATLAB path.

The Interfile file format was developed for the exchange of nuclear medicine data. In
Interfile 3.3, metadata is stored in a header file, separate from the image data. The two
files have the same name with different file extensions. The header file has the file
extension .hdr and the image file has the file extension .img.

Examples
Read metadata from an Interfile file.

info = interfileinfo('MyFile.hdr');

References

[1] Todd-Pokropek, A, Cradduck, T.D., and Deconinck, F., A File Format for the Exchange
of Nuclear Medicine Image Data: a specification of Interfile Version 3.3. Nucl Med
Commun 13(9): 673-99, 1992.

 interfileinfo

1-2171

See Also
interfileread

Introduced before R2006a

1 Functions — Alphabetical List

1-2172

interfileread
Read images in Interfile format

Syntax
A = interfileread(filename)
A = interfileread(filename, window)

Description
A = interfileread(filename) reads the images in the first energy window of
filename into A, where A is an M-by-N array for a single image and an M-by-N-by-P
array for multiple images. The file must be in the current directory or in a directory on
the MATLAB path.

A = interfileread(filename, window) reads the images in the energy window
specified by window of filename into A.

The images in the energy window must be of the same size.

The Interfile file format was developed for the exchange of nuclear medicine data. In
Interfile 3.3, metadata is stored in a header file, separate from the image data. The two
files have the same name with different file extensions. The header file has the file
extension .hdr and the image file has the file extension .img.

Examples
Read image data from an Interfile file.

img = interfileread('MyFile.hdr');

 interfileread

1-2173

References
[1] Todd-Pokropek, A, Cradduck, T.D., and Deconinck, F., A File Format for the Exchange

of Nuclear Medicine Image Data: a specification of Interfile Version 3.3. Nucl Med
Commun 13(9): 673-99, 1992.

See Also
interfileinfo

Introduced before R2006a

1 Functions — Alphabetical List

1-2174

intlut
Convert integer values using lookup table

Syntax
B = intlut(A,lut)

Description
B = intlut(A,lut) converts values in array A based on lookup table lut and returns
these new values in array B.

Examples

Convert Integer Values using Lookup Table

Create an array of integers.

A = uint8([1 2 3 4; 5 6 7 8; 9 10 0 1])

A = 3x4 uint8 matrix

 1 2 3 4
 5 6 7 8
 9 10 0 1

Create a lookup table. In this example, the lookup table is created by following the vector
[2 4 8 16] with repeated copies of the vector [0 150 200 250].

LUT = [2 4 8 16 repmat(uint8([0 150 200 255]),1,63)];

Convert the values of A by referring to the lookup table. Note that the first index of the
lookup table is 0.

 intlut

1-2175

B = intlut(A, LUT)

B = 3x4 uint8 matrix

 4 8 16 0
 150 200 255 0
 150 200 2 4

Input Arguments
A — Input matrix
array of integers

Input matrix, specified as an array of integers.
Data Types: int16 | uint8 | uint16

lut — Lookup table
vector of integers

Lookup table, specified as a vector of integers.

• If A has data type uint8, then lut must be a uint8 vector with 256 elements.
• If A has data type uint16 or int16, then lut must be a vector with 65536 elements

of the same class as A.

Data Types: int16 | uint8 | uint16

Output Arguments
B — Converted matrix
array of integers

Converted matrix, returned as an array of integers. B has the same size and data type as
A.
Data Types: int16 | uint8 | uint16

1 Functions — Alphabetical List

1-2176

Algorithms
• When A has data type uint8 or uint16, an offset of 1 is applied when indexing into

the lookup table. For example, if an element of A has the value alpha, then the
corresponding element in B has the value lut(alpha+1).

• When A has data type int16, an additional offset of 32768 is applied to the lookup
table index. For example, if an element of A has the value alpha, then the
corresponding element in B has the value lut(alpha+32768+1).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• intlut supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, intlut generates code
that uses a precompiled, platform-specific shared library. Use of a shared library
preserves performance optimizations but limits the target platforms for which code
can be generated. For more information, see “Code Generation Using a Shared
Library”.

See Also
ind2gray | rgb2ind

Introduced before R2006a

 intlut

1-2177

intrinsicToWorld
Convert from intrinsic to world coordinates

Syntax
[xWorld, yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic)
[xWorld, yWorld, zWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic,
zIntrinsic)

Description
[xWorld, yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic) maps
points from the 2-D intrinsic system (xIntrinsic,yIntrinsic) to the 2-D world system
(xWorld,yWorld) based on the relationship defined by 2-D spatial referencing object R.

If the kth input coordinates (xIntrinsic(k),yIntrinsic(k)) fall outside the image
bounds in the intrinsic coordinate system, intrinsicToWorld extrapolates xWorld(k)
and yWorld(k) outside the image bounds in the world coordinate system.

[xWorld, yWorld, zWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic,
zIntrinsic) maps points from the intrinsic coordinate system to the world coordinate
system using 3-D spatial referencing object R.

Examples

Convert 2-D Intrinsic Coordinates to World Coordinates

Read a 2-D grayscale image into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

1 Functions — Alphabetical List

1-2178

Create an imref2d object, specifying the size and the resolution of the pixels. The
DICOM file contains a metadata field PixelSpacing that specifies the image resolution
in each dimension in millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1563 160.1563]
 YWorldLimits: [0.1563 160.1563]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

Display the image, omitting the spatial referencing object. The axes coordinates reflect
the intrinsic coordinates. Notice that the coordinate (0,0) is in the upper left corner.

figure
imshow(A,'DisplayRange',[0 512])
axis on

 intrinsicToWorld

1-2179

Suppose you want to calculate the approximate position and width of the knee in
millimeters. Select the endpoints of a line segment that runs horizontally across the knee
at the level of the kneecap. For example, use the (x,y) points (34,172) and (442,172).

1 Functions — Alphabetical List

1-2180

xIntrinsic = [34 442];
yIntrinsic = [172 172];

Convert these points from intrinsic coordinates to world coordinates.

[xWorld,yWorld] = intrinsicToWorld(RA,xIntrinsic,yIntrinsic)

xWorld = 1×2

 10.6250 138.1250

yWorld = 1×2

 53.7500 53.7500

The world coordinates of the two points are (10.625,53.75) and (138.125,53.75), in units
of millimeters. The approximate width of the knee in millimeters is:

width = xWorld(2) - xWorld(1)

width = 127.5000

Convert 3-D Intrinsic Coordinates to World Coordinates

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128
pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative
purposes, provide a pixel resolution in each dimension. The resolution is in millimeters
per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 XWorldLimits: [1 257]

 intrinsicToWorld

1-2181

 YWorldLimits: [1 257]
 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Display the middle slice of the volume, omitting the spatial referencing object. The axes
coordinates reflect the intrinsic coordinates. Notice that the coordinate (0,0) is in the
upper left corner of this plane. z=0 is right below the first slice, and the z-axis is positive
in the upward direction, towards the crown of the head.

figure
imshow(D(:,:,13))
axis on

Suppose you want to determine the position, in millimeters, of features within this slice.
Select four sample points, and store their intrinsic coordinates in vectors. For example,
the first point has intrinsic coordinates (54,46,13). The intrinsic z-coordinate is the same
for all points within this slice.

1 Functions — Alphabetical List

1-2182

xI = [54 71 57 70];
yI = [46 48 79 80];
zI = [13 13 13 13];

Convert the intrinsic coordinates to world coordinates using intrinsicToWorld.

[xW,yW,zW] = intrinsicToWorld(R,xI,yI,zI)

xW = 1×4

 108 142 114 140

yW = 1×4

 92 96 158 160

zW = 1×4

 52 52 52 52

The resulting vectors are the world x-, y-, and z-coordinates, in millimeters, of the
selected points. The first point, for example, is offset from the origin by 108mm in the x-
direction, 92 mm in the y-direction, and 52 mm in the z-direction.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

xIntrinsic — Coordinates along the x-dimension in the intrinsic coordinate
system
numeric scalar or vector

Coordinates along the x-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 intrinsicToWorld

1-2183

yIntrinsic — Coordinates along the y-dimension in the intrinsic coordinate
system
numeric scalar or vector

Coordinates along the y-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector. yIntrinsic is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zIntrinsic — Coordinates along the z-dimension in the intrinsic coordinate
system
numeric scalar or vector

Coordinates along the z-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector. zIntrinsic is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, returned as a numeric
scalar or vector. xWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, returned as a numeric
scalar or vector. yWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

1 Functions — Alphabetical List

1-2184

Coordinates along the z-dimension in the world coordinate system, returned as a numeric
scalar or vector. zWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
imref2d | imref3d | worldToIntrinsic

Introduced in R2013a

 intrinsicToWorld

1-2185

invert
Invert geometric transformation

Syntax
invtform = invert(tform)

Description
invtform = invert(tform) returns the inverse of the geometric transformation
tform.

Examples

Invert a 2-D Rotation

Create an affine2d object that defines a 30 degree rotation in the counterclockwise
direction around the origin. View the transformation matrix stored in the T property.

theta = 30;
tform = affine2d([cosd(theta) sind(theta) 0; -sind(theta) cosd(theta) 0; 0 0 1]);
tform.T

ans = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

Invert the geometric transformation. The result is a new affine2d object.

invtform = invert(tform);
invtform.T

1 Functions — Alphabetical List

1-2186

ans = 3×3

 0.8660 -0.5000 0
 0.5000 0.8660 0
 0 0 1.0000

This matrix represents a 30 degree rotation in the clockwise direction.

Test the Inverse Geometric Transformation

Read an image, and display it.

I = imread('pout.tif');
figure;
imshow(I)

 invert

1-2187

Apply the forward geometric transformation, tform, to the image. Display the rotated
image.

J = imwarp(I,tform);
figure;
imshow(J)

Apply the inverse geometric transformation, invtform, to the rotated image J.

K = imwarp(J,invtform);
imshow(K)

1 Functions — Alphabetical List

1-2188

 invert

1-2189

The final image, K, has the correct orientation. The two transformations introduced
padding that surrounds the image, but the size, shape, and orientation of the image data
have not changed.

Input Arguments
tform — Geometric transformation
affine2d, affine3d, or projective2d geometric transformation object

Geometric transformation, specified as an affine2d, affine3d, or projective2d
geometric transformation object.

Output Arguments
invtform — Inverse geometric transformation
geometric transformation object

Inverse geometric transformation, returned as a geometric transformation object.
invtform is the same type of object as tform.

See Also
transformPointsForward | transformPointsInverse

Introduced in R2013a

1 Functions — Alphabetical List

1-2190

iptaddcallback
Add function handle to callback list

Syntax
ID = iptaddcallback(obj,callback,func_handle)

Description
ID = iptaddcallback(obj,callback,func_handle) adds the function handle
func_handle to the list of functions to be called when the callback specified by
callback executes. callback specifies the name of a callback property of the graphics
object specified.

iptaddcallback returns a unique callback identifier, ID, that can be used with
iptremovecallback to remove the function from the callback list.

iptaddcallback can be useful when you need to notify more than one tool about the
same callback event for a single object.

Note
Callback functions that have already been added to an object using the set command
continue to work after you call iptaddcallback. The first time you call
iptaddcallback for a given object and callback, the function checks to see if a different
callback function is already installed. If a callback is already installed, iptaddcallback
replaces that callback function with the iptaddcallback callback processor, and then
adds the preexisting callback function to the iptaddcallback list.

 iptaddcallback

1-2191

Examples
Create a figure and register two callback functions. Whenever MATLAB detects mouse
motion over the figure, function handles f1 and f2 are called in the order in which they
were added to the list.

figobj = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
iptaddcallback(figobj, 'WindowButtonMotionFcn', f1);
iptaddcallback(figobj, 'WindowButtonMotionFcn', f2);

See Also
iptremovecallback

Introduced before R2006a

1 Functions — Alphabetical List

1-2192

iptcheckconn
Check validity of connectivity argument

Syntax
iptcheckconn(conn,func_name,var_name,arg_pos)

Description
iptcheckconn(conn,func_name,var_name,arg_pos) checks if conn is a valid pixel
connectivity and issues a formatted error message if the connectivity is invalid.

• If the connectivity is valid, then iptcheckconn returns nothing. Valid connectivities
are one of these scalar values: 1, 4, 6, 8, 18, or 26. A connectivity can also be a 3-by-3-
by- ... -by-3 array of 0s and 1s. The central element of a connectivity array must be
nonzero and the array must be symmetric about its center.

• If the connectivity is invalid, then iptcheckconn issues a formatted error message
that includes information about the function name (func_name), the variable name
(var_name), and the argument position (arg_pos). These values are used only to
create the error message, not to check whether the pixel connectivity is valid.

Examples

Check Validity of 4-by-4 Matrix
Create a 4-by-4 array and pass it as the connectivity argument.

iptcheckconn(eye(4),'myfun','myvar',2)

eye(4) is not a valid pixel connectivity so iptcheckconn returns an error message:

Function MYFUN expected input number 2, myvar, to be a valid connectivity specifier. A nonscalar
connectivity specifier must be 3-by-3-by- ... -by-3.

 iptcheckconn

1-2193

Input Arguments
conn — Pixel connectivity
numeric scalar | numeric array

Pixel connectivity to check, specified as a numeric scalar or array.
Data Types: double | logical

func_name — Function name
character vector | string scalar

Function name to include in an error message when conn is an invalid pixel connectivity,
specified as a character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when conn is an invalid pixel connectivity,
specified as a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when conn is an invalid pixel
connectivity, specified as a numeric scalar.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• iptcheckconn supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

1 Functions — Alphabetical List

1-2194

• When generating code, all input arguments must be compile-time constants.

See Also
conndef

Topics
“Pixel Connectivity”

Introduced before R2006a

 iptcheckconn

1-2195

iptcheckhandle
Check validity of handle

Syntax
iptcheckhandle(obj,valid_types,func_name,var_name,arg_pos)

Description
iptcheckhandle(obj,valid_types,func_name,var_name,arg_pos) checks if
object obj is a valid graphics object and issues a formatted error message if the handle is
invalid.

• If the object is a valid graphics object as specified by valid_types, then
iptcheckhandle returns nothing.

• If the connectivity argument is invalid, then iptcheckhandle issues a formatted
error message that includes information about the function name (func_name), the
variable name (var_name), and the argument position (arg_pos). These values are
used only to create the error message, not to check whether the graphics object
handle is valid.

The figure shows the format of the error message and indicates which parts you can
customize using iptcheckhandle arguments.

1 Functions — Alphabetical List

1-2196

Examples
Trigger Error When Graphics Object Is Not Axes
To trigger the error message, create a figure that does not contain an axes object and
then check for a valid axes handle.

fig = figure; % create figure without an axes
iptcheckhandle(fig,{'axes'},'my_function','my_variable',2)

fig is not an axes handle so iptcheckhandle returns an error message:

Function MY_FUNCTION expected its second input argument, my_variable,
to be one of these types:

 axes

Instead, its type was: figure.

Input Arguments
obj — Object
handle

Object, specified as a handle.

valid_types — Valid types of graphics objects
cell array of character vectors

Valid types of graphics objects, specified as a cell array containing one or more of these
character vectors.

• 'axes'
• 'figure'
• 'hggroup'
• 'image'
• 'uipanel'

Example: {'uipanel','figure'} specifies that a valid graphics object must be either a
panel container or a figure.

 iptcheckhandle

1-2197

func_name — Function name
character vector | string scalar

Function name to include in an error message when obj is an invalid graphics object,
specified as a character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when obj is an invalid graphics object,
specified as a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when obj is an invalid graphics object,
specified as a positive integer.

See Also
iptcheckmap | iptnum2ordinal | narginchk | validateattributes |
validatestring

Introduced before R2006a

1 Functions — Alphabetical List

1-2198

iptcheckinput
Check validity of array

Note iptcheckinput will be removed in a future release. Use validateattributes
instead.

Syntax
iptcheckinput(A,valid_classes,valid_attributes, func_name,var_name,
arg_pos)

Description
iptcheckinput(A,valid_classes,valid_attributes, func_name,var_name,
arg_pos) checks the validity of the input array A and issues a formatted error message if
the array is invalid.

• If the array has valid class and attributes as specified by valid_classes and
valid_attributes, then iptcheckinput returns nothing.

• If the class or attributes are invalid, then iptcheckinput issues a formatted error
message that includes information about the function name (func_name), the variable
name (var_name), and the argument position (arg_pos). These values are used only
to create the error message, not to check whether the array is valid.

The figure shows the format of the error message and indicates which parts you can
customize using iptcheckinput arguments.

 iptcheckinput

1-2199

Examples

Trigger Error When Array Is Not 2-D
To trigger this error message, create a 3-D array and then check for the attribute '2d'.

A = [1 2 3; 4 5 6];
B = [7 8 9; 10 11 12];
C = cat(3,A,B);
iptcheckinput(C,{'numeric'},{'2d'},'func_name','var_name',2)

C is not 2-D so iptcheckinput returns an error message:

Function FUNC_NAME expected its second input, var_name, to be two-dimensional.

Input Arguments
A — Input array
array | ...

Input array, specified as an array.

valid_classes — Valid classes
cell array of character vectors

Valid classes of array A, specified as a cell array of character vectors. The tables list
common classes for image processing applications.

Numeric Classes

int8 uint8 single
int16 uint16 double
int32 uint32
int64 uint64

1 Functions — Alphabetical List

1-2200

Other Common Classes

categorical char cell
function_handle logical string
struct table

You can use 'numeric' as an abbreviation for the set of classes uint8, uint16,
uint32, int8, int16, int32, single, and double.
Example: {'logical' 'cell'} specifies that a valid array must be a logical array or a
cell array.

valid_attributes — Valid attributes
{} | cell array of character vectors

Valid attributes of array A, specified as a cell array of character vectors. The table lists
the supported attributes in alphabetical order.

2d column even finite
integer nonempty nonnan nonnegative
nonsparse nonzero odd positive
real row scalar twod
vector

If you specify valid_attributes as the empty cell array {}, then iptcheckinput
does not check the attributes of A.
Example: {'real' 'nonempty' 'finite'} specifies that a valid array must be real
and nonempty and contain only finite values.

func_name — Function name
character vector | string scalar

Function name to include in an error message when A is an invalid array, specified as a
character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

 iptcheckinput

1-2201

Variable name to include in an error message when A is an invalid array, specified as a
character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when A is an invalid array, specified as
a positive integer.

See Also
iptcheckhandle | iptcheckmap | iptnum2ordinal | narginchk |
validateattributes | validatestring

Introduced before R2006a

1 Functions — Alphabetical List

1-2202

iptcheckmap
Check validity of colormap

Syntax
iptcheckmap(map,func_name,var_name,arg_pos)

Description
iptcheckmap(map,func_name,var_name,arg_pos) checks the validity of the
MATLAB colormap map and issues a formatted error message if the colormap is invalid.

• If the colomap is valid, then iptcheckmap returns nothing.
• If the colormap is invalid, then iptcheckmap issues a formatted error message that

includes information about the function name (func_name), the variable name
(var_name), and the argument position (arg_pos). These values are used only to
create the error message, not to check whether the array is valid.

The figure shows the format of the error message and indicates which parts you can
customize using iptcheckmap arguments.

 iptcheckmap

1-2203

Examples

Trigger Error For Invalid Colormap
bad_map = ones(10);
iptcheckmap(bad_map,'func_name','var_name',2)

Function FUNC_NAME expected input number 2, var_name, to be a valid colormap. Valid
colormaps must be nonempty, double, 2-D matrices with 3 columns.

Input Arguments
map — Colormap
numeric array

Colormap, specified as a numeric array.

func_name — Function name
character vector | string scalar

Function name to include in an error message when map is an invalid colormap, specified
as a character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when map is an invalid colormap, specified
as a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when map is an invalid colormap,
specified as a positive integer.

1 Functions — Alphabetical List

1-2204

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• iptcheckmap supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
iptcheckhandle | iptnum2ordinal | narginchk | validateattributes |
validatestring

Introduced before R2006a

 iptcheckmap

1-2205

iptchecknargin
Check number of input arguments

Note iptchecknargin will be removed in a future release. Use narginchk instead.

Syntax
iptchecknargin(low,high,num_inputs,func_name)

Description
iptchecknargin(low,high,num_inputs,func_name) checks whether num_inputs
is a valid number of input arguments and issues a formatted error message if the number
of input arguments is invalid.

• If the number of input arguments is in the range [low high], then iptchecknargin
returns nothing.

• If the number of input argument is less than low or greater than high, then
iptchecknargin issues a formatted error message that includes information about
the function name (func_name). This value is used only to create the error message,
not to check whether the number of input arguments is valid.

Examples

Trigger Error For Invalid Number of Input Arguments
Create a function called test_function that accepts any number of input arguments.
Within the function, call iptchecknargin to check that the number of arguments passed
to the function is within the range [1, 3]. Save the function with the filename
test_function.m.

1 Functions — Alphabetical List

1-2206

function test_function(varargin)
 iptchecknargin(1,3,nargin,mfilename);
end

Trigger the error message by executing the function at the MATLAB command line,
specifying more than the expected number of arguments.

test_function(eye(3),5,pi,7)

Input Arguments
low — Smallest valid number of input arguments
nonnegative integer

Smallest valid number of input arguments, specified as a nonnegative integer.

high — Largest valid number of input arguments
nonnegative integer | Inf

Largest valid number of input arguments, specified as a nonnegative integer or Inf.

num_inputs — Number of actual input arguments
nonnegative integer | nargin

Number of actual input arguments, specified as a nonnegative integer. You can also
specify nargin to use the number of function input arguments to the currently executing
function.

func_name — Function name
character vector | string scalar | mfilename

Function name to include in an error message when num_inputs is an invalid number of
input arguments, specified as a character vector or string scalar. You can also specify
mfilename to use the name of the currently executing function.
Data Types: char | string

See Also
iptcheckhandle | iptcheckmap | iptnum2ordinal | narginchk |
validateattributes | validatestring

 iptchecknargin

1-2207

Introduced before R2006a

1 Functions — Alphabetical List

1-2208

iptcheckstrs
Check validity of option

Note iptcheckstrs will be removed in a future release. Use validatestring instead.

Syntax
param = iptcheckstrs(str,valid_strs,func_name,var_name,arg_pos)

Description
param = iptcheckstrs(str,valid_strs,func_name,var_name,arg_pos) checks
whether str is a valid parameter name and issues a formatted error message if the
parameter name is invalid.

• If there is a case-insensitive, nonambiguous match between str and a valid parameter
name in valid_strs, then iptcheckstrs returns the valid parameter name in
param.

• If there is no match or the match is ambiguous, then iptcheckstrs issues a
formatted error message that includes information about the function name
(func_name), the variable name (var_name), and the argument position (arg_pos).
These values are used only to create the error message, not to check whether the
parameter is valid.

The figure shows the format of the error message and indicates which parts you can
customize using iptcheckstrs arguments.

 iptcheckstrs

1-2209

Examples

Trigger Error For Invalid Parameter Name
Define a cell array of character vectors that contains valid parameter names. To trigger
an error message, pass in a character vector that is not in the cell array.

valid_params = {'option1','option2'};
iptcheckstrs('option3',valid_params,'func_name','var_name',2)

Function FUNC_NAME expected its second input argument, var_name,
to match one of these: option1, option2

The input, 'option3', did not match any of the valid strings.

Return Valid Parameter Name
Define a cell array of character vectors that contains valid parameter names. Check the
validity of a parameter name that differs only by case from a character vector in the cell
array.

valid_params = {'option1','option2'};
iptcheckstrs('OPTION2',valid_params,'func_name','var_name',2)

param =

 'option2'

1 Functions — Alphabetical List

1-2210

Input Arguments
str — Parameter name
character vector

Parameter name to check, specified as a character vector.

valid_strs — Valid parameter names
cell array of character vectors

Valid parameter names, specified as a cell array of character vectors.

func_name — Function name
character vector | string scalar

Function name to include in an error message when h is an invalid graphics object
handle, specified as a character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when h is an invalid graphics object handle,
specified as a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when h is an invalid graphics object
handle, specified as a positive integer.

Output Arguments
param — Validated parameter name
character vector

Validated parameter name, returned as a character vector.

 iptcheckstrs

1-2211

See Also
iptcheckhandle | iptcheckmap | iptnum2ordinal | narginchk |
validateattributes | validatestring

Introduced before R2006a

1 Functions — Alphabetical List

1-2212

iptdemos
Index of Image Processing Toolbox examples

Syntax
iptdemos

Description
iptdemos displays the HTML page that lists all the Image Processing Toolbox examples.
iptdemos displays the page in the MATLAB Help browser.

See Also
ipticondir

Introduced before R2006a

 iptdemos

1-2213

iptgetapi
Get Application Programmer Interface (API) for handle

Syntax
API = iptgetapi(h)

Description
API = iptgetapi(h) returns the API structure of an interactive modular tool with
handle h.

Examples

Use imscrollpanel API to Adjust Image Magnification

Display an image in a figure window.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('tape.png');

Add a Scroll Panel tool to the figure.

hSP = imscrollpanel(hFig,hIm);

1 Functions — Alphabetical List

1-2214

Get the API associated with the Scroll Panel tool.

api = iptgetapi(hSP);

Use the API to magnify the image by 200%.

api.setMagnification(2)

 iptgetapi

1-2215

Input Arguments
h — Handle to interactive modular tool
handle

Handle to an interactive modular tool such as an imdistline, imline, immagbox, or
imscrollpanel.

1 Functions — Alphabetical List

1-2216

Output Arguments
API — Handle API
struct | []

Handle API, returned as a struct whose fields are the function handles that belong to the
interactive modular tool h. If h is not a handle to an interactive modular tool, then API is
returned as an empty array, [].

See Also
imdistline | imline | immagbox | imscrollpanel

Introduced before R2006a

 iptgetapi

1-2217

iptGetPointerBehavior
Retrieve pointer behavior from graphics object

Syntax
pointerBehavior = iptGetPointerBehavior(obj)

Description
pointerBehavior = iptGetPointerBehavior(obj) returns the pointer behavior
structure associated with the graphics object obj. A pointer behavior structure contains
function handles that interact with a figure's pointer manager (see iptPointerManager)
to control what happens when the figure's mouse pointer moves over and then exits the
object. See iptSetPointerBehavior for details.

If obj does not contain a pointer behavior structure, iptGetPointerBehavior returns
[].

See Also
iptPointerManager | iptSetPointerBehavior

Introduced in R2006a

1 Functions — Alphabetical List

1-2218

iptgetpref
Get values of Image Processing Toolbox preferences

Syntax
prefs = iptgetpref
value = iptgetpref(prefname)

Description
prefs = iptgetpref returns a structure containing all of the Image Processing
Toolbox preferences with their current values.

You can also use the Image Processing Toolbox Preferences dialog box to get the
preferences. To access the dialog box, click Preferences on the Home tab in the
MATLAB desktop, or call the iptprefs function.

value = iptgetpref(prefname) returns the value of the Image Processing Toolbox
preference specified by prefname.

Examples

Get Value of Single Image Processing Toolbox Preference
Get the value of the 'ImshowAxesVisible' preference.

value = iptgetpref('ImshowAxesVisible')

value =

off

 iptgetpref

1-2219

Input Arguments
prefname — Name of an Image Processing Toolbox preference
character vector | string scalar

Name of an Image Processing Toolbox preference, specified as one of the following.

• 'ImshowBorder'
• 'ImshowAxesVisible'
• 'ImshowInitialMagnification'
• 'ImtoolStartWithOverview'
• 'ImtoolInitialMagnification'
• 'UseIPPL'
• 'VolumeViewerUseHardware'

Data Types: char | string

Output Arguments
prefs — Value of all Image Processing Toolbox preferences
structure

Value of all Image Processing Toolbox preferences, returned as a structure. Each field in
the structure has the name of an Image Processing Toolbox preference.
Data Types: struct

value — Value of single Image Processing Toolbox preference
character vector | numeric scalar | logical scalar

Value of the Image Processing Toolbox preference prefname, returned as a character
vector, numeric scalar, or logical scalar.
Data Types: char | double | logical

1 Functions — Alphabetical List

1-2220

Tips
• You can also use the Image Processing Toolbox Preferences dialog box to get the

preferences. To access the dialog box, click Preferences on the Home tab in the
MATLAB desktop, or call the iptprefs function.

See Also
imshow | iptprefs | iptsetpref

Introduced before R2006a

 iptgetpref

1-2221

ipticondir
Directories containing Image Processing Toolbox and MATLAB icons

Syntax
[DirI,DirM] = ipticondir

Description
[DirI,DirM] = ipticondir returns the names of the directories containing Image
Processing Toolbox icons and MATLAB icons.

Examples

List Icons in Image Processing Toolbox
Get the directories containing the Image Processing Toolboxand MATLAB icons.

[iptdir, MATLABdir] = ipticondir

List the contents of the directory containing Image Processing Toolbox icons.

dir(iptdir)

Output Arguments
DirI — Directory containing Image Processing Toolbox icons
character vector

Directory containing Image Processing Toolbox icons, returned as a character vector.
Data Types: char

1 Functions — Alphabetical List

1-2222

DirM — Directory containing MATLAB icons
character vector

Directory containing MATLAB icons, returned as a character vector.
Data Types: char

See Also
imtool

Introduced before R2006a

 ipticondir

1-2223

iptnum2ordinal
Convert positive integer to ordinal character vector

Syntax
ordstr = iptnum2ordinal(number)

Description
ordstr = iptnum2ordinal(number) converts the positive integer number to the
ordinal character vector ordstr.

Examples

Convert Integers to Ordinal Numbers
Convert the number 4 to an ordinal number. The ordinal number is spelled out in entirety.

str = iptnum2ordinal(4)

str =

 'fourth'

Convert the number 23 to an ordinal number. The ordinal number consists of a numeral
and the ordinal suffix 'rd'.

str = iptnum2ordinal(23)

str =

 '23rd'

1 Functions — Alphabetical List

1-2224

Input Arguments
number — Positive integer
numeric scalar

Positive integer, specified as a numeric scalar.

Output Arguments
number — Ordinal number
character vector

Ordinal number, returned as a character vector.

• Numbers less than or equal to twenty are spelled out.
• Numbers greater than twenty consist of a numeral and an ordinal suffix: 'st' (for
"first"), 'nd' (for "second"), 'rd' (for "third"), or 'th'.

Data Types: char

Introduced before R2006a

 iptnum2ordinal

1-2225

iptPointerManager
Create pointer manager in figure

Syntax
iptPointerManager(hFigure)
iptPointerManager(hFigure,'disable')
iptPointerManager(hFigure,'enable')

Description
iptPointerManager(hFigure) creates a pointer manager in the specified figure. If the
figure contains a pointer behavior structure on page 1-2233, then the pointer manager
controls the pointer behavior for graphics objects in the figure. Use
iptSetPointerBehavior to associate a pointer behavior structure with a particular
object to define specific actions that occur when the mouse pointer moves over and then
leaves the object.

Note If the figure already contains a pointer manager, then
iptPointerManager(hFigure) does not create a new pointer manager. The syntax has
the same behavior as iptPointerManager(hFigure,'enable').

iptPointerManager(hFigure,'disable') disables the figure's pointer manager.

iptPointerManager(hFigure,'enable') enables and updates the figure's pointer
manager.

1 Functions — Alphabetical List

1-2226

Examples

Create Pointer Manager in Figure with Line Object
Plot a line. Create a pointer manager in the figure. Then, associate a pointer behavior
structure with the line object in the figure that changes the mouse pointer into a fleur
whenever the pointer is over it.

 h = plot(1:10);
 iptPointerManager(gcf);
 enterFcn = @(hFigure, currentPoint)...
 set(hFigure, 'Pointer', 'fleur');
 iptSetPointerBehavior(h, enterFcn);

Input Arguments
hFigure — Figure
Figure object

Figure, specified as a Figure object. For more information, see figure.

Tips
• iptPointerManager considers not just the object the pointer is over, but all objects

in the figure. iptPointerManager searches the graphics objects hierarchy to find
the first object that contains a pointer behavior structure. The iptPointerManager
then executes that object's pointer behavior function. For more information, see
“Graphics Object Hierarchy” (MATLAB).

For example, you could set the pointer to be a fleur and associate that pointer with the
axes. Then, when you slide the pointer into the figure window, it will initially be the
default pointer, then change to a fleur when you cross into the axes, and remain a fleur
when you slide over the objects parented to the axes.

See Also
iptGetPointerBehavior | iptSetPointerBehavior

 iptPointerManager

1-2227

Topics
“Graphics Object Hierarchy” (MATLAB)

Introduced in R2006a

1 Functions — Alphabetical List

1-2228

iptprefs
Display Image Processing Toolbox Preferences dialog box

Syntax
iptprefs

Description
iptprefs opens the Image Processing Toolbox Preferences dialog box, part of the
MATLAB Preferences dialog box. You can also open this dialog box by clicking
Preferences on the Home tab, in the Environment section.

The Image Processing Toolbox Preferences dialog box contains display preferences for imtool,
imshow, and provides an option for enabling hardware optimizations. For a list of all supported
preferences with information about how to set them at the command line, see iptsetpref. The
figure shows how the preferences relate to options in the Preferences dialog box.

 iptprefs

1-2229

Image Processing Toolbox Preferences Dialog Box

See Also
imshow | imtool | iptgetpref | iptsetpref

Introduced in R2009a

1 Functions — Alphabetical List

1-2230

iptremovecallback
Delete function handle from callback list

Syntax
iptremovecallback(h,callback,ID)

Description
iptremovecallback(h,callback,ID) deletes a callback from the list of callbacks
created by imaddcallback for the object with handle h and the associated callback,
specified by callback. ID is the identifier of the callback to be deleted. This ID is
returned by iptaddcallback when you add the function handle to the callback list.

Examples
Register three callbacks and try them interactively.

h = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
f3 = @(varargin) disp('Callback 3');
id1 = iptaddcallback(h, 'WindowButtonMotionFcn', f1);
id2 = iptaddcallback(h, 'WindowButtonMotionFcn', f2);
id3 = iptaddcallback(h, 'WindowButtonMotionFcn', f3);

Remove one of the callbacks and then move the mouse over the figure again. Whenever
MATLAB detects mouse motion over the figure, function handles f1 and f3 are called in
that order.

iptremovecallback(h, 'WindowButtonMotionFcn', id2);

See Also
iptaddcallback

 iptremovecallback

1-2231

Introduced before R2006a

1 Functions — Alphabetical List

1-2232

iptSetPointerBehavior
Store pointer behavior structure in graphics object

Syntax
iptSetPointerBehavior(obj, pointerBehavior)
iptSetPointerBehavior(obj, [])
iptSetPointerBehavior(obj, enterFcn)

Description
iptSetPointerBehavior(obj, pointerBehavior) stores the specified pointer
behavior structure in the specified graphics object, obj. If obj is an array of objects,
iptSetPointerBehavior stores the same structure in each object.

When used with a figure’s pointer manager (see iptPointerManager), a pointer
behavior structure controls what happens when the figure's mouse pointer moves over
and then exits an object in the figure. For details about this structure, see “Pointer
Behavior Structure” on page 1-2233.

iptSetPointerBehavior(obj, []) clears the pointer behavior from the graphics
object or objects.

iptSetPointerBehavior(obj, enterFcn) creates a pointer behavior structure,
setting the enterFcn field to the function handle specified, and setting the
traverseFcn and exitFcn fields to []. See “Pointer Behavior Structure” on page 1-
2233 for details about these fields. This syntax is provided as a convenience because, for
most common uses, only the enterFcn is necessary.

Pointer Behavior Structure
A pointer behavior structure contains three fields: enterFcn, traverseFcn, and
exitFcn. You set the value of these fields to function handles and use the
iptSetPointerBehavior function to associate this structure with a graphics object in a
figure. If the figure has a pointer manager installed, the pointer manager calls these
functions when the following events occur. If you set a field to[], no action is taken.

 iptSetPointerBehavior

1-2233

Function Handle When Called
enterFcn Called when the mouse pointer moves over the object.
traverseFcn Called once when the mouse pointer moves over the

object, and called again each time the mouse moves
within the object.

exitFcn Called when the mouse pointer leaves the object.

When the pointer manager calls the functions you create, it passes two arguments: the
figure object and the current position of the pointer.

Examples

Example 1
Change the mouse pointer to a fleur whenever it is over a specific object and restore the
original pointer when the mouse pointer moves off the object. The example creates a
patch object and associates a pointer behavior structure with the object. Because this
scenario requires only an enterFcn, the example uses the
iptSetPointerBehavior(obj, enterFcn) syntax. The example then creates a
pointer manager in the figure. Note that the pointer manager takes care of restoring the
original figure pointer.

 patchobj = patch([.25 .75 .75 .25 .25],...
 [.25 .25 .75 .75 .25], 'r');
 xlim([0 1]);
 ylim([0 1]);

 enterFcn = @(fig, currentPoint)...
 set(fig, 'Pointer', 'fleur');
 iptSetPointerBehavior(patchobj, enterFcn);
 iptPointerManager(gcf);

Example 2
Change the appearance of the mouse pointer, depending on where it is within the object.
This example sets up the pointer behavior structure, setting the enterFcn and exitFcn
fields to [], and setting traverseFcn to a function named overMe that handles the
position-specific behavior. overMe is an example function (in \toolbox\images

1 Functions — Alphabetical List

1-2234

\imdemos) that varies the mouse pointer depending on the location of the mouse within
the object. For more information, edit overMe.

patchobj = patch([.25 .75 .75 .25 .25],...
 [.25 .25 .75 .75 .25], 'r');
xlim([0 1])
ylim([0 1])

pointerBehavior.enterFcn = [];
pointerBehavior.exitFcn = [];
pointerBehavior.traverseFcn = @overMe;

iptSetPointerBehavior(patchobj, pointerBehavior);
iptPointerManager(gcf);

Example 3
Change the figure's title when the mouse pointer is over the object. In this scenario,
enterFcn and exitFcn are used to achieve the desired effect, and traverseFcn is [].

 patchobj = patch([.25 .75 .75 .25 .25],...
 [.25 .25 .75 .75 .25], 'r');
 xlim([0 1])
 ylim([0 1])

 pointerBehavior.enterFcn = ...
 @(fig, currentPoint)...
 set(fig, 'Name', 'Over patch');
 pointerBehavior.exitFcn = ...
 @(fig, currentPoint) set(fig, 'Name', '');
 pointerBehavior.traverseFcn = [];

 iptSetPointerBehavior(patchobj, pointerBehavior);
 iptPointerManager(gcf)

See Also
iptGetPointerBehavior | iptPointerManager

Introduced in R2006a

 iptSetPointerBehavior

1-2235

iptsetpref
Set Image Processing Toolbox preferences or display valid values

Syntax
iptsetpref(prefname)
iptsetpref(prefname,prefvalue)

Description
iptsetpref(prefname) displays the valid values for the Image Processing Toolbox
preference specified by prefname.

iptsetpref(prefname,prefvalue) sets the Image Processing Toolbox preference
specified by the prefname to the value specified by prefvalue. The setting persists until
you change it.

You can also use the Image Processing Toolbox Preferences dialog box to set the
preferences. To access the dialog box, click Preferences on the Home tab in the
MATLAB desktop, or call the iptprefs function.

Examples

Set Image Processing Toolbox Preference

iptsetpref('ImshowBorder','tight')

Input Arguments
prefname — Name of an Image Processing Toolbox preference
character vector

1 Functions — Alphabetical List

1-2236

Name of an Image Processing Toolbox preference, specified as one of the following
character vectors.

The following table details the available preferences and their syntaxes. Note that
preference names are case insensitive and you can abbreviate them. The default value
appears enclosed in braces ({}).

 iptsetpref

1-2237

Image Processing Toolbox Preferences

Preference Name Description
'ImshowAxesVisible' Controls whether imshow displays images with

the axes box and tick labels. Possible values:

'on' — Include axes box and tick labels.

{'off'} — Do not include axes box and tick
labels.

'ImshowBorder' Controls whether imshow includes a border
around the image in the figure window. Possible
values:

{'loose'} — Include a border between the
image and the edges of the figure window, thus
leaving room for axes labels, titles, etc.

'tight' — Adjust the figure size so that the
image entirely fills the figure.

Note There still can be a border if the image is
very small, or if there are other objects besides
the image and its axes in the figure.

You can override this preference by specifying
the 'Border' parameter when you call imshow.

1 Functions — Alphabetical List

1-2238

Preference Name Description
'ImshowInitialMagnification' Controls the initial magnification of the image

displayed by imshow. Possible values:

Any numeric value — imshow interprets numeric
values as a percentage. The default value is 100.
A magnification of 100% means that there should
be one screen pixel for every image pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying
the 'InitialMagnification' parameter
when you call imshow, or by calling the
truesize function manually after displaying the
image.

'ImtoolInitialMagnification' Controls the initial magnification of the image
displayed by imtool. Possible values:

{'adaptive'} — Display the entire image. If
the image is too large to display on the screen at
100% magnification, display the image at the
largest magnification that fits on the screen. This
is the default.

Any numeric value — Specify the magnification
as a percentage. A magnification of 100% means
that there should be one screen pixel for every
image pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying
the 'InitialMagnification' parameter
when you call imtool.

 iptsetpref

1-2239

Preference Name Description
'ImtoolStartWithOverview' Controls whether the Overview tool opens

automatically when you open an image using the
Image Tool (imtool). Possible values:

true — Overview tool opens when you open an
image.

{false} — Overview tool does not open when
you open an image. This is the default behavior.

'VolumeViewerUseHardware' Controls whether the volumeViewer app uses
OpenGL shaders on the local graphics hardware
to optimize volume rendering. Possible values:

{true} — Enable hardware optimization.

false — Disable hardware optimization.

Note Note: Setting this preference to false has
the side effect of removing certain functionality
from the app and will drastically slow down
rendering performance. This preference should
only be set to false in technical support scenarios
to resolve problems with graphics drivers.

'UseIPPL' Controls whether some toolbox functions use
hardware optimization or not. Possible values:

{true} — Enable hardware optimization

false — Disable hardware optimization

Note Note: Setting this preference value clears
all loaded MEX-files.

Data Types: char

1 Functions — Alphabetical List

1-2240

prefvalue — Value you want to assign to an Image Processing Toolbox
preference
character vector | numeric scalar | logical scalar

Value you want to assign to an Image Processing Toolbox preference, specified as one of
the values listed in the table in prefname.
Example: iptsetpref('ImshowBorder','tight')

See Also
Volume Viewer | imshow | imtool | iptgetpref | iptprefs

Introduced before R2006a

 iptsetpref

1-2241

iptwindowalign
Align figure windows

Syntax
iptwindowalign(fixed_fig,fixed_edge, moving_fig,moving_edge)

Description
iptwindowalign(fixed_fig,fixed_edge, moving_fig,moving_edge) aligns the
edge moving_edge of figure moving_fig with the edge fixed_edge of figure
fixed_fig.

You can align two figure windows along the top, bottom, left, or right edges. You can also
center the figures horizontally or vertically. The figure shows the possible alignments.

1 Functions — Alphabetical List

1-2242

Examples

Align Two Figure Windows
To illustrate some possible figure window alignments, first create two figures: fig1 and
fig2. Initially, fig2 overlays fig1 on the screen.

fig1 = figure;
fig2 = figure;

Use iptwindowalign to move fig2 so its left edge is aligned with the right edge of
fig1.

iptwindowalign(fig1,'right',fig2,'left');

Now move fig2 so its top edge is aligned with the bottom edge of fig1.

iptwindowalign(fig1,'bottom',fig2,'top');

 iptwindowalign

1-2243

Now move fig2 so the two figures are centered horizontally.

iptwindowalign(fig1,'hcenter',fig2,'hcenter');

1 Functions — Alphabetical List

1-2244

Input Arguments
fixed_fig — Fixed figure window
handle

Fixed figure window, specified as a handle to a figure.

fixed_edge — Alignment of fixed figure window
'left' | 'right' | 'hcenter' | 'top' | 'bottom' | 'vcenter'

Alignment of the fixed figure window, specified as 'left', 'right', 'hcenter', 'top',
'bottom', or 'vcenter'. To center the figures horizontally, use 'hcenter'. To center
the figures vertically, use 'vcenter'.

moving_fig — fixed
numeric array

Moving figure window, specified as a handle to a figure.

 iptwindowalign

1-2245

moving_edge — Alignment of moving figure window
'left' | 'right' | 'hcenter' | 'top' | 'bottom' | 'vcenter'

Alignment of the moving figure window, specified as 'left', 'right', 'hcenter',
'top', 'bottom', or 'vcenter'. To center the figures vertically, use 'vcenter'.

Tips
• The two specified edges must be consistent in terms of their direction. For example,

you cannot specify 'left' for fixed_edge and 'bottom' for moving_edge.
• iptwindowalign constrains the position adjustment of moving_fig to keep the
figure entirely visible on the screen.

• iptwindowalign has no effect if either figure window is docked.

See Also
imtool

Introduced before R2006a

1 Functions — Alphabetical List

1-2246

iradon
Inverse Radon transform

Syntax
I = iradon(R,theta)
I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
[I,H] = iradon(___)

Description
I = iradon(R,theta) reconstructs the image I from projection data in R. theta
describes the angles (in degrees) at which the projections were taken.

You optionally can compute the inverse Radon transform using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
specifies parameters to use in the inverse Radon transform. You can specify any
combination of the last four arguments. iradon uses default values for arguments that
you omit.

[I,H] = iradon(___) also returns the frequency response of the filter, H.

Examples

Compare Filtered and Unfiltered Backprojection

Create an image of the phantom. Display the image.

P = phantom(128);
imshow(P)
title('Original image')

 iradon

1-2247

Perform a Radon transform of the image.

R = radon(P,0:179);

Perform filtered backprojection.

I1 = iradon(R,0:179);

Perform unfiltered backprojection.

I2 = iradon(R,0:179,'linear','none');

Display the reconstructed images.

figure
subplot(1,2,1)
imshow(I1,[])
title('Filtered Backprojection')
subplot(1,2,2)
imshow(I2,[])
title('Unfiltered Backprojection')

1 Functions — Alphabetical List

1-2248

Examine Backprojection at a Single Angle

Create an image of the phantom.

P = phantom(128);

Perform a Radon transform of the image, then get the projection vector corresponding to
a projection at a 45 degree angle.

R = radon(P,0:179);
r45 = R(:,46);

 iradon

1-2249

Perform the inverse Radon transform of this single projection vector. The iradon syntax
does not allow you to do this directly, because if theta is a scalar it is treated as an
increment. You can accomplish the task by passing in two copies of the projection vector
and then dividing the result by 2.

I = iradon([r45 r45], [45 45])/2;

Display the result.

imshow(I, [])
title('Backprojection from 45 degrees')

Calculate Inverse Radon Transform on a GPU

Calculate the inverse Radon transform on a GPU.

P = gpuArray(phantom(128));
R = radon(P,0:179);
I1 = iradon(R,0:179);
I2 = iradon(R,0:179,'linear','none');
subplot(1,3,1), imshow(P), title('Original')

1 Functions — Alphabetical List

1-2250

subplot(1,3,2), imshow(I1), title('Filtered backprojection')
subplot(1,3,3), imshow(I2,[]), title('Unfiltered backprojection')

Input Arguments
R — Parallel beam projection data
numeric column vector | numeric matrix | gpuArray

Parallel beam projection data, specified as one of the following.

• If theta is a scalar, then specify R as a numeric column vector containing the Radon
transform for theta degrees.

• If theta is a vector, then specify R as a 2-D matrix in which each column is the Radon
transform for one of the angles in theta.

To calculate the inverse Radon transform using a GPU, specify R as a gpuArray that
contains a numeric column vector or numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

theta — Projection angles
numeric vector | numeric scalar | [] | gpuArray

Projection angles (in degrees), specified as one of the following.

Value Description
numeric vector Projection angles. There must be equal spacing between the

angles.
numeric scalar Incremental angle between projections. Projections are taken at

angles m*theta, where m = 0,1,2,...,size(R,2)-1.
[] Automatically set the incremental angle between projections to

180/size(R,2)

To calculate the inverse Radon transform using a GPU, you optionally can specify theta
as a gpuArray that contains a numeric vector or scalar.
Data Types: double

 iradon

1-2251

interp — Type of interpolation
'linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation to use in the back projection, specified as one of these values, listed
in order of increasing accuracy and computational complexity.

Value Description
'nearest' Nearest-neighbor interpolation
'linear' Linear interpolation (the default)
'spline' Spline interpolation
'pchip' Shape-preserving piecewise cubic interpolation

If you calculate the inverse Radon transform using a GPU, then interp must be
'nearest' or 'linear'.
Data Types: char | string

filter — Filter
'Ram-Lak' (default) | 'Shepp-Logan' | 'Cosine' | 'Hamming' | 'Hann' | 'None'

Filter to use for frequency domain filtering, specified as one of these values.

Value Description
'Ram-Lak' Cropped Ram-Lak or ramp filter. The frequency response of this

filter is | f |. Because this filter is sensitive to noise in the
projections, one of the filters listed below might be preferable.
These filters multiply the Ram-Lak filter by a window that de-
emphasizes high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function
'Cosine' Multiplies the Ram-Lak filter by a cosine function
'Hamming' Multiplies the Ram-Lak filter by a Hamming window
'Hann' Multiplies the Ram-Lak filter by a Hann window
'None' No filtering. iradon returns unfiltered backprojection data.

Data Types: char | string

frequency_scaling — Scale factor
1 (default) | positive number in the range (0, 1]

1 Functions — Alphabetical List

1-2252

Scale factor for rescaling the frequency axis, specified as a positive number in the range
(0, 1]. If frequency_scaling is less than 1, then the filter is compressed to fit into the
frequency range [0,frequency_scaling], in normalized frequencies; all frequencies
above frequency_scaling are set to 0.

output_size — Number of rows and columns in the reconstructed image
positive integer

Number of rows and columns in the reconstructed image, specified as a positive integer.
If output_size is not specified, the size is determined from the length of the projections
according to:

output_size = 2*floor(size(R,1)/(2*sqrt(2)))

If you specify output_size, then iradon reconstructs a smaller or larger portion of the
image but does not change the scaling of the data. If the projections were calculated with
the radon function, then the reconstructed image might not be the same size as the
original image.

Output Arguments
I — Grayscale image
numeric matrix | gpuArray

Grayscale image, returned as a numeric matrix. If input projection data R is data type
single, then I is single; otherwise I is double.

If the inverse Radon transform is computed using a GPU, then I is returned as a
gpuArray containing a numeric matrix.
Data Types: single | double

H — Frequency response
numeric vector

Frequency response of the filter, returned as a numeric vector.

If the inverse Radon transform is computed using a GPU, then I is returned as a
gpuArray containing a numeric vector.
Data Types: double

 iradon

1-2253

Algorithms
iradon assumes that the center of rotation is the center point of the projections, which is
defined as ceil(size(R,1)/2).

iradon uses the filtered back projection algorithm to perform the inverse Radon
transform. The filter is designed directly in the frequency domain and then multiplied by
the FFT of the projections. The projections are zero-padded to a power of 2 before
filtering to prevent spatial domain aliasing and to speed up the FFT.

References
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New

York, NY, IEEE Press, 1988.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The GPU implementation of this function supports only nearest-neighbor and linear
interpolation methods.

For more information, see “Image Processing on a GPU”.

See Also
fan2para | fanbeam | ifanbeam | para2fan | phantom | radon

Introduced before R2006a

1 Functions — Alphabetical List

1-2254

isflat
True for flat structuring element

Note isflat will be removed in a future release. See strel for the current list of
methods.

Syntax
TF = isflat(SE)

Description
TF = isflat(SE) returns true (1) if the structuring element SE is flat; otherwise the
function returns false (0).

Input Arguments
SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel
objects

Structuring element, specified as a strel object, an array of strel objects, an
offsetstrel object, or an array of offsetstrel objects.

Output Arguments
TF — Structuring element is flat
logical scalar | logical array

Structuring element SE is flat, returned as a logical scalar or logical array of the same
size as SE. If the structuring element consists of offsetstrel objects, then TF is false
regardless of the neighborhood.

 isflat

1-2255

Data Types: logical

See Also

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions — Alphabetical List

1-2256

isicc
Check for valid ICC profile data

Syntax
tf = isicc(profile)

Description
tf = isicc(profile) checks if the input profile is a valid International Color
Consortium (ICC) profile data. The function returns a logical value that indicates if the
input is a valid ICC profile.

Examples

Check if ICC Profile Data is Valid

Read in an ICC profile data into the workspace.

profile = iccread('sRGB.icm');

Check if profile is a valid ICC profile data. The function returns logical 1 (true).

tf = isicc(profile)

tf = logical
 1

Create a new ICC profile data without the header and copyright fields. Use rmfield to
remove the 'Header' and 'Copyright' fields from the ICC profile data structure.

newProfile = rmfield(profile,{'Header','Copyright'});

 isicc

1-2257

Inspect the new profile data to verify that the 'Header' and 'Copyright' fields are
removed.

newProfile

newProfile = struct with fields:
 TagTable: {17x3 cell}
 Description: [1x1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 DeviceMfgDesc: [1x1 struct]
 DeviceModelDesc: [1x1 struct]
 ViewingCondDesc: [1x1 struct]
 ViewingConditions: [1x1 struct]
 Luminance: [76.0365 80 87.1246]
 Measurement: [1x1 struct]
 Technology: 'Cathode Ray Tube Display'
 MatTRC: [1x1 struct]
 PrivateTags: {}
 Filename: 'sRGB.icm'

Check if newProfile is a valid ICC profile data. The function returns logical 0 (false).

tf = isicc(newProfile)

tf = logical
 0

Input Arguments
profile — ICC profile data
structure array

ICC profile data, specified as a structure array, represents an ICC profile in the data
format returned by iccread. The ICC profile data must contain all the tags and fields
required by the ICC profile specification.
Data Types: struct

1 Functions — Alphabetical List

1-2258

Output Arguments
tf — Valid ICC profile
1 (true) | 0 (false)

Valid ICC profile, returned as logical 1 (true) when the input is a valid ICC profile data,
and logical 0 (false) otherwise.

Algorithms
isicc checks if profile has a complete set of the tags required for an ICC profile.
profile must contain a Header field, which in turn must contain a Version field and a
DeviceClass field. These fields along with others, are used to determine the set of
required tags according to the ICC profile specification. The required tags for ICC profile
specifications related to Version 2 (ICC.1:2001-04) and Version 4 (ICC.1:2001-12) are
available at www.color.org.

See Also
applycform | iccread | iccwrite | makecform

Introduced before R2006a

 isicc

1-2259

http://www.color.org

isnitf
Check if file is National Imagery Transmission Format (NITF) file

Syntax
[tf, NITF_version] = isnitf(filename)

Description
[tf, NITF_version] = isnitf(filename) returns True (1) if the file specified by
filename is a National Imagery Transmission Format (NITF) file, otherwise False (0). If
the file is a NITF file, isnitf returns a character vector identifying the NITF version in
NITF_version, such as '2.1'. If the file is not a NITF file, NITF_version contains the
character vector 'UNK'.

See Also
nitfinfo | nitfread

Introduced in R2007b

1 Functions — Alphabetical List

1-2260

isRigid
Determine if transformation is rigid transformation

Syntax
TF = isRigid(tform)

Description
TF = isRigid(tform) determines whether or not the affine transformation specified
by tform is a rigid transformation.

Examples

Check If 2-D Transformation Is Rigid

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Test if it is a rigid transformation.

tf = isRigid(tform)

 isRigid

1-2261

tf =

 1

Check If 3-D Transformation Is Rigid

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =

 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is rigid.

TF = isRigid(tform)

TF =

 0

Input Arguments
tform — Geometric transformation
affine2d or affine3d geometric transformation object

Geometric transformation, specified as an affine2d or affine3d geometric
transformation object.

Output Arguments
TF — Flag indicating rigid transformation
scalar

1 Functions — Alphabetical List

1-2262

Flag indicating rigid transformation, returned as a logical scalar. TF is True when tform
is a rigid transformation.
Data Types: logical

Definitions

Rigid Transformation
A rigid transformation includes only rotation and translation. It does not include
reflection, and it does not modify the size or shape of an input object.

See Also
isSimilarity | isTranslation

Introduced in R2013a

 isRigid

1-2263

isrset
Check if file is valid R-Set file

Syntax
[tf,supported] = isrset(filename)

Description
[tf,supported] = isrset(filename) checks if the specified file is a valid reduced
resolution dataset (R-Set) file.

Logical scalar tf indicates if the file is an R-Set file. Logical scalar supported confirms
if input is an R-Set file compatible with the current version of the Image Processing
Toolbox. If the function returns true for both tf and supported, the specified file is a
valid R-Set file.

Examples

Check If File Is Valid R-Set File

Load a file into the workspace.

filename = 'MandiRset';

Check if the file is a valid R-Set file. Confirm if both outputs are true.

[tf,supported] = isrset(filename)

tf = logical
 1

1 Functions — Alphabetical List

1-2264

supported = logical
 1

Input Arguments
filename — Name of the file
character vector | string scalar

Name of the file, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
tf — R-Set file type validation
logical scalar

R-Set file type validation, returned as a logical scalar.

• 1(true) — The input file is an R-Set file.
• 0(false) — The input file is not an R-Set file.

Data Types: logical

supported — Version support validation
logical scalar

Version support validation, returned as a logical scalar.

• 1(true) — The specified file is an R-Set file created using a version of the
rsetwrite function that is compatible with the version of the Image Processing
Toolbox used to read the R-Set file.

• 0(false) — The specified file is either:

• Not an R-Set file
• An R-Set file created using a version of the rsetwrite function that is not

compatible with the version of the Image Processing Toolbox used to read the R-Set
file.

 isrset

1-2265

Data Types: logical

See Also
openrset | rsetwrite

Topics
“Create and Open Reduced Resolution Files”

Introduced in R2009a

1 Functions — Alphabetical List

1-2266

isSimilarity
Determine if transformation is similarity transformation

Syntax
TF = isSimilarity(tform)

Description
TF = isSimilarity(tform) determines whether or not the affine transformation
specified by tform is a similarity transformation.

Examples

Check if 2-D transformation is a similarity transformation

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Check if transformation is a similarity transformation.

tf = isSimilarity(tform)

 isSimilarity

1-2267

tf =

 1

Check if 3-D transformation is a similarity transformation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =

 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is a similarity transformation.

TF = isSimilarity(tform)

TF =

 0

Input Arguments
tform — Geometric transformation
affine2d or affine3d geometric transformation object

Geometric transformation, specified as an affine2d or affine3d geometric
transformation object.

Output Arguments
TF — Flag indicating similarity transformation
scalar

1 Functions — Alphabetical List

1-2268

Flag indicating similarity transformation, returned as a logical scalar. TF is True when
tform is a similarity transformation.
Data Types: logical

Definitions

Similarity Transformation
A similarity transformation includes only rotation, translation, isotropic scaling, and
reflection. A similarity transformation does not modify the shape of an input object.
Straight lines remain straight, and parallel lines remain parallel.

Note isSimilarity returns True if the transformation includes reflection. Some
toolbox functions, such as imregister, support only non-reflective similarity. Other
functions, such as fitgeotrans, support reflection.

See Also
isRigid | isTranslation

Introduced in R2013a

 isSimilarity

1-2269

isTranslation
Determine if transformation is pure translation

Syntax
TF = isTranslation(tform)

Description
TF = isTranslation(tform) determines whether or not the affine transformation
specified by tform is a pure translation.

Examples

Check If 2-D Transformation Is a Pure Translation

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Check if the transformation is a pure translation.

tf = isTranslation(tform)

1 Functions — Alphabetical List

1-2270

tf =

 1

Check If 3-D Transformation Is a Pure Translation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1]);

tf =

 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is a pure translation. Since tform scales the object,

tf = isTranslation(tform)

tf =

 0

As expected, the transformation is not a pure translation since scaling changes the size
and shape of an input volume.

Input Arguments
tform — Geometric transformation
affine2d or affine3d geometric transformation object

Geometric transformation, specified as an affine2d or affine3d geometric
transformation object.

 isTranslation

1-2271

Output Arguments
TF — Flag indicating pure translation transformation
scalar

Flag indicating pure translation transformation, returned as a logical scalar. TF is True
when tform represents a pure translation.
Data Types: logical

Definitions

Translation Transformation
A translation transformation shifts an image without modifying the image size, shape, or
orientation. A 2-D translation is represented by a matrix T of the form:

 [1 0 0;
 0 1 0;
 e f 1];

A 3-D translation is represented by a matrix of the form:

 [1 0 0 0;
 0 1 0 0;
 0 0 1 0;
 j k l 1];

See Also
isRigid | isSimilarity

Introduced in R2013a

1 Functions — Alphabetical List

1-2272

jaccard
Jaccard similarity coefficient for image segmentation

Syntax
similarity = jaccard(BW1,BW2)
similarity = jaccard(L1,L2)
similarity = jaccard(C1,C2)

Description
similarity = jaccard(BW1,BW2) computes the intersection of binary images BW1
and BW2 divided by the union of BW1 and BW2, also known as the Jaccard index. The
images can be binary images, label images, or categorical images.

similarity = jaccard(L1,L2) computes the Jaccard index for each label in label
images L1 and L2.

similarity = jaccard(C1,C2) computes the Jaccard index for each category in
categorical images C1 and C2.

Examples

Compute Jaccard Similarity Coefficient for Binary Segmentation

Read an image containing an object to segment. Convert the image to grayscale, and
display the result.

A = imread('hands1.jpg');
I = rgb2gray(A);
figure
imshow(I)
title('Original Image')

 jaccard

1-2273

Use the active contours (snakes) method to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read in the ground truth against which to compare the segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the Jaccard index of this segmentation.

similarity = jaccard(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW_groundTruth)
title(['Jaccard Index = ' num2str(similarity)])

1 Functions — Alphabetical List

1-2274

Compute Jaccard Similarity Coefficient for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then
computes the Jaccard similarity coefficient for each region.

Read in an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The
first region classifies the yellow flower. The second region classifies the green stem and
leaves. The last region classifies the brown dirt in two separate patches of the image.
Regions are specified by a 4-element vector, whose elements indicate the x- and y-
coordinate of the upper left corner of the ROI, the width of the ROI, and the height of the
ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));

 jaccard

1-2275

BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

figure
imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed Regions')

1 Functions — Alphabetical List

1-2276

 jaccard

1-2277

Segment the image into three regions using geodesic distance-based color segmentation.

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth),'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the Jaccard similarity index (IoU) for each segmented region.

similarity = jaccard(L, L_groundTruth)

1 Functions — Alphabetical List

1-2278

similarity = 3×1

 0.8861
 0.5683
 0.8414

The Jaccard similarity index is noticeably smaller for the second region. This result is
consistent with the visual comparison of the segmentation results, which erroneously
classifies the dirt in the lower right corner of the image as leaves.

Input Arguments
BW1 — First binary image
logical array

First binary image, specified as a logical array of any dimension.
Data Types: logical

BW2 — Second binary image
logical array

Second binary image, specified as a logical array of the same size as BW1.
Data Types: logical

L1 — First label image
array of nonnegative integers

First label image, specified as an array of nonnegative integers, of any dimension.
Data Types: double

L2 — Second label image
array of nonnegative integers

Second label image, specified as an array of nonnegative integers, of the same size as L1.
Data Types: double

C1 — First categorical image
categorical array

 jaccard

1-2279

First categorical image, specified as a categorical array of any dimension.
Data Types: category

C2 — Second categorical image
categorical array

Second categorical image, specified as a categorical array of the same size as C1.
Data Types: category

Output Arguments
similarity — Jaccard similarity coefficient
numeric scalar | numeric vector

Jaccard similarity coefficient, returned as a numeric scalar or numeric vector with values
in the range [0, 1]. A similarity of 1 means that the segmentations in the two images
are a perfect match. If the input arrays are:

• binary images, similarity is a scalar.
• label images, similarity is a vector, where the first coefficient is the Jaccard index

for label 1, the second coefficient is the Jaccard index for label 2, and so on.
• categorical images, similarity is a vector, where the first coefficient is the Jaccard

index for the first category, the second coefficient is the Jaccard index for the second
category, and so on.

Data Types: double

Definitions
Jaccard Similarity Coefficient
The Jaccard similarity coefficient of two sets A and B (also known as intersection over
union or IoU) is expressed as:

jaccard(A,B) = | intersection(A,B) | / | union(A,B) |
where |A| represents the cardinal of set A. The Jaccard index can also be expressed in
terms of true positives (TP), false positives (FP) and false negatives (FN) as:

1 Functions — Alphabetical List

1-2280

jaccard(A,B) = TP / (TP + FP + FN)

The Jaccard index is related to the Dice index according to:
jaccard(A,B) = dice(A,B) / (2 - dice(A,B))

See Also
bfscore | dice

Introduced in R2017b

 jaccard

1-2281

lab2double
Convert L*a*b* color values to double

Syntax
labD = lab2double(lab)

Description
labD = lab2double(lab) converts L*a*b* color values to type double.

Examples

Convert L*a*b* Color Values to double

This example shows how to convert uint8 L*a*b* values to double.

Create a uint8 vector specifying the color white in L*a*b* colorspace.

w = uint8([255 128 128]);

Convert the L*a*b* color value to double.

lab2double(w)

ans = 1×3

 100 0 0

1 Functions — Alphabetical List

1-2282

Input Arguments
lab — Color values to convert
m-by-3 matrix | m-by-n-by-3 image array

Color values to convert, specified as a m-by-3 matrix of color values (one color per row),
or an m-by-n-by-3 image array. The input lab matrix must be real and nonsparse.
Data Types: uint8 | uint16

Output Arguments
labD — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: double

Algorithms
The function converts the L*a*b* color values to type double. The Image Processing
Toolbox software follows the convention that double-precision L*a*b* arrays contain 1976
CIE L*a*b* values. The L*a*b* arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for representing L*a*b*
values as unsigned 8-bit or 16-bit integers. The ICC encoding convention is illustrated by
these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768

 lab2double

1-2283

Value (a* or b*) uint8 Value uint16 Value
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2uint16 | lab2uint8 | makecform | whitepoint | xyz2double |
xyz2uint16

Introduced in R2006a

1 Functions — Alphabetical List

1-2284

lab2rgb
Convert CIE 1976 L*a*b* to RGB

Syntax
rgb = lab2rgb(lab)
rgb = lab2rgb(lab,Name,Value)

Description
rgb = lab2rgb(lab) converts CIE 1976 L*a*b* values to sRGB values.

rgb = lab2rgb(lab,Name,Value) specifies additional conversion options, such as the
color space of the RGB image, using one or more name-value pair arguments.

Examples

Convert L*a*b* Color to RGB

Convert a color value in the L*a*b* color space to standard RGB color space.

lab2rgb([70 5 10])

ans = 1×3

 0.7359 0.6566 0.6010

Convert L*a*b* Color to Adobe RGB

Convert a color value in L*a*b* color space to the Adobe RGB (1998) color space.

lab2rgb([70 5 10],'ColorSpace','adobe-rgb-1998')

 lab2rgb

1-2285

ans = 1×3

 0.7086 0.6507 0.5978

Convert L*a*b* Color to RGB Specifying Whitepoint

Convert an L*a*b* color value to standard RGB specifying the D50 whitepoint.

lab2rgb([70 5 10],'WhitePoint','d50')

ans = 1×3

 0.7282 0.6573 0.6007

Convert L*a*b* Color to 8-bit-encoded RGB Color

Convert an L*a*b* color value to an 8-bit encoded RGB color value.

lab2rgb([70 5 10],'OutputType','uint8')

ans = 1x3 uint8 row vector

 188 167 153

Input Arguments
lab — L*a*b* color values
numeric array

L*a*b* color values to convert, specified as a numeric array in one of the following
formats.

• c-by-3 colormap. Each row specifies one XYZ color value.

1 Functions — Alphabetical List

1-2286

• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: lab2rgb([70 5 10],'WhitePoint','d50')

ColorSpace — Color space of the output RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the output RGB values, specified as the comma-separated pair consisting
of 'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify
'linear-rgb', then lab2rgb returns linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of
'WhitePoint' and a 1-by-3 vector or one of the CIE standard illuminants listed in the
following table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a
theoretical reference.

 lab2rgb

1-2287

Value White Point
'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates

warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: single | double | char

OutputType — Data type of returned RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of returned RGB values, specified as one of the following values: 'double',
'single', 'uint8', or 'uint16'. If you do not specify OutputType, the output type is
the same type as the input.
Data Types: char

Output Arguments
rgb — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same shape as the input.
The output type is the same as the input type unless you specify the OutputType
parameter.

1 Functions — Alphabetical List

1-2288

Tips
• If you specify the output RGB color space as 'linear-rgb', then the output values

are linearized sRGB values. If instead you want the output color space to be linearized
Adobe RGB (1998), then you can use the rgb2lin function.

For example, to convert CIE 1976 L*a*b* image LAB to linearized Adobe RGB (1998)
color space, perform the conversion in two steps:

RGBadobe = lab2rgb(LAB,'ColorSpace','adobe-rgb-1998');
RGBlinadobe = rgb2lin(RGBadobe,'ColorSpace','adobe-rgb-1998');

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• lab2rgb supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all character vector input arguments must be compile-time
constants.

See Also
lab2xyz | rgb2lab | xyz2rgb

Introduced in R2014b

 lab2rgb

1-2289

lab2uint16
Convert L*a*b color values to uint16

Syntax
lab16 = lab2uint16(lab)

Description
lab16 = lab2uint16(lab) converts L*a*b* color values to type uint16.

Examples

Convert L*a*b* Color Values to uint16

This example shows how to convert L*a*b* color values from double to uint16.

Create a double vector specifying the color white in L*a*b* colorspace.

w = [100 0 0];

Convert the L*a*b* color value to uint16.

lab2uint16(w)

ans = 1x3 uint16 row vector

 65280 32768 32768

1 Functions — Alphabetical List

1-2290

Input Arguments
lab — Color values to convert
m-by-3 matrix | m-by-n-by-3 image array

Color values to convert, specified as a m-by-3 matrix of color values (one color per row),
or an m-by-n-by-3 image array. The input lab matrix must be real and nonsparse.
Data Types: double | uint8

Output Arguments
lab16 — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: uint16

Algorithms
The function converts the L*a*b* color values to type uint16. The Image Processing
Toolbox software follows the convention that double-precision L*a*b* arrays contain 1976
CIE L*a*b* values. The L*a*b* arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for representing L*a*b*
values as unsigned 8-bit or 16-bit integers. The ICC encoding convention is illustrated by
these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768

 lab2uint16

1-2291

Value (a* or b*) uint8 Value uint16 Value
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2double | lab2uint8 | makecform | whitepoint | xyz2double |
xyz2uint16

Introduced before R2006a

1 Functions — Alphabetical List

1-2292

lab2uint8
Convert L*a*b color values to uint8

Syntax
lab8 = lab2uint8(lab)

Description
lab8 = lab2uint8(lab) converts L*a*b* color values to type uint8.

Examples

Convert L*a*b* Color Values to uint8

This example shows how to convert L*a*b* color values from double to uint8.

Create a double vector specifying the color white in L*a*b* colorspace.

w = [100 0 0];

Convert the L*a*b* color value to uint8.

lab2uint8(w)

ans = 1x3 uint8 row vector

 255 128 128

 lab2uint8

1-2293

Input Arguments
lab — Color values to convert
m-by-3 matrix | m-by-n-by-3 image array

Color values to convert, specified as a m-by-3 matrix of color values (one color per row),
or an m-by-n-by-3 image array. The input lab matrix must be real and nonsparse.
Data Types: double | uint16

Output Arguments
lab8 — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: uint8

Algorithms
The function converts the L*a*b* color values to type uint8. The Image Processing
Toolbox software follows the convention that double-precision L*a*b* arrays contain 1976
CIE L*a*b* values. The L*a*b* arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for representing L*a*b*
values as unsigned 8-bit or 16-bit integers. The ICC encoding convention is illustrated by
these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768

1 Functions — Alphabetical List

1-2294

Value (a* or b*) uint8 Value uint16 Value
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2double | lab2uint16 | makecform | whitepoint | xyz2double |
xyz2uint16

Introduced before R2006a

 lab2uint8

1-2295

lab2xyz
Convert CIE 1976 L*a*b* to CIE 1931 XYZ

Syntax
xyz = lab2xyz(lab)
xyz = lab2xyz(lab,Name,Value)

Description
xyz = lab2xyz(lab) converts CIE 1976 L*a*b* values to CIE 1931 XYZ values (2°
observer).

xyz = lab2xyz(lab,Name,Value) specifies additional options with one or more
name-value pair arguments.

Examples

Convert L*a*b* Color to XYZ

Convert an L*a*b* color value to XYZ using the default reference white point, D65.

lab2xyz([50 10 -5])

ans = 1×3

 0.1942 0.1842 0.2282

Convert L*a*b* Color to XYZ Specifying Whitepoint

Convert an L*a*b* color value to XYZ specifying the D50 whitepoint.

1 Functions — Alphabetical List

1-2296

lab2xyz([50 10 -5],'WhitePoint','d50')

ans = 1×3

 0.1970 0.1842 0.1729

Input Arguments
lab — Color values to convert
c-by-3 matrix | m-by-n-by-3 image array | m-by-n-by-3-by-f image stack

Color values to convert, specified as a c-by-3 matrix of color values (one color per row), an
m-by-n-by-3 image array, or an m-by-n-by-3-by-f image stack.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: lab2xyz([0.25 0.40 0.10],'WhitePoint','d50')

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as a 1-by-3 vector or one of the CIE standard illuminants,
listed in the following table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

 lab2xyz

1-2297

Value White Point
'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a

theoretical reference.
'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates

warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: single | double | char

Output Arguments
xyz — Converted color values
numeric array

Converted color values, returned as a numeric array of the same shape and type as the
input.

See Also
lab2rgb | rgb2xyz | xyz2lab

Introduced in R2014b

1 Functions — Alphabetical List

1-2298

label2idx
Convert label matrix to cell array of linear indices

Syntax
pixelIndexList = label2idx(L)

Description
pixelIndexList = label2idx(L) converts the regions described by the label matrix
L into the 1-by-n cell array of linear indices pixelIndexList.

Examples

Calculate Pixel Index List for Small Label Matrix

Create a small sample matrix containing three regions.

BW = logical([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 0 0 0 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 1 1 0
 1 1 1 0 0 0 0 0]);

Create a label matrix from this sample image.

L = bwlabel(BW)

L = 8×8

 1 1 1 0 0 0 0 0
 1 1 1 0 2 2 0 0

 label2idx

1-2299

 1 1 1 0 2 2 0 0
 1 1 1 0 0 0 0 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 3 3 0
 1 1 1 0 0 0 0 0

Get a linear index list of all the pixels in each region. The function returns a cell array
with an element for each region it finds in the label matrix.

pixelIndexList = label2idx(L)

pixelIndexList = 1x3 cell array
 {24x1 double} {4x1 double} {4x1 double}

Examine one of the pixel index lists returned. For example, look at the second cell in the
returned cell array. It contains the linear indices for all the pixels in the region labeled
"2". The upper left corner of the region is pixel BW(2,5), which is the 34th pixel in linear
indexing.

pixelIndexList{2}

ans = 4×1

 34
 35
 42
 43

Input Arguments
L — Label matrix
real, nonsparse, nonnegative, finite numeric N-D matrix

Label matrix, specified as a real, nonsparse, nonnegative, finite numeric N-D matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-2300

Output Arguments
pixelIndexList — Linear indices of pixels in regions
1-by-n cell array

Linear indices of pixels in regions, returned as a 1-by-n cell array. Each element of the
output, pixelIndexList{n}, is a vector that contains all the linear indices in L where L
is equal to n.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• label2idx supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
label2rgb | labelmatrix | superpixels

Introduced in R2016a

 label2idx

1-2301

label2rgb
Convert label matrix into RGB image

Syntax
RGB = label2rgb(L)
RGB = label2rgb(L,cmap)
RGB = label2rgb(L,cmap,zerocolor)
RGB = label2rgb(L,cmap,zerocolor,order)

Description
RGB = label2rgb(L) converts a label matrix, L, such as those returned by
labelmatrix, bwlabel, bwlabeln, or watershed, into an RGB color image for the
purpose of visualizing the labeled regions. The label2rgb function determines the color
to assign to each object based on the number of objects in the label matrix. The
label2rgb function picks colors from the entire range of the color map.

RGB = label2rgb(L,cmap) specifies the colormap cmap to be used in the RGB image.

RGB = label2rgb(L,cmap,zerocolor) specifies the RGB color of the background
elements (pixels labeled 0).

RGB = label2rgb(L,cmap,zerocolor,order) controls how label2rgb assigns
colors to regions in the label matrix.

Examples

Use Color to Highlight Elements in Label Matrix

Read an image and display it.

I = imread('rice.png');
imshow(I)

1 Functions — Alphabetical List

1-2302

Create a label matrix from the image.

BW = imbinarize(I);
CC = bwconncomp(BW);
L = labelmatrix(CC);

Convert the label matrix into RGB image, using default settings.

RGB = label2rgb(L);
figure
imshow(RGB)

 label2rgb

1-2303

Convert the label matrix into an RGB image, specifying optional parameters. This example
uses the 'spring' colormap, sets background pixels to the color cyan, and randomizes
how colors are assigned to the labels.

RGB2 = label2rgb(L,'spring','c','shuffle');
figure
imshow(RGB2)

1 Functions — Alphabetical List

1-2304

Input Arguments
L — Label matrix
m-by-n matrix of nonnegative integers

Label matrix of contiguous regions, specified as an m-by-n matrix of nonnegative integers.
Pixels labeled 0 are the background. Pixels labeled 1 make up one object; pixels labeled 2
make up a second object; and so on.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

cmap — Color map
'jet' (default) | c-by-3 matrix | colormap function | handle

Color map, specified as one of the following.

 label2rgb

1-2305

Value Description
c-by-3 matrix of data type double Color map matrix specifying c colors, each as an

RGB triple. c must be greater than or equal to
the number of labels, numlabels, in label matrix
L. You can compute the number of labels as
numlabels = max(L(:)).

If c is greater than numlabels, then label2rgb
creates the RGB image using only the first
numlabels rows in the matrix.

colormap function Name of a MATLAB colormap function, such as
'jet' or 'gray'. See colormap for a list of
supported colormaps.

colormap handle Handle of a colormap function, such as @jet or
@gray.

zerocolor — Color map
[1 1 1] (white) (default) | 3-element vector | 'b' | 'c' | 'g'

Label matrix of contiguous regions, specified as a 3-element vector representing an RGB
triple, or one of the following color abbreviations.

Value Color
'b' Blue
'c' Cyan
'g' Green
'k' Black
'm' Magenta
'r' Red
'w' White
'y' Yellow

order — Color order
'noshuffle' (default) | 'shuffle'

1 Functions — Alphabetical List

1-2306

Color order, specified as 'noshuffle' or 'shuffle'. The 'noshuffle' order arranges
colormap colors to label matrix regions in numerical order. The 'shuffle' order assigns
colormap colors pseudorandomly.

Output Arguments
RGB — RGB image
m-by-n-by-3 numeric matrix

RGB image, returned as an m-by-n-by-3 numeric matrix.
Data Types: uint8

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• label2rgb supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, for best results when using the standard syntax RGB =
label2rgb(L,cmap,zerocolor,order):

• Submit at least two input arguments: the label matrix, L, and the colormap matrix,
cmap.

• cmap must be a c-by-3 matrix of data type double. You cannot specify the name of
a MATLAB colormap function or a function handle of a colormap function.

• If you set the background color zerocolor to the same color as one of the regions,
then label2rgb will not issue a warning.

• If you supply a value for order, then it must be 'noshuffle'.

 label2rgb

1-2307

See Also
bwconncomp | bwlabel | bwlabeln | colormap | ismember | labelmatrix |
watershed

Introduced before R2006a

1 Functions — Alphabetical List

1-2308

labelmatrix
Create label matrix from bwconncomp structure

Syntax
L = labelmatrix(CC)

Description
L = labelmatrix(CC) creates a label matrix, L, from the connected components
structure CC returned by bwconncomp.

labelmatrix is more memory efficient than bwlabel and bwlabeln because it returns
its label matrix in the smallest numeric class necessary for the number of objects.

Examples

Calculate connected components and display results

Read binary image into the workspace.

BW = imread('text.png');

Calculate the connected components, using bwconncomp .

CC = bwconncomp(BW);

Create a label matrix, using labelmatrix .

L = labelmatrix(CC);

For comparison, create a second label matrix, using bwlabel .

L2 = bwlabel(BW);

 labelmatrix

1-2309

View both label matrices in the workspace. Note that labelmatrix is more memory
efficient than bwlabel , using the smallest numeric class necessary for the number of
objects.

whos L L2

 Name Size Bytes Class Attributes

 L 256x256 65536 uint8
 L2 256x256 524288 double

Display the label matrix as an RGB image, using label2rgb .

figure
imshow(label2rgb(L));

1 Functions — Alphabetical List

1-2310

Input Arguments
CC — Connected components
struct

Connected components, specified as a structure with four fields.

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of the binary image
NumObjects Number of connected components (objects) in the binary image.
PixelIdxList 1-by-NumObjects cell array where the k-th element in the cell

array is a vector containing the linear indices of the pixels in the
k-th object.

Output Arguments
L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, returned as matrix of nonnegative integers. The
pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on.

The size of L is CC.ImageSize. The class of L depends on CC.NumObjects, as shown in
the table.

Class Range
'uint8' CC.NumObjects ≤ 255
'uint16' 256 ≤ CC.NumObjects ≤ 65535
'uint32' 65536 ≤ CC.NumObjects ≤ 232− 1
'double' CC.NumObjects ≥ 232

Data Types: double | uint8 | uint16 | uint32

 labelmatrix

1-2311

See Also
bwconncomp | bwlabel | bwlabeln | label2rgb | regionprops

Introduced in R2009a

1 Functions — Alphabetical List

1-2312

labeloverlay
Overlay label matrix regions on 2-D image

Syntax
B = labeloverlay(A,L)
B = labeloverlay(A,BW)
B = labeloverlay(A,C)
B = labeloverlay(___ ,Name,Value)

Description
B = labeloverlay(A,L) fuses the input image, A, with a different color for each
nonzero label in label matrix L. The labeloverlay function does not fuse background
pixels (labeled 0) with a color.

B = labeloverlay(A,BW) fuses the input image with a color where mask BW is true.
The labeloverlay function does not fuse background pixels (labeled false) with a
color.

B = labeloverlay(A,C) fuses the input image with a different color for each label in
categorical matrix C. The labeloverlay function does not fuse pixels of the
<undefined> category with a color.

B = labeloverlay(___ ,Name,Value) computes the fused overlay image, B, using
Name,Value pairs to control aspects of the computation.

Examples

Visualize Segmentation over Color Image

Read an image, then segment it using superpixels.

 labeloverlay

1-2313

A = imread('kobi.png');
[L,N] = superpixels(A,20);

Fuse the segmentation results with the original image. Display the fused image.

B = labeloverlay(A,L);
imshow(B)

1 Functions — Alphabetical List

1-2314

Visualize Binary Mask over Grayscale Image

Read a grayscale image and display it.

A = imread('coins.png');
imshow(A)

Create a mask using binary thresholding.

t = graythresh(A);
BW = imbinarize(A,t);
imshow(BW)

 labeloverlay

1-2315

Fuse the mask with the original image. Display the fused image.

B = labeloverlay(A,BW);
imshow(B)

1 Functions — Alphabetical List

1-2316

Visualize Categorical Labels over Image

Read a grayscale image and create a mask using binary thresholding.

A = imread('coins.png');
t = graythresh(A);
BW = imbinarize(A,t);

Create categorical labels based on the image contents.

stringArray = repmat("table",size(BW));
stringArray(BW) = "coin";
categoricalSegmentation = categorical(stringArray);

Fuse the categorical segmentation with the original image. Display the fused image.

B = labeloverlay(A,categoricalSegmentation);
imshow(B)

 labeloverlay

1-2317

Fuse the original image with only one label from the categorical segmentation. Change
the colormap and make the labels more opaque, and display the result.

C = labeloverlay(A,categoricalSegmentation,'IncludedLabels',"coin",...
 'Colormap','autumn','Transparency',0.25);
imshow(C)

1 Functions — Alphabetical List

1-2318

Input Arguments
A — Input image
2-D grayscale image | 2-D color image

Input image, specified as a 2-D grayscale or color image.
Data Types: single | double | int8 | int16 | uint8 | uint16

L — Labels
matrix of nonnegative integers

Labels, specified as a matrix of nonnegative integers.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

BW — Mask
logical matrix

 labeloverlay

1-2319

Mask, specified as a logical matrix.
Data Types: logical

C — Category labels
categorical matrix

Category labels, specified as a categorical matrix.
Data Types: categorical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: labeloverlay(myImage,myLabels,'Colormap','hot') displays labels in
colors from the 'hot' color map.

Colormap — Color map
'jet' (default) | l-by-3 color map | string | character vector

Color map, specified as the comma-separated pair consisting of 'Colormap' and one of
these values:

• An l-by-3 color map. RGB triplets in each row of the color map must be normalized to
the range [0, 1]. l is the number of labels in label matrix L, binary mask BW, or
categorical matrix C.

• A string or character vector corresponding to one of the valid inputs to the colormap
function. labeloverlay permutes the specified color map so that adjacent labels are
more distinct.

Example: [0.2, 0.1, 0.5; 0.1, 0.5, 0.8]
Example: 'hot'
Data Types: single | double | char | string

IncludedLabels — Labels to display
integer | vector of integers | string | vector of strings

1 Functions — Alphabetical List

1-2320

Labels to display in the fused image, specified as the comma-separated pair consisting of
'IncludedLabels' and one of the following:

• An integer, or vector of integers, in the range [1, max(L(:))]. By default,
labeloverlay displays all nonzero labels.

• A string, or vector of strings, corresponding to labels in categorical matrix C. By
default, labeloverlay displays all defined categorical labels.

Example: [1,3,4]
Example: ["flower","stem"]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
string

Transparency — Transparency
0.5 (default) | number in the range [0, 1]

Transparency of displayed labels, specified as the comma-separated pair consisting of
'Transparency' and a number in the range [0, 1].

• A value of 0 makes the colored labels completely opaque.
• A value of 1 makes the colored labels completely transparent.

Data Types: single | double

Output Arguments
B — Fused image
numeric matrix

Fused image, returned as a numeric matrix of the same size as A.
Data Types: uint8

See Also
imoverlay | imshowpair | superpixels

Topics
“Semantic Segmentation Basics” (Computer Vision Toolbox)

 labeloverlay

1-2321

Introduced in R2017b

1 Functions — Alphabetical List

1-2322

labelvolshow
Display labeled volume

Description
Display labeled volumetric data, creating a labelvolshow object with properties that
control the appearance of the display. You can embed the intensity volume with the
labeled volume and display both volumes at once.

Creation

Syntax
labelvolshow(L)
labelvolshow(L,V)
labelvolshow(___ ,Name,Value)
h = labelvolshow(___)

Description
labelvolshow(L) displays 3-D labeled volume L in a figure.

labelvolshow(L,V) displays 3-D labeled volume L and 3-D intensity volume V in a
figure. L and V must be the same size.

labelvolshow(___ ,Name,Value) displays volumes, using one or more name-value
pairs to set labelvolshow properties that control visualization of the volumes. For a list
of these properties, see “Properties” on page 1-2324. Enclose each property in single
quotes. For example, 'BackgroundColor'.

h = labelvolshow(___) returns a labelvolshow object, h, with properties that can
be used to control visualization of the volumes. Use input arguments from any of the
previous syntaxes.

 labelvolshow

1-2323

Input Arguments
L — Labeled volume
3-D numeric array

Labeled volume, specified as a 3-D numeric array (m-by-n-by-p).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
categorical

V — Intensity volume
3-D numeric array

Intensity volume, specified as a 3-D numeric array (m-by-n-by-p).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

Properties
BackgroundColor — Color of background
[0.3 0.75 0.93] (default) | RGB triplet | color name | short color name

Color of the background, specified as a MATLAB ColorSpec. The intensities must be in
the range [0,1].

CameraPosition — Location of camera
[4 4 2.5] (default) | three-element vector

Location of the camera, or the viewpoint, specified as a three-element vector of the form
[x y z]. This vector defines the axes coordinates of the camera location, which is the
point from which you view the axes. The camera is oriented along the view axis, which is
a straight line that connects the camera position and the camera target. Changing the
CameraPosition property changes the point from which you view the volume. For an
illustration, see “Camera Graphics Terminology” (MATLAB). Interactively rotating the
volume modifies the value of this property.

CameraUpVector — Vector defining upwards direction
[0 0 1] (default) | three-element vector

Vector defining upwards direction, specified as a three-element vector of the form [x y
z]. By default, labelvolshow defines the z-axis as the up direction ([0 0 1]). For an

1 Functions — Alphabetical List

1-2324

illustration, see “Camera Graphics Terminology” (MATLAB). Interactively rotating the
volume modifies the value of this property.

CameraTarget — Point used as camera target
[0 0 0] (default) | three-element vector

Point used as the camera target, specified as a three-element vector of the form [x y z].
The camera is oriented along the view axis, which is a straight line that connects the
camera position and the camera target. For an illustration, see “Camera Graphics
Terminology” (MATLAB).

CameraViewAngle — Field of view
15 (default) | numeric scalar

Field of view, specified as a scalar angle greater than or equal to 0 and less than 180. The
greater the angle, the larger the field of view. Also, with bigger angles, objects appear
smaller in the scene. For an illustration, see “Camera Graphics Terminology” (MATLAB).

InteractionsEnabled — Interactivity of volume
true (default) | false

Interactivity of the volume, specified as true (1) or false (0). When true (default), you
can zoom in and out on the labeled volume using the mouse scroll wheel, and rotate the
volume by clicking and dragging. Rotation and zoom are performed about the value
specified by CameraTarget. When this value is false, you cannot interact with the
volume.

LabelColor — Color of labels
random colormap (default) | numLabels-by-3 numeric array

Color of labels, specified as a numLabels-by-3 numeric array with values in the range [0
1]. numLabels represents the number of labels in the labeled volume.

LabelOpacity — Opacity of labels
true for all labels except Label 0 (default) | numLabels-by-1 numeric vector

Opacity of labels, specified as a numLabels-by-1 numeric vector with values in the range
[0 1]. numLabels represents the number of labels in the labeled volume. LabelOpacity
is not supported when embedding volumes together.

LabelsPresent — List of label values
numLabels-by-1 numeric array

 labelvolshow

1-2325

This property is read-only.

List of label values, specified as a numLabels-by-1 numeric array.numLabels represents
the number of labels in the labeled volume.

LabelVisibility — Visibility of labels
true for all labels except Label 0 (default) | numLabels-by-1 logical mask

Visibility of labels, specified as a numLabels-by-1 logical mask. numLabels represents the
number of labels in the labeled volume.

Parent — Parent of labelvolshow object
gcf (default) | uipanel | figure

Parent of the labelvolshow object, specified as a handle to a uipanel or figure. If
you do not specify a parent, the parent of the labelvolshow object is gcf.

ScaleFactors — Scale factors used to rescale volume
[1 1 1] (default) | 1-by-3 positive numeric vector

Scale factors used to rescale volumes, specified as a 1-by-3 positive numeric vector. The
values in the array correspond to the scale factor applied in the x-, y-, and z-direction.

ShowIntensityVolume — Display intensity volume
true | false

Display intensity volume, specified as true (1) or false (0). When the value is true, the
function displays both the labeled volume and the intensity volume. When the value is
false, the function only displays the labeled volume. The default is true when the
labelvolshow object contains both a labeled volume and an intensity volume. The
default is false when the object contains only a labeled volume.

VolumeOpacity — Opacity of volume
0.5 (default) | scalar in the range [0 1]

Opacity of volume, specified as a scalar in the range [0 1]. This value defines the opacity
of volume data when both labeled and intensity volumes are embedded together. All the
embedded volume intensities above the VolumeThreshold value have the opacity of
VolumeOpacity.

VolumeThreshold — Threshold of volume intensities
0.4 (default) | normalized numeric scalar

1 Functions — Alphabetical List

1-2326

Threshold of volume intensities, specified as a normalized numeric scalar in the range [0
1]. All the volume intensities below this threshold value have an opacity of 0.

Object Functions
setVolume Set new labelvolshow object

Examples

View Labeled Volume With and Without Intensity Volume

Create a synthetic volume and categorize the values to create a labeled volume.

vol = rand(100,100,3);
labeledVol = discretize(vol,[0 .25 .75 1],'categorical',...
 {'small','medium','large'});

View the labeled volume and the intensity volume.

h = labelvolshow(labeledVol,vol);

 labelvolshow

1-2327

Hide the intensity volume.

h.ShowIntensityVolume = false;

1 Functions — Alphabetical List

1-2328

View Labeled Volume and Change Color and Opacity

Create a synthetic volume and categorize the values to create a labeled volume.

vol = rand(100,100,3);
labeledVol = discretize(vol,[0 .25 .75 1],'categorical',...
 {'small','medium','large'});

Display the labeled volume.

h = labelvolshow(labeledVol,vol);

 labelvolshow

1-2329

Change the color and opacity.

h.LabelColor(end,:) = [1 1 0];
h.LabelOpacity(2) = 0.1;

1 Functions — Alphabetical List

1-2330

See Also
Volume Viewer | slice | volshow

Introduced in R2019a

 labelvolshow

1-2331

setVolume
Set new labelvolshow object

Syntax
setVolume(hLabelVol,L)
setVolume(hLabelVol,L,V)

Description
setVolume(hLabelVol,L) updates the labelvolshow object hLabelVol with a new
labeled volume L. setVolume preserves the current viewpoint and other visualization
settings remain unchanged, but the label properties are set to their respective defaults.

setVolume(hLabelVol,L,V) updates the labelvolshow object hLabelVol with a
new labeled volume L and a new intensity volume V.

Examples

Change Labeled Volume in labelvolshow Object

Load an intensity volume and an associated labeled volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_001.mat'));

Display the labeled volume along with an intensity volume.

hVol = labelvolshow(label,vol)

hVol =

 labelvolshow with properties:

1 Functions — Alphabetical List

1-2332

 Parent: [1x1 Panel]
 CameraPosition: [4 4 2.5000]
 CameraUpVector: [0 0 1]
 CameraTarget: [0 0 0]
 CameraViewAngle: 15
 BackgroundColor: [0.3000 0.7500 0.9300]
 ShowIntensityVolume: 1
 LabelColor: [4x3 double]
 LabelOpacity: [4x1 double]
 LabelVisibility: [4x1 logical]
 VolumeOpacity: 0.5000
 VolumeThreshold: 0.3922
 ScaleFactors: [1 1 1]
 InteractionsEnabled: 1
 LabelsPresent: [4x1 uint8]

 setVolume

1-2333

Change some rendering properties.

hVol.VolumeOpacity = 0.2;
hVol.BackgroundColor = 'magenta';

1 Functions — Alphabetical List

1-2334

Load another labeled volume into the workspace.

data = load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_002.mat'));
newLabelVol = data.label;

Change the volume in the labelvolshow object hvol. Note how labelvolshow
preserves your rendering settings.

setVolume(hVol,newLabelVol)

 setVolume

1-2335

Input Arguments
hLabelVol — Labeled volume object
labelvolshow object

Labeled volume object, specified as a labelvolshow object.

L — Labeled volumetric data
3-D labeled volume

Labeled volumetric data, specified as a 3-D labeled volume.

1 Functions — Alphabetical List

1-2336

V — Volumetric data
3-D grayscale volume

Volumetric data, specified as a 3-D grayscale volume.

See Also
labelvolshow

Introduced in R2019a

 setVolume

1-2337

lazysnapping
Segment image into foreground and background using graph-based segmentation

Syntax
BW = lazysnapping(I,L,foremask,backmask)
BW = lazysnapping(I,L,foreind,backind)
BW = lazysnapping(___ ,Name,Value)

Description
BW = lazysnapping(I,L,foremask,backmask) segments the image or volume I into
foreground and background regions using lazy snapping. The label matrix L specifies the
subregions of the image. foremask and backmask are masks designating pixels in the
image as foreground and background, respectively.

BW = lazysnapping(I,L,foreind,backind) segments the image or volume I into
foreground and background regions. foreind and backind specify the linear indices of
the pixels in the image marked as foreground and background, respectively.

BW = lazysnapping(___ ,Name,Value) segments the image or volume using name-
value pairs to control aspects of the segmentation.

Examples

Segment Image into Foreground and Background

Read an image into the workspace.

RGB = imread('peppers.png');

Mark locations on image as foreground.

figure;
imshow(RGB)

1 Functions — Alphabetical List

1-2338

h1 = impoly(gca,[34,298;114,140;195,135;...
 259,200;392,205;467,283;483,104],'Closed',false);

Convert the locations into linear indices.

foresub = getPosition(h1);
foregroundInd = sub2ind(size(RGB),foresub(:,2),foresub(:,1));

Mark locations on image as background.

figure;
imshow(RGB)
h2 = impoly(gca,[130,52;170,32],'Closed',false);

 lazysnapping

1-2339

Convert the locations into linear indices.

backsub = getPosition(h2);
backgroundInd = sub2ind(size(RGB),backsub(:,2),backsub(:,1));

Generate label matrix.

L = superpixels(RGB,500);

Perform lazy snapping.

BW = lazysnapping(RGB,L,foregroundInd,backgroundInd);

Create masked image.

1 Functions — Alphabetical List

1-2340

maskedImage = RGB;
maskedImage(repmat(~BW,[1 1 3])) = 0;
figure;
imshow(maskedImage)

Segment Volume in Foreground and Background

Load 3-D volumetric image into the workspace.

D = load('mri.mat');
V = squeeze(D.D);

 lazysnapping

1-2341

Create a 2-D mask identifying initial foreground and background seed points.

 seedLevel = 10;
 fseed = V(:,:,seedLevel) > 75;
 bseed = V(:,:,seedLevel) == 0;
 figure;
 imshow(fseed)

 figure;
 imshow(bseed)

Place seed points into empty 3-D mask.

1 Functions — Alphabetical List

1-2342

fmask = zeros(size(V));
bmask = fmask;
fmask(:,:,seedLevel) = fseed;
bmask(:,:,seedLevel) = bseed;

Generate a 3-D label matrix.

 L = superpixels3(V,500);

Segment the image into foreground and background using Lazy Snapping.

bw = lazysnapping(V,L,fmask,bmask);

Display the 3-D segmented image.

figure;
p = patch(isosurface(double(bw)));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 27/128]);
camlight; lighting phong

 lazysnapping

1-2343

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array in one of these formats.

Image Type Data Format
2-D grayscale image 2-D matrix of size h-by-w

1 Functions — Alphabetical List

1-2344

Image Type Data Format
2-D color image 3-D array of size h-by-w-by-3
2-D multispectral image
with c channels

3-D array of size h-by-w-by-c

3-D volumetric grayscale
image with depth d

3-D array of size h-by-w-by-d

lazysnapping expects pixel values of data type double and single to be in the range
[0, 1]. You can use the rescale function to adjust pixel values to the expected range.
lazysnapping expects pixel values of data type uint16, int16, and uint8 to be the
full range for the given data type. If the values do not match the expected range, scale the
image to the expected range or adjust EdgeWeightScaleFactor to improve results.
Data Types: single | double | int16 | uint8 | uint16

L — Label matrix
numeric array

Label matrix of the input image or volume, specified as numeric array. For 2-D images, L
is a 2-D array of size h-by-w. For 3-D volumes, L is a 3-D array of size h-by-w-by-d.

Do not mark a given subregion of the label matrix as belonging to both the foreground
mask and the background mask. If a region of the label matrix contains pixels belonging
to both the foreground mask and background mask, then lazysnapping segments the
region as background.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

foremask — Mask image that defines the foreground
logical array

Mask image that defines the foreground, specified as a logical array. For 2-D images,
foremask is a 2-D array of size h-by-w. For 3-D volumes, foremask is a 3-D array of size
h-by-w-by-d.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

backmask — Mask image that defines the background
logical array

 lazysnapping

1-2345

Mask image that defines the background, specified as a logical array. For 2-D images,
backmask is a 2-D array of size h-by-w. For 3-D volumes, backmask is a 3-D array of size
h-by-w-by-d.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

foreind — Linear index of foreground pixels
vector of positive integers

Linear index of pixels in the label matrix, specified as a vector of positive integers. You
can use an ROI drawing tool, such as drawpolyline, to select points in the foreground.
Then, convert the coordinates of the points to linear indices using sub2ind. If the
coordinates are non-integer values, then round the values before converting to linear
indices.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

backind — Linear index of background pixels
vector of positive integers

Linear index of pixels that define the background, specified as a vector of positive
integers. You can use an ROI drawing tool, such as drawpolyline, to select points in the
background. Then, convert the coordinates of the points to linear indices using sub2ind.
If the coordinates are non-integer values, then round the values before converting to
linear indices.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Connectivity',18

Connectivity — Connectivity of connected components
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

1 Functions — Alphabetical List

1-2346

Connectivity of connected components, specified as one of the values in this table. The
default connectivity is 8 for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or
corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected along the horizontal,
vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

Two adjoining pixels are part of the same
object if they are both on and are
connected in:

• One of these directions: in, out, left,
right, up, and down

18-connected Pixels are connected if their faces or
edges touch. Two adjoining pixels are part
of the same object if they are both on and
are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

 lazysnapping

1-2347

Value Meaning
26-connected Pixels are connected if their faces, edges,

or corners touch. Two adjoining pixels are
part of the same object if they are both on
and are connected in

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

EdgeWeightScaleFactor — Scale factor for edge weights between the
subregions of the label matrix
500 (default) | positive scalar

Scale factor for edge weights between the subregions of the label matrix, specified as the
comma-separated pair consisting of 'EdgeWeightScaleFactor' and a positive scalar.
Typical values range from [10, 1000]. Increasing this value increases the likelihood that
lazysnapping labels neighboring subregions together as either foreground or
background.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
BW — Segmented image
numeric array

Segmented image, returned as a numeric array of the same size as the label matrix, L.

1 Functions — Alphabetical List

1-2348

Algorithms
The Lazy Snapping algorithm developed by Li et al. clusters foreground and background
values using the K-means method. This implementation of the Lazy Snapping algorithm
does not cluster similar foreground or background pixels. To improve performance,
reduce the number of pixels with similar values that are identified as foreground or
background.

References
[1] Y. Li, S. Jian, C. Tang, H. Shum. Lazy Snapping. In Proceedings from the 31st

International Conference on Computer Graphics and Interactive Techniques,
2004.

See Also
Image Segmenter

Topics
“Segmentation Using Graph Cut in Image Segmenter”

Introduced in R2017a

 lazysnapping

1-2349

lin2rgb
Apply gamma correction to linear RGB values

Syntax
B = lin2rgb(A)
B = lin2rgb(A,Name,Value)

Description
B = lin2rgb(A) applies a gamma correction to the linear RGB values in image A so that
B is in the sRGB color space, which is suitable for display.

B = lin2rgb(A,Name,Value) applies gamma correction using name-value pairs to
control additional options.

Examples

Plot Gamma Curve of sRGB and Adobe RGB

Define a range of linear values. This vector defines 257 equally spaced points between 0
and 1.

lin = linspace(0,1,257);

Apply gamma correction to the linear values based on the sRGB standard. Then apply
gamma correction to the linear values based on the Adobe RGB (1998) standard.

sRGB = lin2rgb(lin);
adobeRGB = lin2rgb(lin,'ColorSpace','adobe-rgb-1998');

Plot the gamma-corrected curves.

figure
plot(lin,sRGB,'b',lin,adobeRGB,'r')

1 Functions — Alphabetical List

1-2350

title('Gamma-Corrected vs. Linear Values')
legend('sRGB','Adobe RGB (1998)','Location','southeast')

For an alternative visualization, plot color bars representing each color space.

cb_lin = ones(30,257) .* lin;
cb_sRGB = ones(30,257) .* sRGB;
cb_adobeRGB = ones(30,257) .* adobeRGB;

figure
subplot(3,1,1); imshow(cb_lin); title('Linear RGB')
subplot(3,1,2); imshow(cb_sRGB); title('sRGB');
subplot(3,1,3); imshow(cb_adobeRGB); title('Adobe RGB (1998)');

 lin2rgb

1-2351

The gamma-corrected color spaces get brighter more quickly than the linear color space,
as expected.

Apply sRGB Gamma Correction to Linear RGB Image

Open an image file containing minimally processed linear RGB intensities.

A = imread('foosballraw.tiff');

The image data is the raw sensor data after correcting the black level and scaling to 16
bits per pixel. Interpolate the intensities to reconstruct color by using the demosaic
function. The color filter array pattern is RGGB.

1 Functions — Alphabetical List

1-2352

A_demosaiced = demosaic(A,'rggb');

Display the image. To shrink the image so that it appears fully on the screen, set the
optional initial magnification to a value less than 100.

figure
imshow(A_demosaiced,'InitialMagnification',25)
title('Sensor Data Without sRGB Gamma Correction')

The image appears dark because it is in the linear RGB color space. Apply gamma
correction to the image according to the sRGB standard, storing the values in double
precision.

A_sRGB = lin2rgb(A_demosaiced,'OutputType','double');

Display the gamma-corrected image, setting the optional magnification.

 lin2rgb

1-2353

figure
imshow(A_sRGB,'InitialMagnification',25)
title('Sensor Data With sRGB Gamma Correction');

The gamma-corrected image looks brighter than the linear image, as expected.

Input Arguments
A — Linear RGB color values
numeric array

Linear RGB color values, specified as a numeric array in one of the following formats.

1 Functions — Alphabetical List

1-2354

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = lin2rgb(I,'ColorSpace','adobe-rgb-1998') applies gamma
correction to an image, I, according to the Adobe RGB (1998) standard.

ColorSpace — Color space of the output image
'srgb' (default) | 'adobe-rgb-1998'

Color space of the output image, specified as the comma-separated pair consisting of
'ColorSpace' and 'srgb' or 'adobe-rgb-1998'.
Data Types: char | string

OutputType — Data type of output RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of the output RGB values, specified as the comma-separated pair consisting of
'OutputType' and 'double', 'single', 'uint8', or 'uint16'. By default, the
output data type is the same as the data type of A.
Data Types: char | string

Output Arguments
B — Gamma-corrected RGB image
numeric array

Gamma-corrected RGB image, returned as a numeric array of the same size as the input
A.

 lin2rgb

1-2355

Algorithms

Gamma Correction Using the sRGB Standard
The gamma correction to transform linear RGB tristimulus values into sRGB tristimulus
values is defined by the following parametric curve:

 f(u) = -f(-u), u < 0

 f(u) = c ⋅ u, 0 ≤ u < d

 f(u) = a ⋅ uɣ + b, u ≥ d,

where u represents a color value with these parameters:

 a = 1.055

 b = –0.055

 c = 12.92

 d = 0.0031308

 ɣ = 1/2.4

Gamma Correction Using the Adobe RGB (1998) Standard
The gamma correction to transform linear RGB tristimulus values into Adobe RGB (1998)
tristimulus values uses a simple power function:

 v = uɣ, u ≥ 0

 v = -(-u)ɣ, u < 0,

with

 ɣ = 1/2.19921875

1 Functions — Alphabetical List

1-2356

References
[1] Ebner, Marc. "Gamma Correction." Color Constancy. Chichester, West Sussex: John

Wiley & Sons, 2007.

[2] Adobe Systems Incorporated. "Inverting the color component transfer function."
Adobe RGB (1998) Color Image Encoding. Section 4.3.5.2, May 2005, p.12.

See Also
rgb2lin

Introduced in R2017b

 lin2rgb

1-2357

localcontrast
Edge-aware local contrast manipulation of images

Syntax
B = localcontrast(A)
B = localcontrast(A,edgeThreshold,amount)

Description
B = localcontrast(A) enhances the local contrast of the grayscale or RGB image A.

B = localcontrast(A,edgeThreshold,amount) enhances or flattens the local
contrast of A by increasing or smoothing details while leaving strong edges unchanged.
edgeThreshold defines the minimum intensity amplitude of strong edges to leave intact.
amount is the amount of enhancement or smoothing desired.

Examples

Increase or Reduce Local Contrast of Image

Import an RGB image.

A = imread('peppers.png');

Increase the local contrast of the input image.

edgeThreshold = 0.4;
amount = 0.5;
B = localcontrast(A, edgeThreshold, amount);

Display the results compared to the original image

imshowpair(A, B, 'montage')

1 Functions — Alphabetical List

1-2358

Reduce the local contrast of the input image.

amount = -0.5;
B2 = localcontrast(A, edgeThreshold, amount);

Display the new results again, compared to the original image.

imshowpair(A, B2, 'montage')

 localcontrast

1-2359

Input Arguments
A — Grayscale or RGB image to be filtered
real, non-sparse, m-by-n or m-by-n-by-3 matrix

Grayscale or RGB image to be filtered, specified as a real, non-sparse, m-by-n or m-by-n-
by-3 matrix.
Data Types: single | int8 | int16 | uint8 | uint16

edgeThreshold — Amplitude of strong edges to leave intact
0.3 (default) | numeric scalar in the range [0,1]

Amplitude of strong edges to leave intact, specified as a numeric scalar in the range
[0,1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

amount — Amount of enhancement or smoothing desired
0.25 (default) | numeric scalar in the range [-1,1]

Amount of enhancement or smoothing desired, specified as a numeric scalar in the range
[-1,1]. Negative values specify edge-aware smoothing. Positive values specify edge-
aware enhancement.

Value Description
0 Leave input image unchanged.
1 Strongly enhance the local contrast of the input image
-1 Strongly smooth the details of the input image

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
B — Filtered image
numeric array

1 Functions — Alphabetical List

1-2360

Filtered image, returned as a numeric array the same size and class as the input image.

See Also
imadjust | imcontrast | imsharpen | locallapfilt

Introduced in R2016b

 localcontrast

1-2361

locallapfilt
Fast local Laplacian filtering of images

Syntax
B = locallapfilt(I,sigma,alpha)
B = locallapfilt(I,sigma,alpha,beta)
B = locallapfilt(___ ,Name,Value)

Description
B = locallapfilt(I,sigma,alpha) filters the grayscale or RGB image I with an
edge-aware, fast local Laplacian filter. sigma characterizes the amplitude of edges in I.
alpha controls smoothing of details.

B = locallapfilt(I,sigma,alpha,beta) filters the image using beta to control
the dynamic range of A.

B = locallapfilt(___ ,Name,Value) uses name-value pairs to control advanced
aspects of the filter. Argument names can be abbreviated.

Examples

Increase Local Contrast of RGB Image Using Local Laplacian Filtering

Import an RGB image

A = imread('peppers.png');

Set parameters of the filter to increase details smaller than 0.4.

sigma = 0.4;
alpha = 0.5;

Use fast local Laplacian filtering

1 Functions — Alphabetical List

1-2362

B = locallapfilt(A, sigma, alpha);

Display the original and filtered images side-by-side.

imshowpair(A, B, 'montage')

Increase Local Contrast, Balancing Speed and Quality

Local Laplacian filtering is a computationally intensive algorithm. To speed up processing,
locallapfilt approximates the algorithm by discretizing the intensity range into a
number of samples defined by the 'NumIntensityLevels' parameter. This parameter
can be used to balance speed and quality.

Import an RGB image and display it.

A = imread('peppers.png');
figure
imshow(A)
title('Original Image')

 locallapfilt

1-2363

Use a sigma value to process the details and an alpha value to increase the contrast,
effectively enhancing the local contrast of the image.

sigma = 0.2;
alpha = 0.3;

Using fewer samples increases the execution speed, but can produce visible artifacts,
especially in areas of flat contrast. Time the function using only 20 intensity levels.

t_speed = timeit(@() locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 20))

t_speed = 0.1934

Now, process the image and display it.

1 Functions — Alphabetical List

1-2364

B_speed = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 20);
figure
imshow(B_speed)
title(['Enhanced with 20 intensity levels in ' num2str(t_speed) ' sec'])

A larger number of samples yields better looking results at the expense of more
processing time. Time the function using 100 intensity levels.

t_quality = timeit(@() locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 100))

t_quality = 0.8754

Process the image with 100 intensity levels and display it:

 locallapfilt

1-2365

B_quality = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 100);
figure
imshow(B_quality)
title(['Enhancement with 100 intensity levels in ' num2str(t_quality) ' sec'])

Try varying the number of intensity levels on your own images. Try also flattening the
contrast (with alpha > 1). You will see that the optimal number of intensity levels is
different for every image and varies with alpha. By default, locallapfilt uses a
heuristic to balance speed and quality, but it cannot predict the best value for every
image.

1 Functions — Alphabetical List

1-2366

Boost Local Color Contrast Using 'ColorMode'

Import a color image, reduce its size, and display it.

A = imread('car2.jpg');
A = imresize(A, 0.25);
figure
imshow(A)
title('Original Image')

Set the parameters of the filter to dramatically increase details smaller than 0.3 (out of a
normalized range of 0 to 1).

sigma = 0.3;
alpha = 0.1;

 locallapfilt

1-2367

Let's compare the two different modes of color filtering. Process the image by filtering its
intensity and by filtering each color channel separately:

B_luminance = locallapfilt(A, sigma, alpha);
B_separate = locallapfilt(A, sigma, alpha, 'ColorMode', 'separate');

Display the filtered images.

figure
imshow(B_luminance)
title('Enhanced by boosting the local luminance contrast')

figure
imshow(B_separate)
title('Enhanced by boosting the local color contrast')

1 Functions — Alphabetical List

1-2368

An equal amount of contrast enhancement has been applied to each image, but colors are
more saturated when setting 'ColorMode' to 'separate'.

Perform Edge-Aware Noise Reduction

Import an image. Convert the image to floating point so that we can add artificial noise
more easily.

A = imread('pout.tif');
A = im2single(A);

Add Gaussian noise with zero mean and 0.001 variance.

 locallapfilt

1-2369

A_noisy = imnoise(A, 'gaussian', 0, 0.001);
psnr_noisy = psnr(A_noisy, A);
fprintf('The peak signal-to-noise ratio of the noisy image is %0.4f\n', psnr_noisy);

The peak signal-to-noise ratio of the noisy image is 30.0234

Set the amplitude of the details to smooth, then set the amount of smoothing to apply.

sigma = 0.1;
alpha = 4.0;

Apply the edge-aware filter.

B = locallapfilt(A_noisy, sigma, alpha);
psnr_denoised = psnr(B, A);
fprintf('The peak signal-to-noise ratio of the denoised image is %0.4f\n', psnr_denoised);

The peak signal-to-noise ratio of the denoised image is 32.3065

Note an improvement in the PSNR of the image.

Display all three images side by side. Observe that details are smoothed and sharp
intensity variations along edges are unchanged.

figure
subplot(1,3,1), imshow(A), title('Original')
subplot(1,3,2), imshow(A_noisy), title('Noisy')
subplot(1,3,3), imshow(B), title('Denoised')

1 Functions — Alphabetical List

1-2370

Smooth Image Details Without Affecting Edge Sharpness

Import the image, resize it and display it

A = imread('car1.jpg');
A = imresize(A, 0.25);
figure
imshow(A)
title('Original Image')

 locallapfilt

1-2371

The car is dirty and covered in markings. Let's try to erase the dust and markings on the
body. Set the amplitude of the details to smooth, and set a large amount of smoothing to
apply.

sigma = 0.2;
alpha = 5.0;

When smoothing (alpha > 1), the filter produces high quality results with a small number
of intensity levels. Set a small number of intensity levels to process the image faster.

numLevels = 16;

Apply the filter.

B = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', numLevels);

1 Functions — Alphabetical List

1-2372

Display the "clean" car.

figure
imshow(B)
title('After smoothing details')

Input Arguments
I — Image to filter
2-D grayscale image | 2-D color image

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 2-D color image of
size m-by-n-by-3.

 locallapfilt

1-2373

Data Types: single | int8 | int16 | uint8 | uint16

sigma — Amplitude of edges
non-negative scalar

Amplitude of edges, specified as a non-negative scalar. sigma should be in the range [0,
1] for integer images and for single images defined over the range [0, 1]. For single
images defined over a different range [a, b], sigma should also be in the range [a, b].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

alpha — Smoothing of details
positive scalar

Smoothing of details, specified as a positive scalar. Typical values of alpha are in the
range [0.01, 10].

Value Description
alpha less than 1 Increases the details of the input image,

effectively enhancing the local contrast of
the image without affecting edges or
introducing halos.

alpha greater than 1 Smooths details in the input image while
preserving crisp edges

alpha equal to 1 The details of the input image are left
unchanged.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

beta — Dynamic range
1 (default) | non-negative scalar

Dynamic range, specified as a non-negative scalar. Typical values of beta are in the range
[0, 5]. beta affects the dynamic range of A.

1 Functions — Alphabetical List

1-2374

Value Description
beta less than 1 Reduces the amplitude of edges in the

image, effectively compressing the dynamic
range without affecting details.

beta greater than 1 Expands the dynamic range of the image.
beta equal to 1 Dynamic range of the image is left

unchanged. This is the default value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

ColorMode — Method used to filter RGB images
'luminance' (default) | 'separate'

Method used to filter RGB images, specified as one of the following values. This
parameter has no effect on grayscale images.

Value Description
'luminance' locallapfilt converts the input RGB image to grayscale

before filtering and reintroduces color after filtering, which
changes the contrast of the input image without affecting
colors.

'separate' locallapfilt filters each color channel independently.

Data Types: char | string

NumIntensityLevels — Number of intensity samples in the dynamic range of
the input image
'auto' (default) | positive integer

 locallapfilt

1-2375

Number of intensity samples in the dynamic range of the input image, specified as
'auto' or positive integer. A higher number of samples gives results closer to exact local
Laplacian filtering. A lower number increases the execution speed. Typical values are in
the range [10, 100]. If set to 'auto', locallapfilt chooses the number of intensity
levels automatically to balance quality and speed based on other parameters of the filter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array the same size and class as the input image.

References
[1] Paris, Sylvain, Samuel W. Hasinoff, and Jan Kautz. Local Laplacian filters: edge-aware

image processing with a Laplacian pyramid, ACM Trans. Graph. 30.4 (2011): 68.

[2] Aubry, Mathieu, et al. Fast local laplacian filters: Theory and applications. ACM
Transactions on Graphics (TOG) 33.5 (2014): 167.

See Also
localcontrast | localtonemap

Introduced in R2016b

1 Functions — Alphabetical List

1-2376

localtonemap
Render HDR image for viewing while enhancing local contrast

Syntax
rgb = localtonemap(hdr)
rgb = localtonemap(hdr,Name,Value,...)

Description
rgb = localtonemap(hdr) converts the high dynamic range image hdr to a lower
dynamic range image, rgb, suitable for display. localtonemap uses a process called
tone mapping while preserving its local contrast.

rgb = localtonemap(hdr,Name,Value,...) performs tone mapping where
parameters control various aspects of the operation. Parameter names can be
abbreviated.

Examples

Compress Dynamic Range of HDR Image for Viewing

Load a high dynamic range image.

HDR = hdrread('office.hdr');

Apply local tone mapping with a small amount of dynamic range compression.

RGB = localtonemap(HDR, 'RangeCompression', 0.1);

Display the resulting tone-mapped image.

imshow(RGB)

 localtonemap

1-2377

Repeat the operation but, this time, accentuate the details in the image.

RGB = localtonemap(HDR, ...
 'RangeCompression', 0.1, ...
 'EnhanceContrast', 0.5);

Display the resulting tone-mapped image with increased details.

imshow(RGB)

1 Functions — Alphabetical List

1-2378

Input Arguments
hdr — High dynamic range image
real, nonsparse,m-by-n or m-by-n-by-3 matrix

High dynamic range image, specified as a real, nonsparse, m-by-n or m-by-n-by-3 matrix
of class single.
Data Types: single

 localtonemap

1-2379

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

RangeCompression — Amount of compression applied to the dynamic range of
the HDR image
1 (default) | numeric scalar in the range [0,1]

Amount of compression applied to the dynamic range of the HDR image, specified as a
numeric scalar in the range [0,1].

Value Description
0 Minimum compression, which consists in only remapping the

middle 99% intensities to a dynamic range of 100:1 followed by
gamma correction with an exponent of 1/2.2.

1 Maximum compression using local Laplacian filtering.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

EnhanceContrast — Amount of local contrast enhancement applied
0 (default) | numeric scalar in the range [0,1]

Amount of local contrast enhancement applied, specified as a numeric scalar. Value must
be in the range [0,1].

Value Description
0 No change to local contrast
1 Maximum local contrast enhancement

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-2380

Output Arguments
rgb — Tone-mapped image
RGB image

Tone-mapped image, returned as an RGB image.

Algorithms
localtonemap uses local Laplacian filtering in logarithmic space to compress the
dynamic range of HDR while preserving or enhancing its local contrast. The 99% middle
intensities of the compressed image are then remapped to a fixed 100:1 dynamic range to
give the output image a consistent look. localtonemap then applies gamma correction
to produce the final image for display.

See Also
locallapfilt | tonemap

Introduced in R2016b

 localtonemap

1-2381

images.geotrans.LocalWeightedMeanTransfo
rmation2D
2-D local weighted mean geometric transformation

Description
A LocalWeightedMeanTransformation2D object encapsulates a 2-D local weighted
mean geometric transformation.

Creation
You can create a LocalWeightedMeanTransformation2D object using the following
methods:

• The fitgeotrans function, which estimates a geometric transformation that maps
pairs of control points between two images.

• The images.geotrans.LocalWeightedMeanTransformation2D described here.
This function creates a LocalWeightedMeanTransformation2D object using
coordinates of fixed points and moving points, and a specified number of points to use
in the local weighted mean calculation.

Syntax
tform = images.geotrans.LocalWeightedMeanTransformation2D(
movingPoints,fixedPoints,n)

Description
tform = images.geotrans.LocalWeightedMeanTransformation2D(
movingPoints,fixedPoints,n) creates a LocalWeightedMeanTransformation2D
object given control point coordinates in movingPoints and fixedPoints, which define
matched control points in the moving and fixed images, respectively. The n closest points
are used to infer a second degree polynomial transformation for each control point pair.

1 Functions — Alphabetical List

1-2382

Input Arguments
movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix.
The number of control points m must be greater than or equal to n.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix.
The number of control points m must be greater than or equal to n.
Data Types: double | single

n — Number of points to use in local weighted mean calculation
numeric value

Number of points to use in local weighted mean calculation, specified as a numeric value.
n can be as small as 6, but making n small risks generating ill-conditioned polynomials
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32

Properties
Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

 images.geotrans.LocalWeightedMeanTransformation2D

1-2383

Examples

Fit Set of Fixed and Moving Control Points Using Second Degree Polynomial

Fit a local weighted mean transformation to a set of fixed and moving control points that
are actually related by a global second degree polynomial transformation across the
entire plane.

Set up variables.

x = [10, 12, 17, 14, 7, 10];
y = [8, 2, 6, 10, 20, 4];

a = [1 2 3 4 5 6];
b = [2.3 3 4 5 6 7.5];

u = a(1) + a(2).*x + a(3).*y + a(4) .*x.*y + a(5).*x.^2 + a(6).*y.^2;
v = b(1) + b(2).*x + b(3).*y + b(4) .*x.*y + b(5).*x.^2 + b(6).*y.^2;

movingPoints = [u',v'];
fixedPoints = [x',y'];

Fit local weighted mean transformation to points.

tformLocalWeightedMean = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,fixedPoints,6);

Verify the fit of the LocalWeightedMeanTransformation2D object at the control
points.

movingPointsComputed = transformPointsInverse(tformLocalWeightedMean,fixedPoints);

errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
 movingPointsComputed(:,2)-movingPoints(:,2))

Algorithms
The local weighted mean transformation infers a polynomial at each control point using
neighboring control points. The mapping at any location depends on a weighted average
of these polynomials. The n closest points are used to infer a second degree polynomial
transformation for each control point pair. n can be as small as 6, but making it small
risks generating ill-conditioned polynomials.

1 Functions — Alphabetical List

1-2384

See Also
Functions
cpselect | fitgeotrans | imwarp

Objects
PiecewiseLinearTransformation2D | PolynomialTransformation2D | affine2d
| projective2d

Introduced in R2013b

 images.geotrans.LocalWeightedMeanTransformation2D

1-2385

makecform
Create color transformation structure

The makecform function supports conversions between members of the family of device-
independent color spaces defined by the Commission Internationale de l'Éclairage
(International Commission on Illumination, or CIE). makecform also supports conversions
to and from the sRGB and CMYK color spaces. To perform a color space transformation,
pass the color transformation structure created by makecform as an argument to the
applycform function.

Syntax
C = makecform(type)
C = makecform(type,'WhitePoint',WP)
C = makecform(type,'AdaptedWhitePoint',WP)
C = makecform('adapt','WhiteStart',WPS,'WhiteEnd',WPE,'AdaptModel',
model)

C = makecform('srgb2cmyk','RenderingIntent',intent)
C = makecform('cmyk2srgb','RenderingIntent',intent)

C = makecform('icc',src_profile,dest_profile)
C = makecform('icc',src_profile,
dest_profile,'SourceRenderingIntent',
src_intent,'DestRenderingIntent',dest_intent)

C = makecform('mattrc',MatTRC,'Direction',direction)
C = makecform('mattrc',profile,'Direction',direction)
C = makecform('mattrc',profile,'Direction',
direction,'RenderingIntent',trc_intent)
C = makecform('graytrc',profile,'Direction',direction)
C = makecform('graytrc',profile,'Direction',
direction,'RenderingIntent',trc_intent)

C = makecform('clut',profile,LUTtype)
C = makecform('named',profile,space)

1 Functions — Alphabetical List

1-2386

Description
C = makecform(type) creates a color transformation structure C that defines the color
space conversion specified by type.

C = makecform(type,'WhitePoint',WP) specifies the value of the reference white
point, WP, for 'xyz2lab' or 'lab2xyz' conversions.

C = makecform(type,'AdaptedWhitePoint',WP) specifies the adapted white point,
WP, for 'srgb2lab', 'lab2srgb', 'srgb2xyz', or 'xyz2srgb' conversions.

C = makecform('adapt','WhiteStart',WPS,'WhiteEnd',WPE,'AdaptModel',
model) creates a linear chromatic-adaptation color transformation using the chromatic-
adaptation model, model, starting with whitepoint WPS and ending with whitepoint WPE.

C = makecform('srgb2cmyk','RenderingIntent',intent) and

C = makecform('cmyk2srgb','RenderingIntent',intent) specify the rendering
intent for color transformations between sRGB IEC61966-2.1 and "Specifications for Web
Offset Publications" (SWOP) CMYK.

C = makecform('icc',src_profile,dest_profile) creates a color transformation
based on two ICC profiles, src_profile and dest_profile.

C = makecform('icc',src_profile,
dest_profile,'SourceRenderingIntent',
src_intent,'DestRenderingIntent',dest_intent) creates a color transformation
based on two ICC color profiles, src_profile and dest_profile, specifying the
rendering intent for the source and destination profiles.

C = makecform('mattrc',MatTRC,'Direction',direction) creates a color
transformation based on a Matrix/Tone Reproduction Curve (MatTRC) model, in either the
forward or inverse direction.

C = makecform('mattrc',profile,'Direction',direction) creates a color
transformation based on the 'MatTRC' field of the ICC color profile profile, in either
the forward or inverse direction.

C = makecform('mattrc',profile,'Direction',
direction,'RenderingIntent',trc_intent) adds the option of specifying the
rendering intent.

 makecform

1-2387

C = makecform('graytrc',profile,'Direction',direction) creates a
monochrome transformation based on a single-channel Tone Reproduction Curve
(GrayTRC) contained in an ICC color profile.

C = makecform('graytrc',profile,'Direction',
direction,'RenderingIntent',trc_intent) adds the option of specifying the
rendering intent.

C = makecform('clut',profile,LUTtype) creates a color transformation based on
a color lookup table of the type LUTtype, contained in an ICC color profile, profile.

C = makecform('named',profile,space) creates a color transformation from a
named color profile (with a 'NamedColor2' field) to coordinates in the color space
space.

Examples

Convert sRGB Image to L*a*b*
Convert RGB image to L*a*b*, assuming input image is sRGB.

rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform);

Convert RGB to XYZ
Convert from a non-standard RGB color profile to the device-independent XYZ profile
connection space. Note that the ICC input profile must include a MatTRC value.

InputProfile = iccread('myRGB.icc');
C = makecform('mattrc',InputProfile.MatTRC, ...
 'direction','forward');

Input Arguments
type — Color space conversion type
'cmyk2srgb' | 'srgb2cmyk' | 'lab2xyz' | 'xyz2lab' | ...

1 Functions — Alphabetical List

1-2388

Color space conversion type, specified as one of the following character vectors. For a list
of the abbreviations used by the Image Processing Toolbox software for each color space,
see “Definitions” on page 1-2394.

Type Description
'cmyk2srgb' Convert from the CMYK color space to the sRGB color space.
'lab2lch' Convert from the L*a*b* to the L*ch color space.
'lab2srgb' Use lab2rgb instead.
'lab2xyz' Use lab2xyz instead.
'lch2lab' Convert from the L*ch to the L*a*b* color space.
'srgb2cmyk' Convert from the sRGB to the CMYK color space.
'srgb2lab' Use rgb2lab instead.
'srgb2xyz' Use rgb2xyz instead.
'upvpl2xyz' Convert from the u′v′L to the XYZ color space.
'uvl2xyz' Convert from the uvL to the XYZ color space.
'xyl2xyz' Convert from the xyY to the XYZ color space.
'xyz2lab' Use xyz2lab instead.
'xyz2srgb' Use xyz2rgb instead.
'xyz2upvpl' Convert from the XYZ to the u′v′L color space.
'xyz2uvl' Convert from the XYZ to the uvL color space.
'xyz2xyl' Convert from the XYZ to the xyY color space.

Data Types: char | string

WP — White point
[0.9642 1.0000 0.8249] (default) | 1-by-3 numeric vector

Reference or adapted white point, specified as a 1-by-3 numeric vector of XYZ values,
scaled so that Y = 1. Use the whitepoint function to create the WP vector. The default
white point is the vector returned by whitepoint('ICC').

To get an adaptive whitepoint value that is consistent with some published sRGB
equations, set the value of WP to [0.9504, 1.0000, 1.0888], which is the vector
returned by whitepoint('D65').

 makecform

1-2389

WPS, WPE — Starting or ending white point
1-by-3 numeric vector

Starting or ending white point used for a linear chromatic-adaptation transform, specified
as a 1-by-3 numeric vector of XYZ values, scaled so that Y = 1. Use the whitepoint
function to create the WPS or WPE vector.

intent — Rendering intent
'Perceptual' (default) | 'AbsoluteColorimetric' | 'RelativeColorimetric' |
'Saturation'

Rendering intent, specified as 'Perceptual', 'AbsoluteColorimetric',
'RelativeColorimetric', or 'Saturation'.

Rendering intents specify the style of reproduction that should be used when these
profiles are combined. For most devices, the range of reproducible colors is much smaller
than the range of colors represented by the PCS. Rendering intents define gamut
mapping techniques. Each rendering intent has distinct aesthetic and color-accuracy
trade-offs.

Value Description
'AbsoluteColorim
etric'

Maps all out-of-gamut colors to the nearest gamut surface while
maintaining the relationship of all in-gamut colors. This absolute
rendering contains color data that is relative to a perfectly
reflecting diffuser.

'Perceptual'
(default)

Employs vendor-specific gamut mapping techniques for optimizing
the range of producible colors of a given device. The objective is
to provide the most aesthetically pleasing result even though the
relationship of the in-gamut colors might not be maintained. This
media-relative rendering contains color data that is relative to the
device's white point.

'RelativeColorim
etric'

Maps all out-of-gamut colors to the nearest gamut surface while
maintaining the relationship of all in-gamut colors. This media-
relative rendering contains color data that is relative to the
device's white point.

1 Functions — Alphabetical List

1-2390

Value Description
'Saturation' Employs vendor-specific gamut mapping techniques for

maximizing the saturation of device colors. This rendering is
generally used for simple business graphics such as bar graphs
and pie charts. This media-relative rendering contains color data
that is relative to the device's white point.

src_intent, dest_intent — Source or destination rendering intent
'Perceptual' (default) | 'AbsoluteColorimetric' | 'RelativeColorimetric' |
'Saturation'

Source or destination rendering intent for a color transformation between two ICC
profiles, specified as 'Perceptual', 'AbsoluteColorimetric',
'RelativeColorimetric', or 'Saturation'. For more information, see intent.

trc_intent — Rendering intent for tone reproduction curve
'RelativeColorimetric' (default) | 'AbsoluteColorimetric'

Rendering intent for tone reproduction curve (MatTRC or grayTRC), specified as
'RelativeColorimetric' or 'AbsoluteColorimetric'. When
'AbsoluteColorimetric' is specified, the colorimetry is referenced to a perfect
diffuser, rather than to the media white point of the ICC color profile, profile. For more
information, see intent.

model — Chromatic-adaptation model
'Bradford' (default) | 'vonKries'

Chromatic-adaptation model used to create a linear chromatic-adaptation transform,
specified as 'Bradford' or 'vonKries'.

profile — ICC color profile
struct

ICC color profile, specified as a structure as returned by iccread. If profile is a named
color profile, it must have a NamedColor2 field.

src_profile, dest_profile — Source or destination ICC color profile
struct

Source or destination ICC color profile, specified as a structure as returned by iccread.

 makecform

1-2391

MatTRC — Matrix/tone reproduction curve model
struct

Matrix/tone reproduction curve model, specified as a structure. MatTRC is typically
obtained from the 'MatTRC' field of an ICC profile structure returned by iccread, based
on tags contained in an ICC color profile. The MatTRC model contains an RGB-to-XYZ
matrix and RGB tone reproduction curves.

direction — Direction to apply tone reproduction curve model
'forward' | 'inverse'

Direction to apply the tone reproduction curve model, specified as 'forward' or
'inverse'.

• For a multi-channel tone reproduction curve ('mattrc'), 'forward' applies the
model in the RGB to XYZ direction, and 'inverse' applies the model in the XYZ to
RGB direction. For more information, see section 6.3.1.2 of the International Color
Consortium specification ICC.1:2001-04 or ICC.1:2001-12, available at www.color.org.

• For a single-channel tone reproduction curve ('graytrc'), 'forward' applies the
model in the device to PCS direction, and 'inverse' applies the model in the PCS to
device direction. "Device" here refers to the grayscale signal communicating with the
monochrome device. "PCS" is the Profile Connection Space of the ICC profile and can
be either XYZ or L*a*b*, depending on the 'ConnectionSpace' field in
profile.Header.

LUTtype — Lookup table type
'AToB0' (default) | 'AToB1' | 'BToA0' | 'Gamut' | 'Preview0' | ...

Lookup table type, specified as one of the following values. LUTtype specifies which
'clut' in the profile structure is to be used. Each LUTtype listed in the table below
contains the components of an 8-bit or 16-bit LUTtag that performs a transformation
between device colors and PCS colors using a particular rendering. For more information
about 'clut' transformations, see Section 6.5.7 of the International Color Consortium
specification ICC.1:2001-04 (Version 2) or Section 6.5.9 of ICC.1:2001-12 (Version 4),
available at http://www.color.org.

LUT Type Description
'AToB0' (default) Device to PCS: perceptual rendering intent
'AToB1' Device to PCS: media-relative colorimetric rendering intent

1 Functions — Alphabetical List

1-2392

http://www.color.org
http://www.color.org

LUT Type Description
'AToB2' Device to PCS: saturation rendering intent
'AToB3' Device to PCS: ICC-absolute rendering intent
'BToA0' PCS to device: perceptual rendering intent
'BToA1' PCS to device: media-relative colorimetric rendering intent
'BToA2' PCS to device: saturation rendering intent
'BToA3' PCS to device: ICC-absolute rendering intent
'Gamut' Determines which PCS colors are out of gamut for a given device
'Preview0' PCS colors to the PCS colors available for soft proofing using the

perceptual rendering
'Preview1' PCS colors available for soft proofing using the media-relative

colorimetric rendering.
'Preview2' PCS colors to the PCS colors available for soft proofing using the

saturation rendering.

space — Color space
'PCS' | 'Device'

Color space, specified as 'PCS' or 'Device'. The 'PCS' option is always available and
will return L*a*b* or XYZ coordinates, depending on the 'ConnectionSpace' field in
profile.Header. The 'Device' option, when active, returns device coordinates, the
dimension depending on the 'ColorSpace' field in profile.Header. Coordinates are
always returned in 'double' format.

Output Arguments
C — Color transformation
struct

Color transformation structure, returned as a struct.

 makecform

1-2393

Definitions

Color Space Abbreviations
The Image Processing Toolbox software uses the following abbreviations to represent
color spaces.

Abbreviation Description
xyz 1931 CIE XYZ tristimulus values (2° observer)
xyl 1931 CIE xyY chromaticity values (2° observer), where x and y

refer to the xy-coordinates of the associated CIE chromaticity
diagram, and l refers to Y (luminance).

uvl 1960 CIE uvY values, where u and v refer to the uv-coordinates,
and l refers to Y (luminance).

upvpl 1976 CIE u′v′Y values, where up and vp refer to the u′v′-
coordinates and l refers to Y (luminance).

lab 1976 CIE L*a*b* values. Note that l refers to L* (CIE 1976
psychometric lightness) rather than luminance (Y).

lch Polar transformation of CIE L*a*b* values, where c = chroma and
h = hue

cmyk Standard values used by printers
srgb Standard computer monitor RGB values, (IEC 61966-2-1)

See Also
applycform | iccread | iccwrite | isicc | lab2rgb | lab2xyz | rgb2lab | rgb2xyz
| whitepoint | xyz2lab | xyz2rgb

External Websites
http://www.color.org

Introduced before R2006a

1 Functions — Alphabetical List

1-2394

http://www.color.org

makeConstrainToRectFcn
Create rectangularly bounded drag constraint function

Syntax
fcn = makeConstrainToRectFcn(roi,x,y)

Description
fcn = makeConstrainToRectFcn(roi,x,y) creates a position constraint function for
draggable tools of a given ROI type. The position of the tool is constrained by rectangular
boundaries described by position vectors x and y.

Examples

Constrain Drag of impoint to Image Limits

Display an image.

imshow('cell.tif')

Create an impoint object at the (x,y) coordinate (20,60). In an image, the positive y
direction is downwards.

h = impoint(gca,20,60);

 makeConstrainToRectFcn

1-2395

Make a function that constrains the impoint to the image limits.

x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);

Apply the constraint function to the impoint. Try dragging the point past the boundary
of the image. The constraint function prevents the point from crossing the image
boundary.

setPositionConstraintFcn(h,fcn);

Input Arguments
roi — ROI type
'imellipse' | 'imfreehand' | 'imline' | 'impoint' | 'impoly' | 'imrect'

ROI type, specified as 'imellipse', 'imfreehand', 'imline', 'impoint',
'impoly', or 'imrect'.
Data Types: char | string

x — Rectangular boundaries in the x direction
2-element numeric vector

1 Functions — Alphabetical List

1-2396

Rectangular boundaries in the x direction, specified as a 2-element numeric vector of the
form [xmin xmax].

y — Rectangular boundaries in the y direction
2-element numeric vector

Rectangular boundaries in the y direction, specified as a 2-element numeric vector of the
form [ymin ymax].

Output Arguments
fcn — Function handle
handle

Function handle, returned as a handle. For more information, see “Create Function
Handle” (MATLAB).

See Also
imdistline | imellipse | imfreehand | imline | impoint | impoly | imrect

Introduced in R2006a

 makeConstrainToRectFcn

1-2397

makehdr
Create high dynamic range image

Syntax
HDR = makehdr(files)
HDR = makehdr(imds)
HDR = makehdr(___ ,Name,Value)

Description
HDR = makehdr(files) creates the single-precision, high dynamic range (HDR) image
HDR from the set of spatially registered, low dynamic range (LDR) images in files.

HDR = makehdr(imds) creates the single-precision, high dynamic range image HDR
from the set of spatially registered LDR images stored as ImageDatastore object, imds.

HDR = makehdr(___ ,Name,Value) uses name-value pairs to control various aspects
of the image creation in addition to the input argument from any of the previous syntaxes.

Note The input image files must contain the Exchangeable Image File Format (EXIF)
exposure metadata. makehdr uses the middle exposure between the brightest and
darkest images as the base exposure for the HDR calculations. This value does not need
to appear in any particular file. For more information about calculating this middle
exposure value, see “Algorithms” on page 1-2406.

Examples

Create HDR Image from Set of LDR Images

Create a high dynamic range (HDR) image from a set of low dynamic range (LDR) images
that share the same f-stop but have different exposure times.

1 Functions — Alphabetical List

1-2398

Load six low dynamic range images into the workspace. Create a vector of their
respective exposure times. Display the images as a montage.

files = {'office_1.jpg','office_2.jpg','office_3.jpg',...
 'office_4.jpg','office_5.jpg','office_6.jpg'};
expTimes = [0.0333 0.1000 0.3333 0.6250 1.3000 4.0000];
montage(files)

 makehdr

1-2399

Combine the LDR images into an HDR image.

hdr = makehdr(files,'RelativeExposure',expTimes./expTimes(1));

Display the HDR image.

1 Functions — Alphabetical List

1-2400

rgb = tonemap(hdr);
imshow(rgb)

Create HDR Image Using Camera Response Function

Create a high dynamic range (HDR) image from a set of six low dynamic range (LDR)
images that share the same f-stop but have different exposure times. The estimated
camera response function values are computed from these LDR images and used to
generate an HDR image.

Read the set of six spatially registered, LDR images into the workspace. Create an
imageDatastore object containing these images. Display the images as a montage.

 makehdr

1-2401

setDir = fullfile(toolboxdir('images'),'imdata','office_*');
imds = imageDatastore(setDir);
montage(imds)

Estimate the camera response function from images in the datastore.

1 Functions — Alphabetical List

1-2402

crf = camresponse(imds);

Combine the LDR images into an HDR image by using the estimated camera response
function values.

hdr = makehdr(imds,'CameraResponse',crf);

Display the HDR image.

rgb = tonemap(hdr);
imshow(rgb)

 makehdr

1-2403

Input Arguments
files — Set of spatially registered LDR images
string array | cell array of character vectors

Set of spatially registered LDR images, specified as a string array or a cell array of
character vectors. These images can be color or grayscale of any bit depth. However, the
preferred bit depth for LDR images is 8 or 16.
Data Types: char | string | cell

imds — Set of spatially registered LDR images
ImageDatastore object

Set of spatially registered LDR images, specified as an ImageDatastore object. These
images can be color or grayscale of any bit depth. However, the preferred bit depth for
LDR images is 8 or 16.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: makehdr(files,'RelativeExposure',[0.1 0.3 0.4]);

BaseFile — Name of file to use as base exposure
string scalar | character vector

Name of file to use as base exposure, specified as a string scalar or character vector.
Data Types: char | string

Note You can use only one of the 'BaseFile', 'ExposureValues', and
'RelativeExposure' name-value pairs at a time.

ExposureValues — Exposure value of each file in input set
numeric vector of positive values

1 Functions — Alphabetical List

1-2404

Exposure value of each file in input set, specified as a numeric vector of positive values.
The kth element in the vector corresponds to the kth LDR image in the input set. An
increase of one exposure value (EV) corresponds to doubling the exposure. A decrease of
one EV corresponds to halving the exposure. If you specify this parameter, the function
overrides the EXIF exposure metadata.
Data Types: single | double

RelativeExposure — Relative exposure value of each file in input set
numeric vector of positive values

Relative exposure value of each file in input set, specified as a numeric vector of positive
values. The kth element in the vector corresponds to the kth LDR image in the input set.

For example, an image with a relative exposure (RE) value of 0.5 has half as much
exposure as an image with an RE value of 1. Similarly, an image with an RE value of 3 has
three times the exposure of an image with an RE value of 1. If you specify this parameter,
the function overrides the EXIF exposure metadata.
Data Types: single | double

MinimumLimit — Minimum correctly exposed value
positive integer

Minimum correctly exposed value, specified as a positive integer. For each LDR image,
pixels with a smaller value than this minimum are considered underexposed and do not
contribute to the final HDR image. By default, this minimum value is set to 2% of the
maximum intensity allowed by the image data type.
Data Types: single | double

MaximumLimit — Maximum correctly exposed value
positive integer

Maximum correctly exposed value, specified as a positive integer. For each LDR image,
pixels with a larger value than this maximum are considered overexposed and do not
contribute to the final HDR image. By default, this maximum value is set to 98% of the
maximum intensity allowed by the image data type.
Data Types: single | double

CameraResponse — Camera response function
n-by-1 vector | n-by-3 matrix

 makehdr

1-2405

Camera response function, specified as a n-by-1 vector for grayscale images and n-by-3
matrix for color images. The camera response function maps the log-exposure value
(scene radiance) to the intensity levels in the input images. The value of n is 2bit depth. For
example, if the bit depth of the input set of images is 8, then n is 256.

Note The 'MaximumLimit' and 'MinimumLimit' name-value pairs are ignored when
'CameraResponse' is specified.

Data Types: single | double

Output Arguments
HDR — High dynamic range image
m-by-n-by-3 numeric array

High dynamic range image, returned as an m-by-n-by-3 numeric array.
Data Types: single

Algorithms
The makehdr function calculates the middle exposure value by using the exposure values
(EVs) of the input images. The exposure value for each image is computed based on the
aperture and shutter speed. The aperture and shutter speed values are stored in the EXIF
metadata of that input file or is specified using the 'ExposureValues' name-value pair.
The middle EV is calculated as an average of the highest and lowest EVs and is used as
the base exposure.

References
[1] Reinhard et al. High Dynamic Range Imaging 2006. Ch. 4.

[2] Debevec, P.E., and J. Malik. "Recovering High Dynamic Range Radiance Maps from
Photographs." In ACM SIGGRAPH 2008 classes, Article No. 31. New York, NY:
ACM, 2008.

1 Functions — Alphabetical List

1-2406

See Also
camresponse | hdrread | hdrwrite | localtonemap | tonemap | tonemapfarbman

Introduced in R2008a

 makehdr

1-2407

makelut
Create lookup table for use with bwlookup

Syntax
lut = makelut(fun,n)

Description
lut = makelut(fun,n) creates a lookup table. fun is a function that creates a numeric
output from a binary neighborhood of size n-by-n. The function creates a lookup table by
passing all possible neighborhoods to fun, one at a time, and storing the outputs in
vector lut.

Use the lookup table with bwlookup to perform nonlinear neighborhood filtering.

Examples

Make Lookup Table for 2-by-2 Neighborhood

Create a lookup table for 2-by-2 neighborhoods. In this example, the function passed to
makelut returns true if the number of 1s in the neighborhood is 2 or greater, and
returns false otherwise.

f = @(x) (sum(x(:)) >= 2);
lut = makelut(f,2)

lut = 16×1

 0
 0
 0
 1
 0

1 Functions — Alphabetical List

1-2408

 1
 1
 1
 0
 1
 ⋮

Input Arguments
fun — Function handle
handle

Function handle, specified as a handle. The function must accept an n-by-n binary matrix
of 1s and 0s as input and return a scalar.

For more information about function handles, see “Create Function Handle” (MATLAB).

n — Neighborhood size
2 | 3

Neighborhood size for the lookup table, specified as 2 or 3.

Output Arguments
lut — Lookup table
16-element numeric vector | 512-element numeric vector

Lookup table, returned as a 16-element numeric vector when n is 2, or a 512-element
numeric vector when n is 3.
Data Types: double

See Also
bwlookup

Introduced before R2006a

 makelut

1-2409

makeresampler
Create resampling structure

Syntax
R = makeresampler(interpolant,padmethod)
R = makeresampler(Name,Value,...)

Description
R = makeresampler(interpolant,padmethod) creates a separable resampler
structure for use with tformarray. The interpolant argument specifies the
interpolating kernel that the separable resampler uses. The padmethod argument
controls how the resampler interpolates or assigns values to output elements that map
close to or outside the edge of the input array.

R = makeresampler(Name,Value,...) create a resampler structure that uses a user-
written resampler using parameter value pairs.

Examples

Use Separable Resampler to Stretch an Image in the Y Direction

Read an image into the workspace and display it.

A = imread('moon.tif');
imshow(A)

1 Functions — Alphabetical List

1-2410

 makeresampler

1-2411

Create a separable resampler.

resamp = makeresampler({'nearest','cubic'},'fill');

Create a spatial transformation structure (TFORM) that defines an affine transformation.

stretch = maketform('affine',[1 0; 0 1.3; 0 0]);

Apply the transformation, specifying the custom resampler.

B = imtransform(A,stretch,resamp);

Display the transformed image.

imshow(B)

1 Functions — Alphabetical List

1-2412

 makeresampler

1-2413

Input Arguments
interpolant — Interpolating kernel
'cubic' | 'linear' | 'nearest' | cell array

Interpolating kernel, specified as 'nearest', 'linear', 'cubic',or a cell array. The
following table lists the named interpolants:

Interpolant Description
'cubic' Cubic interpolation
'linear' Linear interpolation
'nearest' Nearest-neighbor interpolation

If you want to use a custom interpolating kernel, specify a cell array in either of these
forms:

{half_width,
positive_half}

half_width is a positive scalar designating the half width
of a symmetric interpolating kernel. positive_half is a
vector of values regularly sampling the kernel on the closed
interval [0 positive_half].

{half_width,
interp_fcn}

interp_fcn is a function handle that returns interpolating
kernel values, given an array of input values in the interval
[0 positive_half].

To specify the interpolation method independently along each dimension, combine both
types of interpolant specifications. The number of elements in the cell array must equal
the number of transform dimensions. For example, consider the following example of an
interpolant value:

{'nearest', 'linear', {2 KERNEL_TABLE}}

In this example, the resampler uses nearest-neighbor interpolation along the first
transform dimension, linear interpolation along the second dimension, and custom table-
based interpolation along the third.
Data Types: char | string | cell

1 Functions — Alphabetical List

1-2414

padmethod — Method used to assign values to output elements that map outside
the input array
'bound' | 'circular' | 'replicate' | 'symmetric' | 'fill'

Method used to assign values to output elements that map outside the input array,
specified as one of the following values.

Pad Method Description
'bound' Assigns values from the fill value array to points that map outside

the input array. Repeats border elements of the array for points
that map inside the array (same as 'replicate'). When
interpolant is 'nearest', this pad method produces the same
results as 'fill'. 'bound' is like 'fill', but avoids mixing fill
values and input image values.

'circular' Pads array with circular repetition of elements within the
dimension. Same as padarray.

'fill' Generates an output array with smooth-looking edges (except
when using nearest-neighbor interpolation). For output points that
map near the edge of the input array (either inside or outside), it
combines input image and fill values. When interpolant is
'nearest', this pad method produces the same results as
'bound'.

'replicate' Pads array by repeating border elements of array. Same as
padarray.

'symmetric' Pads array with mirror reflections of itself. Same as padarray.

For 'fill', 'replicate', 'circular', or 'symmetric', the resampling performed
by tformarray occurs in two logical steps:

1 Pad the array A infinitely to fill the entire input transform space.
2 Evaluate the convolution of the padded A with the resampling kernel at the output

points specified by the geometric map.

Each nontransform dimension is handled separately. The padding is virtual (accomplished
by remapping array subscripts) for performance and memory efficiency. If you implement
a custom resampler, you can implement these behaviors.
Data Types: char | string

 makeresampler

1-2415

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: resamp =
makeresampler('Type','separable','Interpolant','linear','PadMethod',
'fill');

Type — Resampler type
'separable' | 'custom'

Resampler type, specified as one of the following values.

Type Description
'separable' Create a separable resampler. If you specify this value, the

only other properties that you can specify are
'Interpolant' and 'PadMethod'. The result is equivalent
to using the makeresampler(interpolant,padmethod)
syntax.

'custom' Create a customer resampler. If you specify this value, you
must specify the 'NDims' and 'ResampleFcn' properties
and, optionally, the 'CustomData' property.

Data Types: char | string

PadMethod — Method used to assign values to output elements that map close to
or outside the edge of the input array
character vector | string scalar

See the padmethod argument for more information.
Data Types: char | string

Interpolant — Interpolating kernel
character vector | string scalar | cell array

See the interpolant argument for more information.
Data Types: char | string | cell

1 Functions — Alphabetical List

1-2416

NDims — Dimensionality custom resampler can handle
positive integer

Dimensionality custom resampler can handle, specified as a positive integer. Use a value
of Inf to indicate that the custom resampler can handle any dimension. If 'Type' is
'custom', you must specify NDims.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

ResampleFcn — Function that performs the resampling
function handle

Function that performs the resampling, specified as a function handle. You call this
function with the following interface:

B = resample_fcn(A,M,TDIMS_A,TDIMS_B,FSIZE_A,FSIZE_B,F,R)

For more information about the input arguments to this function, see the help for
tformarray. The argument M is an array that maps the transform subscript space of B to
the transform subscript space of A. If A has N transform dimensions (N =
length(TDIMS_A)) and B has P transform dimensions (P = length(TDIMS_B)), then
ndims(M) = P + 1, if N > 1 and P if N == 1, and size(M,P + 1) = N.

The first P dimensions of M correspond to the output transform space, permuted
according to the order in which the output transform dimensions are listed in TDIMS_B.
(In general TDIMS_A and TDIMS_B need not be sorted in ascending order, although some
resamplers can impose such a limitation.) Thus, the first P elements of size(M)
determine the sizes of the transform dimensions of B. The input transform coordinates to
which each point is mapped are arrayed across the final dimension of M, following the
order given in TDIMS_A. M must be double. FSIZE_A and FSIZE_B are the full sizes of A
and B, padded with 1's as necessary to be consistent with TDIMS_A, TDIMS_B, and
size(A).
Data Types: function_handle

CustomData — User-define data
numeric array | string scalar | character vector

User-defined data, specified using a string scalar, character vector, or numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

 makeresampler

1-2417

Output Arguments
R — Resampler
structure

Resampler, returned as a structure.

See Also
tformarray

Introduced before R2006a

1 Functions — Alphabetical List

1-2418

maketform
Create spatial transformation structure (TFORM)

Note maketform is not recommended. Use fitgeotrans, affine2d, affine3d, or
projective2d instead.

Syntax
T = maketform('affine',A)
T = maketform('affine',U,X)
T = maketform('projective',A)
T = maketform('projective',U,X)
T = maketform('custom',NDIMS_IN,NDIMS_OUT,FORWARD_FCN,INVERSE_FCN,
TDATA)
T = maketform('box',tsize,LOW,HIGH)
T = maketform('box',INBOUNDS, OUTBOUNDS)
T = maketform('composite',T1,T2,...,TL)
T = maketform('composite', [T1 T2 ... TL])

Description
T = maketform('affine',A) creates a multidimensional spatial transformation
structureT for an N-dimensional affine transformation. A is a nonsingular real (N+1)-by-
(N+1) or (N+1)-by-N matrix. If A is (N+1)-by-(N+1), the last column of A must be
[zeros(N,1);1]. Otherwise, A is augmented automatically, such that its last column is
[zeros(N,1);1]. The matrix A defines a forward transformation such that
tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X, such that X = U
* A(1:N,1:N) + A(N+1,1:N). T has both forward and inverse transformations.

A spatial transformation structure (called a TFORM struct) that can be used with the
tformfwd, tforminv, fliptform, imtransform, or tformarray functions.

T = maketform('affine',U,X) creates a TFORM struct T for a two-dimensional affine
transformation that maps each row of U to the corresponding row of X. The U and X

 maketform

1-2419

arguments are each 3-by-2 and define the corners of input and output triangles. The
corners cannot be collinear.

T = maketform('projective',A) creates a TFORM struct for an N-dimensional
projective transformation. A is a nonsingular real (N+1)-by-(N+1) matrix. A(N+1,N+1)
cannot be 0. The matrix A defines a forward transformation such that tformfwd(U,T),
where U is a 1-by-N vector, returns a 1-by-N vector X, such that X = W(1:N)/W(N+1),
where W = [U 1] * A. The transformation structure T has both forward and inverse
transformations.

T = maketform('projective',U,X) creates a TFORM struct T for a two-dimensional
projective transformation that maps each row of U to the corresponding row of X. The U
and X arguments are each 4-by-2 and define the corners of input and output
quadrilaterals. No three corners can be collinear.

T = maketform('custom',NDIMS_IN,NDIMS_OUT,FORWARD_FCN,INVERSE_FCN,
TDATA) creates a custom TFORM struct T based on user-provided function handles and
parameters. NDIMS_IN and NDIMS_OUT are the numbers of input and output dimensions.
FORWARD_FCN and INVERSE_FCN are function handles to forward and inverse functions.
The forward function must support the following syntax: X = FORWARD_FCN(U,T). The
inverse function must support the following syntax: U = INVERSE_FCN(X,T). In these
syntaxes, U is a P-by-NDIMS_IN matrix whose rows are points in the transformation input
space. X is a P-by-NDIMS_OUT matrix whose rows are points in the transformation output
space. The TDATA argument can be any MATLAB array and is typically used to store
parameters of the custom transformation. It is accessible to FORWARD_FCN and
INVERSE_FCN via the tdata field of T. Either FORWARD_FCN or INVERSE_FCN can be
empty, although at least INVERSE_FCN must be defined to use T with tformarray or
imtransform.

T = maketform('box',tsize,LOW,HIGH) or
T = maketform('box',INBOUNDS, OUTBOUNDS) builds an N-dimensional affine
TFORM struct T. The tsize argument is an N-element vector of positive integers. LOW and
HIGH are also N-element vectors. The transformation maps an input box defined by the
opposite corners ones(1,N) and tsize, or by corners INBOUNDS(1,:) and
INBOUND(2,:), to an output box defined by the opposite corners LOW and HIGH or
OUTBOUNDS(1,:) and OUTBOUNDS(2,:). LOW(K) and HIGH(K) must be different unless
tsize(K) is 1, in which case the affine scale factor along the Kth dimension is assumed
to be 1.0. Similarly, INBOUNDS(1,K) and INBOUNDS(2,K) must be different unless
OUTBOUNDS(1,K) and OUTBOUNDS(2,K) are the same, and conversely. The 'box'
TFORM is typically used to register the row and column subscripts of an image or array to
some world coordinate system.

1 Functions — Alphabetical List

1-2420

T = maketform('composite',T1,T2,...,TL) or
T = maketform('composite', [T1 T2 ... TL]) builds a TFORM struct T whose
forward and inverse functions are the functional compositions of the forward and inverse
functions of T1, T2, ..., TL.

The inputs T1, T2, ..., TL are ordered just as they would be when using the
standard notation for function composition: T = T1 ∘ T2 ∘ ... ∘ TL and note also that
composition is associative, but not commutative. This means that to apply T to the input
U, one must apply TL first and T1 last. Thus if L = 3, for example, then tformfwd(U,T)
is the same as tformfwd(tformfwd(tformfwd(U,T3),T2),T1). The components T1
through TL must be compatible in terms of the numbers of input and output dimensions.
T has a defined forward transform function only if all the component transforms have
defined forward transform functions. T has a defined inverse transform function only if all
the component functions have defined inverse transform functions.

Examples

Make TFORM and Apply Transformation to Image

Create a transformation structure (TFORM) that defines an affine transformation.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1])

T =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @fwd_affine
 inverse_fcn: @inv_affine
 tdata: [1×1 struct]

Apply the forward transformation.

tformfwd([10 20],T)

ans =

 15 40

 maketform

1-2421

Read an image into the workspace and display it.

I = imread('cameraman.tif');

imshow(I),

Apply the transformation to the image.

I2 = imtransform(I,T);

Display the original image and the transformed image.

figure, imshow(I2)

1 Functions — Alphabetical List

1-2422

Input Arguments
A — Transformation matrix
nonsingular real (N+1)-by-(N+1) or (N+1)-by-N matrix

 maketform

1-2423

Transformation matrix, specified as a nonsingular, real (N+1)-by-(N+1) or (N+1)-by-N
matrix.
Data Types: double

U,X — Corners
4-by-2 matrix for projective transformations | 3-by-2 matrix for affine transformations

Corners, specified as a 3-by-2 matrix (for affine transformations) or 4-by-2 matrix (for
projective transformations). The matrices define the corners of triangles (for affine
transformations) or quadrangles (for projective transformations).
Data Types: double

NDIMS_IN,NDIMS_OUT — Number of input and output dimensions
scalar

Number of input and output dimensions, specified as a scalar.
Data Types: double

FORWARD_FCN,INVERSE_FCN — Forward and inverse functions
function handle

Forward and inverse functions, specified as function handles.
Data Types: function_handle

TDATA — Parameters of custom transformation
array

Parameters of custom transformation, specified as an array.
Data Types: double

tsize — Size of input box
n-element vector of positive integers

Size of input box, specified as an n-element vector of positive integers.
Data Types: double

LOW,HIGH — Corners of output box
n-element vectors.

Corners of output box, specified as an n-element vector.

1 Functions — Alphabetical List

1-2424

Data Types: double

T1,T2,...,TL — Forward and inverse functions
function handles

Forward and inverse functions, specified as function handles.
Data Types: function_handle

Output Arguments
T — Multidimensional spatial transformation structure
transformation structure (TFORM)

Multidimensional spatial transformation structure, returned as a transformation structure
(TFORM).

Tips
• An affine or projective transformation can also be expressed like this equation, for a 3-

by-2 A:

[X Y]' = A' * [U V 1] '

Or, like this equation, for a 3-by-3 A:

[X Y 1]' = A' * [U V 1]'

See Also
fliptform | imtransform | tformarray | tformfwd | tforminv

Introduced before R2006a

 maketform

1-2425

mat2gray
Convert matrix to grayscale image

Syntax
I = mat2gray(A,[amin amax])
I = mat2gray(A)

Description
I = mat2gray(A,[amin amax]) converts the matrix A to an intensity image I that
contains values in the range 0 (black) to 1 (white). amin and amax are the values in A that
correspond to 0 and 1 in I. Values less than amin become 0, and values greater than
amax become 1.

You optionally can perform the operation using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

I = mat2gray(A) sets the values of amin and amax to the minimum and maximum
values in A.

Examples

Convert a Matrix into an Image

Read an image and display it.

I = imread('rice.png');
figure
imshow(I)

1 Functions — Alphabetical List

1-2426

Perform an operation that returns a numeric matrix. This operation looks for edges.

J = filter2(fspecial('sobel'),I);
min_matrix = min(J(:))

min_matrix = -779

max_matrix = max(J(:))

max_matrix = 560

Note that the matrix has data type double with values outside of the range [0,1],
including negative values.

Display the result of the operation. Because the data range of the matrix is outside the
default display range of imshow, every pixel with a positive value displays as white, and
every pixel with a negative or zero value displays as black. It is challenging to see the
edges of the grains of rice.

 mat2gray

1-2427

figure
imshow(J)

Convert the matrix into an image. Display the maximum and minimum values of the
image.

K = mat2gray(J);
min_image = min(K(:))

min_image = 0

max_image = max(K(:))

max_image = 1

Note that values are still data type double, but that all values are in the range [0, 1].

Display the result of the conversion. Pixels show a range of grayscale colors, which makes
the location of the edges more apparent.

1 Functions — Alphabetical List

1-2428

figure
imshow(K)

Input Arguments
A — Input image
numeric matrix | gpuArray

Input image, specified as a numeric matrix.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric matrix.

[amin amax] — Input black and white values
2-element numeric vector

Input black and white values, specified as a 2-element numeric vector.

 mat2gray

1-2429

• Values in input image A that are less than or equal to amin are mapped to the value 0
in the intensity image, I.

• Values in A that are greater than or equal to amax are mapped to the value 1 in I.

Output Arguments
I — Output intensity image
numeric matrix | gpuArray

Output intensity image, returned as a numeric matrix with values in the range [0, 1].

If the output intensity image is computed using a GPU, then B is returned as a gpuArray
containing a numeric matrix.
Data Types: double

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
gray2ind | ind2gray | rescale | rgb2gray

Introduced before R2006a

1 Functions — Alphabetical List

1-2430

MattesMutualInformation
Mattes mutual information metric configuration

Description
A MattesMutualInformation object describes a mutual information metric
configuration that you pass to the function imregister to solve image registration
problems.

Creation
You can create a MattesMutualInformation object using the following methods:

• imregconfig — Returns a MattesMutualInformation object paired with an
appropriate optimizer for registering multimodal images

• Entering

metric = registration.metric.MattesMutualInformation;

on the command line creates a MattesMutualInformation object with default
settings

Properties
NumberOfSpatialSamples — Number of spatial samples used to compute the
mutual information metric
500 (default) | positive integer scalar

Number of spatial samples used to compute the mutual information metric, specified as a
positive integer scalar. NumberOfSpatialSamples defines the number of random pixels
imregister uses to compute the metric. Your registration results are more reproducible
(at the cost of performance) as you increase this value. imregister only uses
NumberOfSpatialSamples when UseAllPixels = 0 (false).

 MattesMutualInformation

1-2431

Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

NumberOfHistogramBins — Number of histogram bins used to compute the
mutual information metric
50 (default) | positive integer scalar

Number of histogram bins used to compute the mutual information metric, specified as a
positive integer scalar. NumberOfHistogramBins defines the number of bins
imregister uses to compute the joint distribution histogram. The minimum value is 5.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

UseAllPixels — Option to include all pixels in the overlap region when
computing the mutual information metric
1 (true) (default) | logical scalar

Option to compute the metric using all pixels in the overlap region of the images when
computing the mutual information metric, specified as a logical scalar.

You can achieve significantly better performance if you set this property to 0 (false).
When UseAllPixels = 0, the NumberOfSpatialSamples property controls the
number of random pixel locations that imregister uses to compute the metric. The
results of your registration might not be reproducible when UseAllPixels = 0. This is
because imregister selects a random subset of pixels from the images to compute the
metric.

Examples
Register Images with Mattes Mutual Information Metric

Create a MattesMutualInformation object and use it to register two MRI images of a
knee that were obtained using different protocols.

Read the images into the workspace. The images are multimodal because they have
different brightness and contrast.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

1 Functions — Alphabetical List

1-2432

figure
imshowpair(fixed, moving,'Scaling','joint');

Create the optimizer configuration object suitable for registering multimodal images.

optimizer = registration.optimizer.OnePlusOneEvolutionary;

 MattesMutualInformation

1-2433

Create the metric configuration object suitable for registering multimodal images.

metric = registration.metric.MattesMutualInformation

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer so that the problem will converge on a global
maxima. Increase the number of iterations the optimizer will use to solve the problem.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving,fixed,'affine',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions — Alphabetical List

1-2434

 MattesMutualInformation

1-2435

Tips
• Larger values of mutual information correspond to better registration results. You can

examine the computed values of Mattes mutual information if you enable
'DisplayOptimization' when you call imregister, for example:

movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric,'DisplayOptimization',true);

Algorithms
Mutual information metrics are information theoretic techniques for measuring how
related two variables are. These algorithms use the joint probability distribution of a
sampling of pixels from two images to measure the certainty that the values of one set of
pixels map to similar values in the other image. This information is a quantitative measure
of how similar the images are. High mutual information implies a large reduction in the
uncertainty (entropy) between the two distributions, signaling that the images are likely
better aligned.

The Mattes mutual information algorithm uses a single set of pixel locations for the
duration of the optimization, instead of drawing a new set at each iteration. The number
of samples used to compute the probability density estimates and the number of bins used
to compute the entropy are both user selectable. The marginal and joint probability
density function is evaluated at the uniformly spaced bins using the samples. Entropy
values are computed by summing over the bins. Zero-order and third-order B-spline
kernels are used to compute the probability density functions of the fixed and moving
images, respectively [1].

References
[1] Rahunathan, Smriti, D. Stredney, P. Schmalbrock, and B.D. Clymer. Image Registration

Using Rigid Registration and Maximization of Mutual Information. Poster
presented at: MMVR13. The 13th Annual Medicine Meets Virtual Reality
Conference; 2005 January 26–29; Long Beach, CA.

[2] D. Mattes, D.R. Haynor, H. Vesselle, T. Lewellen, and W. Eubank. "Non-rigid
multimodality image registration." (Proceedings paper).Medical Imaging 2001:
Image Processing. SPIE Publications, 3 July 2001. pp. 1609–1620.

1 Functions — Alphabetical List

1-2436

See Also
Functions
imregconfig | imregister

Objects
MeanSquares | OnePlusOneEvolutionary | RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

 MattesMutualInformation

1-2437

mean2
Average or mean of matrix elements

Syntax
B = mean2(A)

Description
B = mean2(A) computes the mean of all values in array A.

You optionally can compute the mean using a GPU (requires Parallel Computing Toolbox).
For more information, see “Image Processing on a GPU”.

Examples

Compute Mean of an Image

Read an image into the workspace.

I = imread('liftingbody.png');

Compute the mean.

meanval = mean2(I)

meanval = 140.2991

Compute 2–D Mean on a GPU

Read a grayscale image into the workspace as a gpuArray object, then calculate the
mean of the pixel intensity values using a GPU.

1 Functions — Alphabetical List

1-2438

I = gpuArray(imread('liftingbody.png'));
meanval = mean2(I)

Input Arguments
A — Input data
numeric array | logical array | gpuArray

Input data, specified as a numerical or logical array.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
B — Mean
numeric scalar | gpuArray

Mean of input data, returned as a numeric scalar. If the data type of A is single, then the
data type of B is also single. Otherwise, the data type of B is double.

If the image mean is computed using a GPU, then B is returned as a gpuArray containing
a numeric scalar.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 mean2

1-2439

• mean2 supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
corr2 | mean | std | std2

Introduced before R2006a

1 Functions — Alphabetical List

1-2440

MeanSquares
Mean square error metric configuration

Description
A MeanSquares object describes a mean square error metric configuration that you pass
to the function imregister to solve image registration problems.

Creation
You can create a MeanSquares object using the following methods:

• imregconfig — Returns a MeanSquares object paired with an appropriate optimizer
for registering monomodal images

• Entering

metric = registration.metric.MeanSquares;

on the command line creates a MeanSquares object

Examples
Register Images with Mean Squares Metric

Create a MeanSquares object and use it to register two images with similar brightness
and contrast.

Read the reference image and create an unregistered copy.

fixed = imread('pout.tif');
moving = imrotate(fixed, 5, 'bilinear', 'crop');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

 MeanSquares

1-2441

Create the metric configuration object suitable for registering monomodal images.

metric = registration.metric.MeanSquares

metric =
 registration.metric.MeanSquares

 This class has no properties.

Create the optimizer configuration object.

optimizer = registration.optimizer.RegularStepGradientDescent;

Modify the metric configuration to get more precision.

optimizer.MaximumIterations = 300;
optimizer.MinimumStepLength = 5e-4;

1 Functions — Alphabetical List

1-2442

Perform the registration.

movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

Tips
• The mean squares metric is an element-wise difference between two input images. The

ideal value is zero. You can examine the computed values of mean square error if you

 MeanSquares

1-2443

enable 'DisplayOptimization' when you call imregister. For example,
movingRegistered =
imregister(moving,fixed,'rigid',optimizer,metric,'DisplayOptimizat
ion',true);

Algorithms
The mean squares image similarity metric is computed by squaring the difference of
corresponding pixels in each image and taking the mean of the squared differences.

See Also
Functions
imregconfig | imregister

Objects
MattesMutualInformation | OnePlusOneEvolutionary |
RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

1 Functions — Alphabetical List

1-2444

measureChromaticAberration
Measure chromatic aberration at slanted edges using Imatest® eSFR chart

Syntax
aberrationTable = measureChromaticAberration(chart)
aberrationTable = measureChromaticAberration(chart,Name,Value)

Description
aberrationTable = measureChromaticAberration(chart) measures the
chromatic aberration at all slanted edge regions of interest (ROIs) of an Imatest® eSFR
chart.

aberrationTable = measureChromaticAberration(chart,Name,Value)
measures the chromatic aberration with additional parameters to specify a subset of ROIs
to measure.

Examples

Measure Chromatic Aberration of Slanted Edges on eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted
edge ROIs are labeled with green numbers.

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false,...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

 measureChromaticAberration

1-2445

https://www.imatest.com/mathworks/esfr/

Measure the chromatic aberration in all slanted edge ROIs. Examine the contents of the
returned table, chTable, for a single ROI.

chTable = measureChromaticAberration(chart);
ROIIndex = 3;
chTable(3,:)

ans=1×5 table
 ROI aberration percentAberration edgeProfile normalizedEdgeProfile
 ___ __________ _________________ _____________ _____________________

 3 1.9164 0.14883 [348x4 table] [348x4 table]

Store the normalized edge profile in a separate variable, edgeProfile, for clarity.
Examine the normalized color intensity of the first and last pixel of edgeProfile.

1 Functions — Alphabetical List

1-2446

edgeProfile = chTable.normalizedEdgeProfile{ROIIndex};
edgeProfile([1 end],:)

ans=2×4 table
 normalizedEdgeProfile_R normalizedEdgeProfile_G normalizedEdgeProfile_B normalizedEdgeProfile_Y
 _______________________ _______________________ _______________________ _______________________

 -0.0022049 0.0094112 0.0088172 0.0050968
 0.98511 0.98953 1.01 0.986

Plot the normalized intensity for the ROI.

npix = length(edgeProfile.normalizedEdgeProfile_R);
plot(1:npix,edgeProfile.normalizedEdgeProfile_R,'r', ...
 1:npix,edgeProfile.normalizedEdgeProfile_G,'g', ...
 1:npix,edgeProfile.normalizedEdgeProfile_B,'b')
xlabel('Pixel')
ylabel('Normalized Intensity')
title(['ROI ' num2str(ROIIndex) ' with Aberration ' num2str(chTable.aberration(ROIIndex))])

 measureChromaticAberration

1-2447

The blue channel has a higher intensity than the red and green channels immediately
before the edge, and a lower intensity than the red and green channels immediately after
the edge. This difference in intensity contributes to the measured value of chromatic
aberration.

The measured values of aberration and percentAberration for this edge are
relatively small. Visual inspection of the image confirms that the sides of the edge do not
have a strong color tint.

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

1 Functions — Alphabetical List

1-2448

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: measureChromaticAberration(myChart,'ROIIndex',2) measures the
chromatic aberration only of ROI 2.

ROIIndex — ROI indices
1:60 (default) | scalar | vector

ROI indices to include in measurements, specified as the comma-separated pair consisting
of 'ROIIndex' and a scalar or vector of integers in the range [1, 60]. The indices match
the ROI numbers displayed by displayChart.

Note measureChromaticAberration uses the intersection of ROIs specified by
'ROIIndex' and 'ROIOrientation'.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ROIOrientation — ROI orientation
'both' (default) | 'vertical' | 'horizontal'

ROI orientation, specified as the comma-separated pair consisting of 'ROIOrientation'
and 'both', 'vertical', or 'horizontal'. The measureChromaticAberration
function performs measurements only on ROIs with the specified orientation.

Note measureChromaticAberration uses the intersection of ROIs specified by
'ROIIndex' and 'ROIOrientation'.

Example: 'vertical'
Data Types: char | string

 measureChromaticAberration

1-2449

Output Arguments
aberrationTable — Chromatic aberration measurements
m-by-5 table

Chromatic aberration measurements, returned as an m-by-5 table. m is the number of
sampled ROIs.

The five columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 60].
aberration Chromatic aberration, measured as the area between the

maximum and the minimum red, green, and blue edge intensity
profiles. The measured chromatic aberration indicates perceptual
chromatic aberration. aberration is a scalar of type double.

percentAberratio
n

Aberration, expressed as a percentage of the distance in pixels
between the center of the image and the center of the ROI.

edgeProfile Intensity profile of each color channel across the edge in the ROI.
edgeProfile is an s-by-4 table, where s is the number of samples
across the edge. The four columns represent the red, green, blue,
and luminance values, averaged along the edge.

Luminance (Y) is a linear combination of the red (R), green (G),
and blue (B) channels according to:

Y = 0.213R + 0.715G + 0.072B

Note The sampling rate for the chromatic aberration
measurement is about four times the sampling rate of the image.

normalizedEdgePr
ofile

Intensity profile, normalized between [0, 1] using 5% of the front
end and tail end of data. normalizedEdgeProfile is an s-by-4
table with a similar structure to edgeProfile.

1 Functions — Alphabetical List

1-2450

Tips
• Chromatic aberration is best measured at slanted edges that are:

• Roughly orthogonal to the line connecting the center of the image and the center of
the ROI

• Farthest from the center of the image

Because chromatic aberration increases radially from the center of the image,
measurements at slanted edges near the center of the image can be ignored.

• The absolute chromatic aberration reported in the aberration field is measured in
the horizontal or vertical direction. However, chromatic aberration is a radial
phenomenon, and radial measurements are more accurate.

See Also
displayChart | measureSharpness

Topics
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

 measureChromaticAberration

1-2451

measureColor
Measure color reproduction using Imatest® eSFR chart

Syntax
colorTable = measureColor(chart)
[colorTable,colorCorrectionMatrix] = measureColor(chart)

Description
colorTable = measureColor(chart) measures the color values at all color regions
of interest (ROIs) of an Imatest® eSFR chart.

[colorTable,colorCorrectionMatrix] = measureColor(chart) also returns a
color correction matrix computed using a linear least squares fit.

Examples

Measure Color Accuracy of eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 16 color
patch ROIs are labeled with white numbers.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

1 Functions — Alphabetical List

1-2452

https://www.imatest.com/mathworks/esfr/

Measure the color in all color patch ROIs.

colorTable = measureColor(chart)

colorTable=16×8 table
 ROI Measured_R Measured_G Measured_B Reference_L Reference_a Reference_b Delta_E
 ___ __________ __________ __________ ___________ ___________ ___________ _______

 1 67 57 58 38.586 7.541 7.0812 15.15
 2 156 127 122 62.182 13.225 13.826 9.8745
 3 73 95 152 49.369 -0.51463 -20.062 18.455
 4 62 79 58 43.926 -6.8587 17.278 14.849
 5 104 109 171 53.415 9.457 -22.822 12.99
 6 118 175 187 69.95 -20.889 -0.21752 13.123
 7 214 192 69 78.643 1.8052 67.091 9.2399
 8 154 73 138 46.853 41.998 -17.056 5.1282
 9 62 120 182 51.05 -15.166 -22.416 22.813
 10 55 80 185 40.811 8.7346 -44.265 22.782

 measureColor

1-2453

 11 79 135 72 55.716 -23.419 28.839 9.4826
 12 152 53 77 42.759 44.167 7.9536 5.4168
 13 169 91 52 58.211 27.58 47.578 15.988
 14 142 63 87 47.012 39.15 8.5453 11.651
 15 91 67 102 40.591 17.951 -9.525 10.897
 16 152 183 80 70.505 -16.318 49.811 10.253

Display the color accuracy measurements. Each square color patch is the measured color,
and the thick surrounding border is the reference color for that ROI. Each color accuracy
measurement is displayed as Delta_E, the Euclidean distance between measured and
reference colors in the CIE 1976 L*a*b* color space. More accurate colors have a smaller
Delta_E.

figure
displayColorPatch(colorTable)

1 Functions — Alphabetical List

1-2454

For an alternative representation of the color accuracy measurements, plot the measured
and reference colors in the CIE 1976 L*a*b* color space on a chromaticity diagram. Red
circles indicate the reference color. Green circles indicate the measured color of each
color patch. The chromaticity diagram does not portray the brightness of color.

 measureColor

1-2455

figure
plotChromaticity(colorTable)

ROIs with a shorter distance between the reference and measurement points have
smaller differences in chromaticity, which can contribute to a smaller value of Delta_E.
However, brightness also contributes to the value of Delta_E. For example, even though
the reference and measurement points for ROI 13 are near each other on the chromaticity
diagram, they have a large Delta_E because of their large difference in brightness.

1 Functions — Alphabetical List

1-2456

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Output Arguments
colorTable — Color values
16-by-8 table

Color values in each color patch, returned as a 16-by-8 table. The 16 rows correspond to
the 16 color patches on the eSFR chart.

The eight columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 16]. The indices match the ROI numbers displayed by
displayChart.

Measured_R Mean value of red channel pixels in an ROI. Measured_R is a
scalar of the same data type as chart.Image, which can be of
type single, double, uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a
scalar of the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a
scalar of the same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a
scalar of type double.

Reference_a Reference a* value corresponding to the ROI. Reference_a is a
scalar of type double.

Reference_b Reference b* value corresponding to the ROI. Reference_b is a
scalar of type double.

 measureColor

1-2457

Variable Description
Delta_E Euclidean color distance between the measured and reference

color values, as outlined in CIE 1976.

colorCorrectionMatrix — Color correction coefficients
4-by-3 matrix

Color correction coefficients, returned as a 4-by-3 matrix. colorCorrectionMatrix
represents an affine transformation, used to color-correct images that are captured under
similar lighting conditions as the test chart image.
Data Types: double

See Also
displayColorPatch | measureIlluminant | plotChromaticity

Topics
“Correct Colors Using Color Correction Matrix”
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

1 Functions — Alphabetical List

1-2458

measureIlluminant
Measure scene illuminant using Imatest® eSFR chart

Syntax
illuminant = measureIlluminant(chart)

Description
illuminant = measureIlluminant(chart) measures the scene illuminant using the
gray regions of interest (ROIs) of an Imatest® eSFR chart.

Examples

Measure Illuminant of eSFR Chart

This example shows how to measure the illuminant of an eSFR chart using the gray patch
ROIs. The example then white balances the image of the eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 20 gray patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayColorROIs',false,'displayRegistrationPoints',false)

 measureIlluminant

1-2459

https://www.imatest.com/mathworks/esfr/

Estimate the illuminant using the gray patch ROIs. The illuminant has a stronger blue
component than the red and green. This result is consistent with the image of the test
chart, which has a blue tint.

illum = measureIlluminant(chart)

illum = 1×3

 110.9147 116.0008 123.2339

White balance the chart image and display the result. The white balanced image has less
of a blue tint, especially in the middle gray patches and over the background of the
image.

J = chromadapt(I,illum);
imshow(J)
title('White Balanced Test Chart Image')

1 Functions — Alphabetical List

1-2460

You can use the estimated illuminant to white balance other images acquired under
similar lighting conditions.

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Output Arguments
illuminant — Scene illuminant
3-element row vector

 measureIlluminant

1-2461

Scene illuminant, returned as a 3-element row vector.
Data Types: double

Tips
• To white-balance an image, use the chromadapt function.

See Also
chromadapt | measureColor

Topics
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

1 Functions — Alphabetical List

1-2462

measureNoise
Measure noise using Imatest® eSFR chart

Syntax
noiseTable = measureNoise(chart)

Description
noiseTable = measureNoise(chart) measures the noise levels using the gray
regions of interest (ROIs) of an Imatest® eSFR chart.

Examples

Measure Noise of eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 20 gray
patch ROIs are labeled with red numbers.

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false, ...
 'displayEdgeROIs',false,'displayRegistrationPoints',false)

 measureNoise

1-2463

https://www.imatest.com/mathworks/esfr/

Measure the noise in all gray patch ROIs.

noiseTable = measureNoise(chart)

noiseTable=20×22 table
 ROI MeanIntensity_R MeanIntensity_G MeanIntensity_B RMSNoise_R RMSNoise_G RMSNoise_B PercentNoise_R PercentNoise_G PercentNoise_B SignalToNoiseRatio_R SignalToNoiseRatio_G SignalToNoiseRatio_B SNR_R SNR_G SNR_B PSNR_R PSNR_G PSNR_B RMSNoise_Y RMSNoise_Cb RMSNoise_Cr
 ___ _______________ _______________ _______________ __________ __________ __________ ______________ ______________ ______________ ____________________ ____________________ ____________________ ______ ______ ______ ______ ______ ______ __________ ___________ ___________

 1 9.4147 11.349 11.099 2.6335 1.9417 2.3106 1.0328 0.76145 0.90613 3.5749 5.8448 4.8036 11.065 15.335 13.631 39.72 42.367 40.856 1.6901 0.5813 1.0865
 2 9.2873 10.896 10.503 2.405 2.1309 2.0966 0.94312 0.83564 0.82218 3.8617 5.1132 5.0099 11.736 14.174 13.996 40.509 41.56 41.701 1.7357 0.2788 0.97788
 3 13.488 14.95 15.017 2.4966 2.1156 2.5593 0.97907 0.82964 1.0036 5.4027 7.0668 5.8676 14.652 16.984 15.369 40.184 41.622 39.968 1.8095 0.77675 1.0903
 4 20.411 21.689 22.946 2.4395 2.0206 2.5556 0.95668 0.79241 1.0022 8.3666 10.734 8.9791 18.451 20.615 19.065 40.385 42.021 39.981 1.8048 0.69788 0.84669
 5 29.189 34.144 38.442 3.0436 2.8317 4.1125 1.1936 1.1105 1.6127 9.5903 12.058 9.3476 19.637 21.625 19.414 38.463 39.09 35.849 2.3507 1.3549 1.2242
 6 35.009 40.337 47.544 3.2201 2.7705 3.6994 1.2628 1.0865 1.4508 10.872 14.56 12.852 20.726 23.263 22.179 37.973 39.28 36.768 2.3973 1.297 1.102
 7 50.768 58.206 69.539 3.3931 3.2661 3.734 1.3306 1.2808 1.4643 14.962 17.821 18.623 23.5 25.019 25.401 37.519 37.85 36.687 2.787 0.98523 0.76701
 8 61.871 69.98 80.779 3.4734 3.0966 3.1214 1.3621 1.2144 1.2241 17.813 22.599 25.879 25.015 27.082 28.259 37.316 38.313 38.244 2.6049 0.53852 1.0205
 9 77.115 83.999 96.869 3.1467 2.9973 3.5088 1.234 1.1754 1.376 24.507 28.025 27.607 27.786 28.951 28.821 38.174 38.596 37.228 2.545 0.91262 0.89469
 10 88.552 98.426 113.87 3.1846 2.8538 3.1835 1.2488 1.1191 1.2484 27.807 34.49 35.767 28.883 30.754 31.07 38.07 39.022 38.073 2.4241 0.68448 0.84718

1 Functions — Alphabetical List

1-2464

 11 107.25 116.97 132.94 3.3128 3.0561 3.2921 1.2991 1.1985 1.291 32.374 38.275 40.381 30.204 31.658 32.123 37.727 38.427 37.781 2.6033 0.74341 0.60673
 12 124.23 131.96 146.27 3.3817 3.0611 3.3879 1.3262 1.2004 1.3286 36.737 43.109 43.175 31.302 32.691 32.705 37.548 38.413 37.532 2.5981 0.83262 0.64982
 13 143.52 149.3 164.52 2.922 2.6763 3.0484 1.1459 1.0495 1.1954 49.116 55.787 53.969 33.824 34.931 34.643 38.817 39.58 38.45 2.3615 0.63296 0.42465
 14 156.87 165.76 178.05 3.2507 2.6489 2.7331 1.2748 1.0388 1.0718 48.258 62.577 65.148 33.671 35.928 36.278 37.891 39.669 39.398 2.2917 0.47553 1.0089
 15 178.25 184.59 193.3 2.8498 2.474 2.6084 1.1176 0.9702 1.0229 62.548 74.612 74.106 35.924 37.456 37.397 39.035 40.263 39.803 2.1966 0.31965 0.87419
 16 193.81 196.97 203.42 2.2181 2.1638 2.6139 0.86985 0.84853 1.0251 87.375 91.029 77.82 38.828 39.184 37.822 41.211 41.427 39.785 1.8028 0.88982 0.4254
 ⋮

Display a graph of the mean signal and the signal to noise ratio (SNR) of the three color
channels over the 20 gray patch ROIs.

figure
subplot(1,2,1)
plot(noiseTable.ROI,noiseTable.MeanIntensity_R,'r-o', ...
 noiseTable.ROI,noiseTable.MeanIntensity_G,'g-o', ...
 noiseTable.ROI,noiseTable.MeanIntensity_B,'b-o')
title('Signal')
ylabel('Intensity')
xlabel('Gray ROI Number')
grid on
subplot(1,2,2)
plot(noiseTable.ROI,noiseTable.SNR_R,'r-^', ...
 noiseTable.ROI,noiseTable.SNR_G,'g-^', ...
 noiseTable.ROI,noiseTable.SNR_B,'b-^')
title('SNR')
ylabel('dB')
xlabel('Gray ROI Number')
grid on

 measureNoise

1-2465

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

1 Functions — Alphabetical List

1-2466

Output Arguments
noiseTable — Noise values
20-by-22 table

Noise values of each gray patch, returned as a 20-by-22 table. The 20 rows correspond to
the 20 gray patches on the eSFR chart. The 22 columns represent the variables shown in
the table. Each variable is a scalar of type double.

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 20]. The indices match the ROI numbers displayed by
displayChart.

MeanIntensity_R Mean value of red channel pixels in the ROI.
MeanIntensity_G Mean value of green channel pixels in the ROI.
MeanIntensity_B Mean value of blue channel pixels in the ROI.
RMSNoise_R Root mean square (RMS) noise of red channel pixels in the ROI.
RMSNoise_G RMS noise of green channel pixels in the ROI.
RMSNoise_B RMS noise of blue channel pixels in the ROI.
PercentNoise_R RMS noise of red pixels, expressed as a percentage of the

maximum of the original chart image data type.
PercentNoise_G RMS noise of green pixels, expressed as a percentage of the

maximum of the original chart image data type.
PercentNoise_B RMS noise of blue pixels, expressed as a percentage of the

maximum of the original chart image data type.
SignalToNoiseRat
io_R

Ratio of signal (MeanIntensity_R) to noise (RMSNoise_R) in the
red channel.

SignalToNoiseRat
io_G

Ratio of signal (MeanIntensity_G) to noise (RMSNoise_G) in the
green channel.

SignalToNoiseRat
io_B

Ratio of signal (MeanIntensity_B) to noise (RMSNoise_B) in the
blue channel.

SNR_R Signal-to-noise ratio (SNR) of the red channel, in dB.

SNR_R = 20*log(MeanIntensity_R/RMSNoise_R).

 measureNoise

1-2467

Variable Description
SNR_G SNR of the green channel, in dB.

SNR_G = 20*log(MeanIntensity_G/RMSNoise_G).
SNR_B SNR of the blue channel, in dB.

SNR_B = 20*log(MeanIntensity_B/RMSNoise_B).
PSNR_R Peak SNR of the red channel, in dB.
PSNR_G Peak SNR of the green channel, in dB.
PSNR_B Peak SNR of the blue channel, in dB.
RMSNoise_Y RMS noise of luminance (Y) channel pixels in the ROI.
RMSNoise_Cb RMS noise of chrominance (Cb) channel pixels in the ROI.
RMSNoise_Cr RMS noise of chrominance (Cr) channel pixels in the ROI.

Tips
• To linearize data for noise measurements, first undo the gamma correction of an sRGB

test chart image by using the rgb2lin function. Then, create an esfrChart object
from the linear image, and input the esfrChart object to the measureNoise
function.

See Also
displayChart | measureIlluminant

Topics
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

1 Functions — Alphabetical List

1-2468

measureSharpness
Measure spatial frequency response using Imatest® eSFR chart

Syntax
sharpnessTable = measureSharpness(chart)
sharpnessTable = measureSharpness(chart,Name,Value)
[sharpnessTable,aggregateSharpnessTable] = measureSharpness(___)

Description
sharpnessTable = measureSharpness(chart) measures the spatial frequency
response (SFR) at all slanted edge regions of interest (ROIs) of an Imatest® eSFR chart.
sharpnessTable includes the frequency for each ROI at which the response drops to
50% of the initial and peak values.

sharpnessTable = measureSharpness(chart,Name,Value) measures the SFR at
all specified slanted edge ROIs, specifying additional parameters.

[sharpnessTable,aggregateSharpnessTable] = measureSharpness(___) also
returns the average SFR of vertical and horizontal ROIs, using the input arguments of
either of the previous syntaxes.

Examples

Measure Sharpness of Slanted Edges on eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted
edge ROIs are labeled with green numbers.

 measureSharpness

1-2469

https://www.imatest.com/mathworks/esfr/

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false,...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

Measure the edge sharpness in ROIs 25-28, and return the measurements in
sharpnessTable. Include measurements of the MTF70 and MTF30 by specifying the
'percentResponse' name-value pair argument.

sharpnessTable = measureSharpness(chart,'ROIIndex',25:28,'PercentResponse',[70 30])

sharpnessTable=4×9 table
 ROI slopeAngle confidenceFlag SFR comment MTF70 MTF70P MTF30 MTF30P
 ___ __________ ______________ ____________ _______ __ __ __ __

 25 4.2391 true [88x5 table] [] 0.060224 0.058884 0.051757 0.058482 0.060224 0.058884 0.051757 0.058482 0.10732 0.11267 0.11185 0.11178 0.10732 0.11267 0.11185 0.11178
 26 5.0254 true [88x5 table] [] 0.18561 0.18597 0.18667 0.18597 0.18561 0.18597 0.18667 0.18597 0.26028 0.26236 0.26224 0.26241 0.26028 0.26236 0.26224 0.26241
 27 4.7131 true [88x5 table] [] 0.070042 0.069599 0.066239 0.06951 0.070042 0.069599 0.066239 0.06951 0.2169 0.21863 0.22086 0.21904 0.2169 0.21863 0.22086 0.21904

1 Functions — Alphabetical List

1-2470

 28 4.8996 true [88x5 table] [] 0.19485 0.20418 0.19669 0.20168 0.19485 0.20418 0.19658 0.20168 0.26447 0.27531 0.26004 0.27188 0.26447 0.27531 0.25998 0.27188

Select the fourth row in the sharpness table, which corresponds to ROI 28. Display the
SFR plot of the ROI.

idx = 4;
plotSFR(sharpnessTable(idx,:))

Print the MTF70 and MTF30 measurements of the ROI. Compare the measurements
against the plot.

The MTF70 measurement of the red and blue color channels are slightly smaller than 0.2,
while the MTF70 measurement of the green and luminance channels are slightly larger
than 0.2. These measurements agree with a visual inspection of the SFR plot, on which an
SFR value of 0.7 occurs at spatial frequencies around 0.2 line pairs per pixel.

mtf70 = sharpnessTable.MTF70(idx,:)

 measureSharpness

1-2471

mtf70 = 1×4

 0.1949 0.2042 0.1967 0.2017

The MTF30 measurement of the blue color channel is noticeably smaller than the MTF30
measurement of the other color channels. This measurement agrees with a visual
inspection of the SFR plot, on which the SFR curve of the blue channel drops off more
quickly than the other channels.

mtf30 = sharpnessTable.MTF30(idx,:)

mtf30 = 1×4

 0.2645 0.2753 0.2600 0.2719

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: measureSharpness(myChart,'ROIIndex',2) measures the sharpness only
of ROI 2.

ROIIndex — ROI indices
1:60 (default) | scalar | vector

ROI indices to include in measurements, specified as the comma-separated pair consisting
of 'ROIIndex' and a scalar or vector of integers in the range [1, 60]. The indices match
the ROI numbers displayed by displayChart.

1 Functions — Alphabetical List

1-2472

Note measureSharpness uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ROIOrientation — ROI orientation
'both' (default) | 'vertical' | 'horizontal'

ROI orientation, specified as the comma-separated pair consisting of 'ROIOrientation'
and 'both', 'vertical', or 'horizontal'. The measureSharpness function
performs measurements only on ROIs with the specified orientation.

Note measureSharpness uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 'vertical'
Data Types: char | string

PercentResponse — Value of frequency response
50 (default) | scalar | vector

Value of frequency response at which to report the corresponding spatial frequency,
specified as the comma-separated pair consisting of 'PercentResponse' and a scalar or
vector of integers in the range [1, 100].

Each value of PercentResponse adds two columns to the sharpnessTable and
aggregateSharpnessTable output arguments. The columns indicate the frequency at
which the SFR drops to the specified percent of the initial and peak values. For example,
when PercentResponse has the value 50, both output tables have the columns MTF50
and MTF50P. These columns indicate the frequency at which the SFR drops to 50% of the
initial value and peak value, respectively.
Example: 30
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

 measureSharpness

1-2473

Output Arguments
sharpnessTable — SFR measurements of edge
m-by-n table

SFR measurements of edge, returned as an m-by-n table. m is the number of sampled
ROIs. n changes values depending on PercentResponse. The first five columns are
always present and represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 60].
slopeAngle Angle between the slanted edge and pure vertical or horizontal,

depending on the ROI orientation. The angle is measured in
degrees, and it is returned as a scalar of type double.

confidenceFlag Boolean flag that indicates whether the sharpness measurement is
reliable. confidenceFlag is true when the measurement is
reliable. confidenceFlag is false when the measurement is
unreliable due to the following conditions:

• slopeAngle is less than 3.5 degrees or more than 15 degrees.
• The contrast within the ROI is less than 20%.

The contrast of a slanted edge ROI is defined as 100 * (IHigh
- ILow)/(IHigh + ILow), where IHigh and ILow are the
estimated average intensities of the high and low intensity regions
across the edge. The contrast is computed for only the red
channel.

SFR Spatial frequency response of the edge in the ROI. SFR is an f-by-5
table. The five columns represent the frequency value and the red,
green, blue, and luminance values corresponding to that
frequency. f is the number of frequency samples of the MTF.

Luminance (Y) is a linear combination of the red (R), green (G),
and blue (B) channels according to:

Y = 0.213R + 0.715G + 0.072B

1 Functions — Alphabetical List

1-2474

Variable Description
comment When confidenceFlag is false, then comment describes the

reason the measurement is unreliable. When confidenceFlag is
true, then comment is the empty vector, [].

Each value of PercentResponse adds two columns that indicate the frequency at which
the SFR drops to the specified percent of the initial and peak value. The format of each
entry in the column is a 1-by-4 vector. The four elements correspond to the red, green,
blue, and luminance channels, respectively.

aggregateSharpnessTable — Average SFR measurements of vertical and
horizontal edges
table with one or two rows

Average SFR measurements of vertical and horizontal edges, returned as a table with one
or two rows. aggregateSharpnessTable has one row when all sampled ROIs have the
same orientation. It has two rows when the sampled ROIs have mixed orientation.
aggregateSharpnessTable has three fewer columns than sharpnessTable.

The first two columns of aggregateSharpnessTable are always present and represent
these variables:

Variable Description
Orientation Orientation of the averaged SFRs. The value of Orientation is

either 'horizontal' or 'vertical'.
SFR Averaged spatial frequency response of all edges in included ROIs

with the orientation specified by Orientation.

SFR is an s-by-5 table. The five columns represent the frequency
value, and the averaged red, green, blue, and luminance values
corresponding to that frequency. s is the number of frequency
samples of the MTF.

Luminance (Y) is computed as a linear combination of the red (R),
green (G), and blue (B) channels according to:

Y = 0.213R + 0.715G + 0.072B

Each value of PercentResponse adds two columns that indicate the frequency at which
the SFR drops to the specified percent of the initial and peak value. The format of each
entry in the column is a 1-by-4 vector. The four elements correspond to the red, green,

 measureSharpness

1-2475

blue, and luminance channels, averaged among all sampled ROIs with the same
orientation.

Tips
• Slanted edges on a properly oriented chart are at an angle of 5 degrees from the

horizontal or vertical. Sharpness measurements are not accurate when the edge
orientation deviates significantly from 5 degrees.

• Sharpness is higher toward the center of the imaged region and decreases toward the
periphery. Horizontal sharpness is usually higher than vertical sharpness.

Algorithms
The SFR measurement algorithm is based on work by Peter Burns [1] [2]. First,
measureSharpness determines the edge position with sub-pixel resolution for each scan
line, or row or column of pixels perpendicular to the edge, in the ROI. For example, each
row of pixels is a scan line for a near-vertical edge. Next, measureSharpness aligns and
averages the scan lines to create an oversampled edge intensity profile. The function
takes the derivative of the intensity profile and applies a windowing function. The
returned SFR measurement is the absolute value of the Fourier transform of the
windowed derivative.

References
[1] Burns, Peter. "Slanted-Edge MTF for Digital Camera and Scanner Analysis." Society

for Imaging Science and Technology; Proceedings of the Image Processing, Image
Quality, Image Capture Systems Conference. Portland, Oregon, March 2000. pp
135–138.

[2] Burns, Peter. "sfrmat3: SFR evaluation for digital cameras and scanners." URL: http://
losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html.

See Also
displayChart | plotSFR

1 Functions — Alphabetical List

1-2476

http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html
http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html

Topics
“Anatomy of an eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”
“Fourier Transform”

Introduced in R2017b

 measureSharpness

1-2477

medfilt2
2-D median filtering

Syntax
J = medfilt2(I)
J = medfilt2(I,[m n])
J = medfilt2(___ ,padopt)

Description
J = medfilt2(I) performs median filtering of the image I in two dimensions. Each
output pixel contains the median value in a 3-by-3 neighborhood around the
corresponding pixel in the input image.

You optionally can compute the normalized cross-correlation using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

J = medfilt2(I,[m n]) performs median filtering, where each output pixel contains
the median value in the m-by-n neighborhood around the corresponding pixel in the input
image.

J = medfilt2(___ ,padopt) controls how medfilt2 pads the image boundaries.

This syntax is not supported on a GPU.

Examples

Remove Salt and Pepper Noise from Image

Read image into workspace and display it.

I = imread('eight.tif');
figure, imshow(I)

1 Functions — Alphabetical List

1-2478

Add salt and pepper noise.

J = imnoise(I,'salt & pepper',0.02);

Use a median filter to filter out the noise.

K = medfilt2(J);

Display results, side-by-side.

imshowpair(J,K,'montage')

 medfilt2

1-2479

Remove Salt and Pepper Noise from Image Using a GPU

Read the image into a gpuArray.

I = gpuArray(imread('eight.tif'));

Add noise to the image, then perform median filtering and display the result.

J = imnoise(I,'salt & pepper',0.02);
K = medfilt2(J);
figure, montage({J,K})

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image | gpuArray

Input image, specified as a 2-D grayscale or binary image.

To perform the median filtering using a GPU, specify I as a gpuArray that contains a 2-D
grayscale or binary image.

1 Functions — Alphabetical List

1-2480

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

[m n] — Neighborhood size
3-by-3 (default) | 2-element vector

Neighborhood size, specified as a 2-element vector of real positive integers.

If you perform the median filtering using a GPU, then the neighborhood must be square
with odd-length sides between 3 and 15.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

padopt — Padding option
'zeros' (default) | 'symmetric' | 'indexed'

Padding option, specified as one of the following values.

Value Description
'zeros' (default) Pad the image with 0s.
'symmetric' Symmetrically extend the image at the boundaries.
'indexed' If the class of I is double, then pad the image with 1s;

otherwise, pad with 0s.

Note The padopt argument is not supported on a GPU.

Data Types: char | string

Output Arguments
J — Output image
numeric matrix | gpuArray

Output image, returned as a numeric matrix of the same class as the input image I.

If the median filtering is performed using a GPU, then J is returned as a gpuArray
containing a numeric matrix.

 medfilt2

1-2481

Tips
• Median filtering is a nonlinear operation often used in image processing to reduce

"salt and pepper" noise. A median filter is more effective than convolution when the
goal is to simultaneously reduce noise and preserve edges. For information about
performance considerations, see ordfilt2.

• If the input image I is of an integer class, then all the output values are returned as
integers. If the number of pixels in the neighborhood (i.e., m*n) is even, then some of
the median values might not be integers. In these cases, the fractional parts are
discarded. Logical input is treated similarly. For example, the true median for the
following 2-by-2 neighborhood in a uint8 array is 4.5, but medfilt2 discards the
fractional part and returns 4.

1 5
4 8

• If you specify padopt as 'zeros' or 'indexed', then the padding can skew the
median near the image boundary. Pixels within one-half the width of the neighborhood
([m n]/2) of the edges can appear distorted.

Algorithms
On the CPU, medfilt2 uses ordfilt2 to perform the filtering.

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990, pp. 469-476.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-2482

• medfilt2 supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, medfilt2
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, the padopt argument must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• Padding options are not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
filter2 | ordfilt2 | wiener2

Introduced before R2006a

 medfilt2

1-2483

medfilt3
3-D median filtering

Syntax
B = medfilt3(A)
B = medfilt3(A,[m n p])
B = medfilt3(___ ,padopt)

Description
B = medfilt3(A) filters the 3-D image A with a 3-by-3-by-3 filter. By default, medfilt3
pads the image by replicating the values in a mirrored way at the borders.

B = medfilt3(A,[m n p]) performs median filtering of the 3-D image A in three
dimensions. Each output voxel in B contains the median value in the m-by-n-by-p
neighborhood around the corresponding voxel in A.

B = medfilt3(___ ,padopt) controls how medfilt3 pads the array boundaries.

Examples

Use Median Filtering to Remove Outliers in 3-D Data

Create a noisy 3-D surface.

[x,y,z,V] = flow(50);
noisyV = V + 0.1*double(rand(size(V))>0.95) - 0.1*double(rand(size(V))<0.05);

Apply median filtering.

filteredV = medfilt3(noisyV);

Display the noisy and filtered surfaces together.

1 Functions — Alphabetical List

1-2484

subplot(1,2,1)
hpatch1 = patch(isosurface(x,y,z,noisyV,0));
isonormals(x,y,z,noisyV,hpatch1)
set(hpatch1,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])
axis tight off
camlight left
lighting phong

subplot(1,2,2)
hpatch2 = patch(isosurface(x,y,z,filteredV,0));
isonormals(x,y,z,filteredV,hpatch2)
set(hpatch2,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])
axis tight off
camlight left
lighting phong

 medfilt3

1-2485

Input Argument
A — Input image
3-D, real, nonsparse, numeric or logical array

Input image, specified as a 3-D, real, nonsparse, numeric, or logical array. If the input
image is an integer class, all the output values are also integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-2486

[m n p] — Neighborhood size
3-by-3-by-3 (default) | three-element numeric vector

Neighborhood size, specified as a three-element numeric vector, [m n p], of real positive
integers. The values of m, n, and p must be odd integers.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

padopt — Padding option
'symmetric' (default) | 'zeros' | 'replicate'

Padding option, specified as one of the following values:

Value Description
'symmetric' Pad array with mirror reflections of itself
'replicate' Pad array by repeating border elements
'zeros' Pad array with 0s

Data Types: char | string

Output Arguments
B — Output image
3-D array

Output image, returned as a 3-D array of the same class and size as the input image A.

See Also
medfilt2

Introduced in R2016b

 medfilt3

1-2487

montage
Display multiple image frames as rectangular montage

Syntax
montage(filenames)
montage(I)
montage(imagelist)
montage(imds)
montage(X,map)
montage(___ ,Name,Value)
img = montage(___)

Description
montage(filenames) displays a montage of the images with file names specified in
filenames. The images can be of different types and sizes. By default, montage
arranges the images so that they roughly form a square.

montage(I) displays all frames of a multiframe image array I.

montage(imagelist) displays a montage of the images specified in the cell array
imagelist.

montage(imds) displays a montage of the images specified in the image datastore imds.

montage(X,map) treats all grayscale images in X as indexed images and applies the
specified color map map for all frames. If X is a cell array of file names, then map
overrides any internal color map present in the image files.

montage(___ ,Name,Value) uses name-value pair arguments to customize the display
of the image montage.

img = montage(___) returns a handle to the single image object that contains all the
frames displayed.

1 Functions — Alphabetical List

1-2488

Examples

Create Montage from Images in Files

Create a montage from a series of images in files. Make the montage a 2-by-5 rectangle.
Then, create a second montage, this time using the DisplayRange parameter to highlight
structures in the image.

Display the Images as a Rectangular Montage

Create a string array containing a series of file names.

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = string({dirOutput.name});

Display the images as a montage. Specify the shape of the montage as a 2-by-5 rectangle.

montage(fileNames, 'Size', [2 5]);

Adjust the Contrast of the Images in the Montage

In another figure, create the same 2-by-5 montage. In addition, specify the display range
to adjust the contrast of the images in the montage.

figure
montage(fileNames, 'Size', [2 5],'DisplayRange', [75 200]);

 montage

1-2489

Create Montage from Multiframe Image

Create an m-by-n-by-4 multiframe image from a series of grayscale images. The images
must all be the same size.

img1 = imread('AT3_1m4_01.tif');
img2 = imread('AT3_1m4_02.tif');
img3 = imread('AT3_1m4_03.tif');
img4 = imread('AT3_1m4_04.tif');
multi = cat(3,img1,img2,img3,img4);

Display a montage of the images in the multiframe image.

montage(multi);

1 Functions — Alphabetical List

1-2490

Create Montage Containing Images of Different Types and Sizes

Read several images of different types and sizes into the workspace.

imRGB = imread('peppers.png');
imGray = imread('coins.png');

Display a montage containing all of the images.

figure
montage({imRGB, imGray, 'cameraman.tif'})

 montage

1-2491

Customize Number of Images in Montage

View all the images in a MRI data set using montage with default settings. There are 27
images in the set.

load mri
montage(D, map)

1 Functions — Alphabetical List

1-2492

Create a new montage containing only the first 9 images.

figure
montage(D, map, 'Indices', 1:9);

 montage

1-2493

1 Functions — Alphabetical List

1-2494

Create Montage from Image Datastore

Create an ImageDatastore containing a series of ten images from the Image Processing
Toolbox™ sample image folder.

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');
imds = imageDatastore(fullfile(fileFolder,'AT3*'));

Display the contents of the ImageDatastore as a montage.

montage(imds)

 montage

1-2495

1 Functions — Alphabetical List

1-2496

Input Arguments
imds — Image data store
ImageDatastore

Image data store, specified as an ImageDatastore.

filenames — Names of files containing images
array of strings | n-by-1 or 1-by-n cell array

Names of files containing image, specified as an array of strings or an n-by-1 or 1-by-n
cell array of string scalars or character vectors. If the files are not in the current folder or
in a folder on the MATLAB path, then specify the full path name. See the imread
command for more information.
Data Types: char | string | cell

imagelist — Set of images
n-by-1 or 1-by-n cell array

Set of images, specified as an n-by-1 or 1-by-n cell array of numeric matrices of size m-by-
n or m-by-n-by-3.
Data Types: single | double | int16 | uint8 | uint16 | logical | cell

I — Multiframe image array
numeric array

Multiframe image array, specified as one of the following:

• m-by-n-by-k numeric array representing a sequence of k binary or grayscale images
• m-by-n-by-1-by-k numeric array representing a sequence of k binary or grayscale

images
• m-by-n-by-3-by-k numeric array representing a sequence of k truecolor images

Data Types: single | double | int16 | uint8 | uint16 | logical

X — Indexed image
2-D numeric matrix

Indexed image, specified as a 2-D numeric matrix.
Data Types: single | double | uint8 | uint16 | logical

 montage

1-2497

map — Color map
c-by-3 numeric matrix

Color map, specified as an c-by-3 numeric matrix, where c is the number of colors in the
color map.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: montage(D,map,'Indices',1:9)

BackgroundColor — Background color
'black' (default) | [R G B] | short name | long name

Background color, specified as a MATLAB ColorSpec. The montage function fills all
blank spaces with this color, including the space specified by BorderSize. If you specify
a background color, then the montage function renders the output as an RGB image.

BorderSize — Padding around each thumbnail image
[0 0] (default) | nonnegative integer | 1-by-2 vector of nonnegative integers

Padding around each thumbnail image, specified as a nonnegative integer or a 1-by-2
vector of nonnegative integers. montage pads the image borders with the background
color, BackgroundColor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

DisplayRange — Display range
1-by-2 vector

Display range of grayscale images in array I, specified as 1-by-2 vector of the form [LOW
HIGH]. All pixel values less than or equal to LOW display as black. All pixel values greater
than or equal to HIGH display as white. If you specify an empty matrix ([]), then montage
uses the minimum and maximum pixel values of the images.

1 Functions — Alphabetical List

1-2498

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Indices — Frames to display
array of positive integers

Frames to display in the montage, specified as an array of positive integers. The montage
function interprets the values as indices into array I or into cell array filenames or
imagelist.

By default, montage displays all frames or image files.
Example: montage(I,'Indices',1:4) create a montage of the first four frames in I
Example: montage(I,'Indices',1:2:20) displays every other frame.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Parent — Parent of the image object created by montage
axes object

Parent of the image object created by montage, specified as an axes object. The montage
function resizes the image to fit the extents available in the parent axes.

Size — Number of rows and columns of images
2-element vector

Number of rows and columns of images, specified as a 2-element vector of the form
[NROWS NCOLS].

If you specify NaN or Inf for a particular dimension, montage calculates the value of the
dimension to display all images in the montage. For example, if 'Size' is [2 NaN], then
the montage will have two rows and the minimum number of columns to display all
images. When there is a mismatch between 'Size' and number of images (frames)
specified, montage creates the tiled image based on 'Size'.
Data Types: single | double

ThumbnailSize — Size of each thumbnail
2-element vector of positive integers

 montage

1-2499

Size of each thumbnail, in pixels, specified as a 2-element vector of positive integers. The
aspect ratio of each image is preserved, and any blank space is filled with the background
color, BackgroundColor.

If you specify an empty array ([]), montage uses the full size of the first image as the
thumbnail size. If you specify either element as NaN or Inf, then montage calculates the
corresponding value automatically to preserve the aspect ratio of the first image.
Data Types: single | double

Output Arguments
img — Montage image
handle to a single image object

Montage image, returned as a handle to a single matlab.graphics.primitive.Image
object.

Tips
• If you specify an indexed image, then montage converts it to RGB using the colormap

present in the file.
• If there is a data type mismatch between images, then all images are rescaled to be

double using the im2double function.
• When calculating the number of images to display horizontally and vertically, montage

considers the aspect ratio of the images, so that the displayed montage is nearly
square.

See Also
ImageDatastore | immovie | implay | imshow | imtile

Introduced before R2006a

1 Functions — Alphabetical List

1-2500

multithresh
Multilevel image thresholds using Otsu’s method

Syntax
thresh = multithresh(A)
thresh = multithresh(A,N)
[thresh,metric] = multithresh(___)

Description
thresh = multithresh(A) returns the single threshold value thresh computed for
image A using Otsu’s method. You can use thresh as an input argument to imquantize
to convert an image into a two-level image.

thresh = multithresh(A,N) returns thresh a 1-by-N vector containing N threshold
values using Otsu’s method. You can use thresh as an input argument to imquantize to
convert image A into an image with N + 1 discrete levels.

[thresh,metric] = multithresh(___) returns metric, a measure of the
effectiveness of the computed thresholds. metric is in the range [0 1] and a higher
value indicates greater effectiveness of the thresholds in separating the input image into
N + 1 regions based on Otsu's objective criterion.

Examples

Segment Image Into Two Regions

Read image and display it.

I = imread('coins.png');
imshow(I)

 multithresh

1-2501

Calculate a single threshold value for the image.

level = multithresh(I);

Segment the image into two regions using imquantize , specifying the threshold level
returned by multithresh .

seg_I = imquantize(I,level);
figure
imshow(seg_I,[])

1 Functions — Alphabetical List

1-2502

Segment Image into Three Levels Using Two Thresholds

Read image and display it.

I = imread('circlesBrightDark.png');
imshow(I)
axis off
title('Original Image')

 multithresh

1-2503

Calculate two threshold levels.

thresh = multithresh(I,2);

Segment the image into three levels using imquantize .

1 Functions — Alphabetical List

1-2504

seg_I = imquantize(I,thresh);

Convert segmented image into color image using label2rgb and display it.

RGB = label2rgb(seg_I);
figure;
imshow(RGB)
axis off
title('RGB Segmented Image')

 multithresh

1-2505

Compare Thresholding Entire Image Versus Plane-by-Plane Thresholding

Read truecolor (RGB) image and display it.

1 Functions — Alphabetical List

1-2506

I = imread('peppers.png');
imshow(I)
axis off
title('RGB Image');

Generate thresholds for seven levels from the entire RGB image.

threshRGB = multithresh(I,7);

Generate thresholds for each plane of the RGB image.

threshForPlanes = zeros(3,7);

for i = 1:3

 multithresh

1-2507

 threshForPlanes(i,:) = multithresh(I(:,:,i),7);
end

Process the entire image with the set of threshold values computed from entire image.

value = [0 threshRGB(2:end) 255];
quantRGB = imquantize(I, threshRGB, value);

Process each RGB plane separately using the threshold vector computed from the given
plane. Quantize each RGB plane using threshold vector generated for that plane.

quantPlane = zeros(size(I));

for i = 1:3
 value = [0 threshForPlanes(i,2:end) 255];
 quantPlane(:,:,i) = imquantize(I(:,:,i),threshForPlanes(i,:),value);
end

quantPlane = uint8(quantPlane);

Display both posterized images and note the visual differences in the two thresholding
schemes.

imshowpair(quantRGB,quantPlane,'montage')
axis off
title('Full RGB Image Quantization Plane-by-Plane Quantization')

1 Functions — Alphabetical List

1-2508

To compare the results, calculate the number of unique RGB pixel vectors in each output
image. Note that the plane-by-plane thresholding scheme yields about 23% more colors
than the full RGB image scheme.

dim = size(quantRGB);
quantRGBmx3 = reshape(quantRGB, prod(dim(1:2)), 3);
quantPlanemx3 = reshape(quantPlane, prod(dim(1:2)), 3);

colorsRGB = unique(quantRGBmx3, 'rows');
colorsPlane = unique(quantPlanemx3, 'rows');

disp(['Unique colors in RGB image : ' int2str(length(colorsRGB))]);

Unique colors in RGB image : 188

disp(['Unique colors in Plane-by-Plane image : ' int2str(length(colorsPlane))]);

Unique colors in Plane-by-Plane image : 231

Check Results Using the Metric Output Argument

Read image.

I = imread('circlesBrightDark.png');

Find all unique grayscale values in image.

uniqLevels = unique(I(:));

disp(['Number of unique levels = ' int2str(length(uniqLevels))]);

Number of unique levels = 148

Compute a series of thresholds at monotonically increasing values of N.

Nvals = [1 2 4 8];
for i = 1:length(Nvals)
 [thresh, metric] = multithresh(I, Nvals(i));
 disp(['N = ' int2str(Nvals(i)) ' | metric = ' num2str(metric)]);
end

N = 1 | metric = 0.54767
N = 2 | metric = 0.98715

 multithresh

1-2509

N = 4 | metric = 0.99648
N = 8 | metric = 0.99902

Apply the set of 8 threshold values to obtain a 9-level segmentation using imquantize .

seg_Neq8 = imquantize(I,thresh);
uniqLevels = unique(seg_Neq8(:))

uniqLevels = 9×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

Threshold the image using seg_Neq8 as an input to multithresh. Set N equal to 8,
which is 1 less than the number of levels in this segmented image. multithresh returns
a metric value of 1.

[thresh, metric] = multithresh(seg_Neq8,8)

thresh = 1×8

 1.8784 2.7882 3.6667 4.5451 5.4549 6.3333 7.2118 8.1216

metric = 1

Threshold the image again, this time increasing the value of N by 1. This value now equals
the number of levels in the image. Note how the input is degenerate because the number
of levels in the image is too few for the number of requested thresholds. Hence,
multithresh returns a metric value of 0.

[thresh, metric] = multithresh(seg_Neq8,9)

Warning: No solution exists because the number of unique levels in the image are too few to find 9 thresholds. Returning an arbitrarily chosen solution.

thresh = 1×9

1 Functions — Alphabetical List

1-2510

 1 2 3 4 5 6 7 8 9

metric = 0

Input Arguments
A — Image to be thresholded
real, nonsparse numeric array of any dimension

Image to be thresholded, specified as a real, nonsparse numeric array of any dimension.
multithresh finds the thresholds based on the aggregate histogram of the entire array.
multithresh considers an RGB image as a 3-D numeric array and computes the
thresholds for the combined data from all three color planes.

multithresh uses the range of the input image A, [min(A(:)) max(A(:))], as the
limits for computing the histogram used in subsequent computations. multithresh
ignores any NaNs in computation. Any Infs and -Infs are counted in the first and last
bin of the histogram, respectively.

For degenerate inputs where the number of unique values in A is less than or equal to N,
there is no viable solution using Otsu's method. For such inputs, the return value thresh
contains all the unique values from A and possibly some extra values that are chosen
arbitrarily.
Example: I = imread('cameraman.tif'); thresh = multithresh(I);
Data Types: single | double | int16 | uint8 | uint16

N — Number of threshold values
1 (default) | positive integer scalar

Number of threshold values, specified as a positive integer scalar value. For N > 2,
multithresh uses search-based optimization of Otsu's criterion to find the thresholds.
The search-based optimization guarantees only locally optimal results. Since the chance
of converging to local optimum increases with N, it is preferable to use smaller values of
N, typically N < 10. The maximum allowed value for N is 20.
Example: thresh = multithresh(I,4);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 multithresh

1-2511

Output Arguments
thresh — Set of threshold values used to quantize an image
1xN vector

Set of threshold values used to quantize an image, returned as a 1-by-N vector, whose
data type is the same as image A.

These thresholds are in the same range as the input image A, unlike the graythresh
function, which returns a normalized threshold in the range [0, 1].

metric — Measure of the effectiveness of the thresholds
scalar

Measure of the effectiveness of the thresholds, returned as a scalar value. Higher values
indicates greater effectiveness of the thresholds in separating the input image into N+1
classes based on Otsu's objective criterion. For degenerate inputs where the number of
unique values in A is less than or equal to N, metric equals 0.
Data Types: double

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms," IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• multithresh supports the generation of C code (requires MATLAB Coder). Note that
if you choose the generic MATLAB Host Computer target platform, multithresh
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for

1 Functions — Alphabetical List

1-2512

which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• The input argument N must be a compile-time constant.

See Also
graythresh | im2bw | imquantize | rgb2ind

Introduced in R2012b

 multithresh

1-2513

niftiinfo
Read metadata from NIfTI file

Syntax
info = niftiinfo(filename)

Description
info = niftiinfo(filename) reads metadata from the file specified by filename.
The file must use the Neuroimaging Informatics Technology Initiative (NIfTI) format.
niftiinfo returns the metadata in the structure info.

Examples

View Metadata Fields from NIfTI Header File

Load metadata from the NIfTI file brain.nii.

info = niftiinfo('brain.nii');

Display the version of the file.

info.Version

ans =
'NIfTI1'

Display the pixel dimensions of the file.

info.PixelDimensions

ans = 1×3

 1 1 1

1 Functions — Alphabetical List

1-2514

Display the raw header content.

info.raw

ans = struct with fields:
 sizeof_hdr: 348
 dim_info: ' '
 dim: [3 256 256 21 1 1 1 1]
 intent_p1: 0
 intent_p2: 0
 intent_p3: 0
 intent_code: 0
 datatype: 2
 bitpix: 8
 slice_start: 0
 pixdim: [1 1 1 1 0 0 0 0]
 vox_offset: 352
 scl_slope: 0
 scl_inter: 0
 slice_end: 0
 slice_code: 0
 xyzt_units: 0
 cal_max: 0
 cal_min: 0
 slice_duration: 0
 toffset: 0
 descrip: ''
 aux_file: ''
 qform_code: 0
 sform_code: 0
 quatern_b: 0
 quatern_c: 0
 quatern_d: 0
 qoffset_x: 0
 qoffset_y: 0
 qoffset_z: 0
 srow_x: [0 0 0 0]
 srow_y: [0 0 0 0]
 srow_z: [0 0 0 0]
 intent_name: ''
 magic: 'n+1 '

Display the intent code from the raw structure.

 niftiinfo

1-2515

info.raw.intent_code

ans = 0

Input Arguments
filename — Name of NIfTI file
character vector | string scalar

Name of NIfTI file, specified as a string scalar or a character vector. If you do not specify
a file extension, niftiinfo looks for a file with the extension .nii (or .nii.gz if the
file is compressed). If niftiinfo cannot find a file with that name, it looks for a file with
the file extension .hdr (or .hdr.gz if the file is compressed). In the dual-file NIfTI
format, the .hdr file holds the metadata associated with the volume.
Data Types: char | string

Output Arguments
info — Metadata associated with a NIfTI volume
structure

Metadata associated with a NIfTI volume, returned as a structure.

niftiinfo returns the metadata from the header in simplified form. The function
renames, reorders, and packages fields into easier to read MATLAB structures. For
example, niftiinfo creates the DisplayIntensityRange field from the cal_max and
cal_min fields of the file metadata. To view the metadata as it appears in the file, see the
raw field of the structure returned.

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C.J. Holmes, J.L.

Lancaster, D.E. Rex, S.M. Smith, J.B. Woodward, and S.C. Strother. 'A (sort of) new
image data format standard: Nifti-1. " Neuroimage, Vol. 22(Suppl 1):e1440, 2004.

1 Functions — Alphabetical List

1-2516

See Also
niftiread | niftiwrite

Introduced in R2017b

 niftiinfo

1-2517

niftiread
Read NIfTI image

Syntax
V = niftiread(filename)
V = niftiread(headerfile,imgfile)
V = niftiread(info)

Description
V = niftiread(filename) reads the NIfTI image file specified by filename, in the
current folder or on the path, and returns volumetric data in V.

NIfTI (Neuroimaging Informatics Technology Initiative) is an NIH-sponsored working
group to promote the interoperability of functional neuroimaging software tools. NIfTI
uses a single or dual file storage format. The dual format stores data in a pair of files: a
header file (.hdr) containing the metadata and a data file (.img). The single file format
stores the data in a single file (.nii), which contains header information followed by
data.

V = niftiread(headerfile,imgfile) reads a NIfTI header file (.hdr) and image
file (.img) pair.

V = niftiread(info) reads a NIfTI file described by the metadata structure info. To
create an info structure, use the niftiinfo function

Examples

Load Volume from NIfTI File Using File Name

Load volumetric data from a NIfTI file. The file uses the NIfTI combined format--the
image and metadata are in the same file. This type of NIfTI file has the .nii file extension.

1 Functions — Alphabetical List

1-2518

V = niftiread('brain.nii');

View the variable in the workspace.

whos V

 Name Size Bytes Class Attributes

 V 256x256x21 1376256 uint8

Load Volume from NIfTI File Using Its Header Structure

Read the metadata from a NIfTI file.

info = niftiinfo('brain.nii');

Read the volumetric image using the metadata structure returned by niftiinfo.

V = niftiread(info);

View the variable in the workspace.

whos V

 Name Size Bytes Class Attributes

 V 256x256x21 1376256 uint8

Input Arguments
filename — Name of NIfTI file
string scalar | character vector

Name of the NIfTI file, specified as a string scalar or character vector. If you do not
specify a file extension, niftiread looks for a file with the .nii extension. If
niftiread cannot find a file with that extension, it looks for a gzipped version of the file,
with extension .nii.gz. If niftiread cannot find a file with that extension, it looks for
a file with the .hdr, .hdr.gz, .img, or .img.gz file extension. If niftiread cannot
find a file that matches any of these options, it returns an error.

 niftiread

1-2519

Data Types: char | string

headerfile — Name of file containing metadata
string scalar | character vector

Name of the file containing metadata, specified as a string scalar or a character vector.
The NIfTI header file (.hdr) holds the metadata associated with a NIfTI volume. If you do
not specify a corresponding imgfile, then niftiread looks in the same folder for a file
with the same name and extension .img.
Data Types: char | string

imgfile — Name of file containing volume
string scalar | character vector

Name of the file containing volume, specified as a string scalar or a character vector. The
NIfTI image file (.img) holds the volume data. If you do not specify a corresponding
header file, niftiread looks in the same folder for a file with the same name and
extension .hdr.
Data Types: char | string

info — NIfTI file metadata
structure

NIfTI file metadata, specified as a structure returned by niftiinfo.
Data Types: struct

Note The niftiread function supports both NIfTI1 and NIfTI2 file formats.

Output Arguments
V — Volumetric data
numeric array

Volumetric data, returned as a numeric array.

1 Functions — Alphabetical List

1-2520

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C.J. Holmes, J.L.

Lancaster, D.E. Rex, S.M. Smith, J.B. Woodward, and S.C. Strother. 'A (sort of) new
image data format standard: Nifti-1. " Neuroimage, Vol. 22(Suppl 1):e1440, 2004.

See Also
niftiinfo | niftiwrite

Introduced in R2017b

 niftiread

1-2521

niftiwrite
Write volume to file using NIfTI format

Syntax
niftiwrite(V,filename)
niftiwrite(V,filename,info)
niftiwrite(V,filename,info,Name,Value)

Description
niftiwrite(V,filename) writes the volumetric image data V to a file by using the
Neuroimaging Informatics Technology Initiative (NIfTI) format. By default, niftiwrite
creates a combined NIfTI file that contains both metadata and volumetric data.
niftiwrite names the file filename, adding the .nii file extension. niftiwrite
populates the metadata using appropriate default values and volume properties, such as
size and data type.

niftiwrite(V,filename,info) writes the volumetric data V to a file, including the
file metadata from info. If the metadata does not match the image contents and size,
niftiwrite returns an error.

niftiwrite(V,filename,info,Name,Value) writes the volumetric data to a file,
using options specified in Name,Value pairs.

Examples

Write Median-Filtered Volume to NIfTI File

Load a NIfTI image by using its .nii file name.

V = niftiread('brain.nii');

Filter the image in 3-D by using a 3-by-3 median filter.

1 Functions — Alphabetical List

1-2522

V = medfilt3(V);

Write the filtered image to a .nii file, using default header values.

niftiwrite(V,'outbrain.nii');

Write Data to NIfTI File and Modify Header Structure

Read the metadata from a NIfTI file by using its .nii file name.

info = niftiinfo('brain.nii');

Read volumetric data from the file by using the file metadata.

V = niftiread(info);

Edit the Description metadata field of the file.

info.Description = 'Modified using MATLAB R2017b';

Write the volumetric data with the modified metadata to a new .nii file.

niftiwrite(V,'outbrain.nii',info);

Input Arguments
filename — Name of NIfTI file
character vector | string scalar

Name of NIfTI file, specified as a string scalar or character vector. By default,
niftiwrite creates a combined format file that contains both metadata and image data
and has the file extension .nii. If you specify the 'Compressed' name-value pair,
niftiwrite adds the file extension .nii.gz. If you set the 'Combined' name-value
pair to false, then niftiwrite creates two files with the same name and different file
extensions. One file contains the metadata associated with the volume and has the file
extension .hdr. The other file contains image data and has the file extension .img.
Data Types: char | string

 niftiwrite

1-2523

V — Volumetric data
numeric array

Volumetric data, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

info — File metadata
structure

File metadata, specified as a structure returned by the niftiinfo function.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: niftiwrite(V,'outbrain.nii','Compressed',true)

Combined — Type of NIfTI file to create
true (default) | false

Type of NIfTI file to create, specified as true or false. If true (the default),
niftiwrite creates a single file with the file extension .nii. If false, niftiwrite
creates a pair of files with the same name but with different file extensions: .hdr for the
file containing metadata, and .img for the file containing the volumetric data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Compressed — Compress image data
false (default) | true

Compress image data, specified as true or false. If 'Compressed' is true, then
niftiwrite generates compressed files, using gzip, with the file name extension .gz.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

1 Functions — Alphabetical List

1-2524

Endian — Endianness of the data
'little' (default) | 'big'

Endianness of the data, specified as 'little', to indicate little-endian format (default)
or 'big', to indicate big-endian format.
Data Types: char | string

Version — NIfTI data format
'NIfTI1' | 'NIfTI2'

NIfTI data format, specified as 'NIfTI1' or 'NIfTI2'. The

• If specified as 'NIfTI1', niftiwrite writes the input according to NIfTI1 data
format.

• If specified as 'NIfTI2', niftiwrite writes the input according to NIfTI2 data
format.

• If not specified, the default value for 'Version' is chosen based on the maximum
dimension of the input volumetric data.

• If the maximum dimension of the input is less than or equal to 32767, the default
value is NIfTI1.

• If the maximum dimension of the input is greater than 32767, the default value is
NIfTI2.

Data Types: char | string

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C.J. Holmes, J.L.

Lancaster, D.E. Rex, S.M. Smith, J.B. Woodward, and S.C. Strother. 'A (sort of) new
image data format standard: Nifti-1. " Neuroimage, Vol. 22(Suppl 1):e1440, 2004.

See Also
niftiinfo | niftiread

Introduced in R2017b

 niftiwrite

1-2525

niqe
Naturalness Image Quality Evaluator (NIQE) no-reference image quality score

Syntax
score = niqe(A)
score = niqe(A,model)

Description
score = niqe(A) calculates the no-reference image quality score for image A using the
Naturalness Image Quality Evaluator (NIQE). niqe compares A to a default model
computed from images of natural scenes. A smaller score indicates better perceptual
quality.

score = niqe(A,model) calculates the image quality score using a custom model.

Examples

Calculate NIQE Score Using Default Feature Model

Compute the NIQE score for a natural image and its distorted versions using the default
model.

Read an image into the workspace. Create copies of the image with noise and blurring
distortions.

I = imread('lighthouse.png');
Inoise = imnoise(I,'salt & pepper',0.02);
Iblur = imgaussfilt(I,2);

Display the images.

1 Functions — Alphabetical List

1-2526

figure
montage({I,Inoise,Iblur},'Size',[1 3])
title('Original Image | Noisy Image | Blurry Image')

Calculate the NIQE score for each image using the default model. Display the score.

niqeI = niqe(I);
fprintf('NIQE score for original image is %0.4f.\n',niqeI)

NIQE score for original image is 2.5455.

niqeInoise = niqe(Inoise);
fprintf('NIQE score for noisy image is %0.4f.\n',niqeInoise)

NIQE score for noisy image is 10.8770.

niqeIblur = niqe(Iblur);
fprintf('NIQE score for blurry image is %0.4f.\n',niqeIblur)

NIQE score for blurry image is 5.2661.

The original undistorted image has the best perceptual quality and therefore the lowest
NIQE score.

 niqe

1-2527

Calculate NIQE Score Using Custom Feature Model

Load a set of natural images into an image datastore. These images are shipped in Image
Processing Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Train a custom NIQE model using the image datastore.

model = fitniqe(imds);

Extracting features from 37 images.
..
Completed 4 of 37 images. Time: Calculating...
...
Completed 13 of 37 images. Time: 00:25 of 01:01
...
Completed 23 of 37 images. Time: 00:35 of 00:53
.....
Done.

Read an image of a natural scene. Display the image.

I = imread('car1.jpg');
imshow(I)

1 Functions — Alphabetical List

1-2528

Calculate the NIQE score for the image using the custom model. Display the score.

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 1.8601.

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale or RGB image.

 niqe

1-2529

Data Types: single | double | int16 | uint8 | uint16

model — Custom model
niqeModel object

Custom model of image features, specified as a niqeModel object. model is derived from
natural scene statistics.

Output Arguments
score — No-reference image quality score
nonnegative scalar

No-reference image quality score, returned as a nonnegative scalar. Lower values of
score reflect better perceptual quality of image A with respect to the input model.
Data Types: double

Algorithms
NIQE measures the distance between the NSS-based features calculated from image A to
the features obtained from an image database used to train the model. The features are
modeled as multidimensional Gaussian distributions.

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image

Quality Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March
2013, pp. 209–212.

See Also
Functions
brisque | fitbrisque | fitniqe | piqe

Objects
niqeModel

1 Functions — Alphabetical List

1-2530

Topics
“Image Quality Metrics”

Introduced in R2017b

 niqe

1-2531

niqeModel
Naturalness Image Quality Evaluator (NIQE) model

Description
A niqeModel object encapsulates a model used to calculate the Naturalness Image
Quality Evaluator (NIQE) perceptual quality score of an image.

Creation
You can create a niqeModel object using the following methods:

• fitniqe — Train a NIQE model with parameters derived from your image datastore.
Use this function if you do not have a pretrained model.

• The niqeModel function described here. Use this function if you have a pretrained
NIQE model, or if the default model is sufficient for your application.

Syntax
m = niqeModel
m = niqeModel(mean,covariance,blockSize,sharpnessThreshold)

Description
m = niqeModel creates a NIQE model object with default property values that are
derived from the pristine image database noted in [1].

m = niqeModel(mean,covariance,blockSize,sharpnessThreshold) creates a
custom NIQE model and sets the Mean, Covariance, BlockSize, and
SharpnessThreshold properties. You must provide all four arguments to create a
custom model.

1 Functions — Alphabetical List

1-2532

Properties
Mean — Mean of natural scene statistics (NSS) based image feature vectors
36-element numeric row vector

Mean of natural scene statistics (NSS) based image feature vectors, specified as a 36-
element numeric row vector.
Example: rand(1,36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Covariance — Covariance matrix of NSS-based image feature vectors
36-by-36 numeric matrix

Covariance matrix of NSS-based image feature vectors, specified as a 36-by-36 numeric
matrix.
Example: rand(36,36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

BlockSize — Block size used to partition an image
[96 96] (default) | 2-element row vector of positive even integers

Block size used to partition an image into nonoverlapping blocks, specified as a 2-element
row vector of positive even integers. The two elements specify the number of rows and
columns in each partition, respectively.
Example: [10 10]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SharpnessThreshold — Sharpness threshold used to calculate feature vectors
0 (default) | real scalar in the range [0, 1]

Sharpness threshold used to calculate feature vectors, specified as a real scalar in the
range [0, 1]. The threshold determines which blocks are selected to calculate the feature
vectors.
Example: 0.25
Data Types: single | double

 niqeModel

1-2533

Examples

Create NIQE Model Object with Default Properties

model = niqeModel

model =
 niqeModel with properties:

 Mean: [1x36 double]
 Covariance: [36x36 double]
 BlockSize: [96 96]
 SharpnessThreshold: 0

Create NIQE Model Object with Custom Properties

Create a niqeModel object using precomputed Mean, Covariance, BlockSize, and
SharpnessThreshold properties. Random initializations are shown for illustrative
purposes only.

 model = niqeModel(rand(1,36),rand(36,36),[10 10],0.25);

You can use the custom model to calculate the NIQE score for an image.

I = imread('lighthouse.png');
score = niqe(I,model)

score = 3.6866

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image

Quality Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March
2013, pp. 209–212.

1 Functions — Alphabetical List

1-2534

See Also
Functions
fitniqe | niqe

Objects
brisqueModel

Topics
“Image Quality Metrics”
“Train and Use a No-Reference Quality Assessment Model”

Introduced in R2017b

 niqeModel

1-2535

nitfinfo
Read metadata from National Imagery Transmission Format (NITF) file

Syntax
metadata = nitfinfo(filename)

Description
metadata = nitfinfo(filename) returns a structure whose fields contain file-level
metadata about the images, annotations, and graphics in a National Imagery
Transmission Format (NITF) file. NITF is an image format used by the U.S. government
and military for transmitting documents. A NITF file can contain multiple images and
include text and graphic layers. filename is a string scalar or character array that
specifies the name of the NITF file, which must be in the current directory, in a directory
on the MATLAB path, or contain the full path to the file.

nitfinfo supports version 2.0 and 2.1 NITF files, at all Joint Interoperability Test
Command (JITC) compliance levels, as well as the NATO Secondary Image Format (NSIF)
1.0. nitfinfo does not support NITF 1.1 files.

See Also
isnitf | nitfread

Introduced in R2007b

1 Functions — Alphabetical List

1-2536

nitfread
Read image from NITF file

Syntax
X = nitfread(filename)
X = nitfread(filename,idx)
X = nitfread(___ Name,Value)

Description
X = nitfread(filename) reads the first image from the National Imagery
Transmission Format (NITF) file specified by the character array filename. The
filename array must be in the current folder or in a folder on the MATLAB path, or it
must contain the full path to the file.

X = nitfread(filename,idx) reads the image with index number idx from a NITF
file that contains multiple images.

X = nitfread(___ Name,Value) reads an image from a NITF image, where optional
parameters control aspects of the operation.

Examples

Read Image Data from NITF File

To run this example, replace the name of the file with the name of a NITF file on your
system. You can find sample NITF files on the web.

Read the second image from a NITF file containing multiple images. The example reads a
subset of the image data, starting at row, column location (100,200), reading every
other value to (105,205).

 nitfread

1-2537

subsec = {[100 2 105],[200 2 205]}

ntfdata = nitfread('your_file.ntf',2,'PixelRegion',subsec);

Input Arguments
filename — Name of NITF file
character vector

Name of NITF file, specified as a character vector.
Data Types: char

idx — Index number of image in NITF file
numeric scalar

Index number of image in NITF file, specified as a numeric scalar of class double.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ntfdata = nitfread('your_file.ntf',2,'PixelRegion',{[100 2
150],[200 2 250]});

PixelRegion — Row and column indices of pixels to be read from file
two-element cell array containing vectors of positive integers

Row and column indices of pixels to be read from file, specified as a two-element cell
array containing vectors of positive integers. Each element is a two-element vector of the
form [start stop] or a three-element vector of the form [start increment stop],
where the first vector specifies the row index and the second vector specifies the column
index.
Example: {[100 150],[200 250]} — read pixels starting at row/column location
(100,200) ending at location (150,250)

1 Functions — Alphabetical List

1-2538

{[100 2 150],[200 2 250]} — read every other pixel starting at row/column location
(100,200) ending at location (150,250)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | cell

Output Arguments
X — Image data from NITF file
numeric array

Image data from NITF file, returned as a numeric array.

Tips
• This function supports version 2.0 and 2.1 NITF files, and NSIF 1.0 files. Image

submasks and NITF 1.1 files are not supported.

See Also
isnitf | nitfinfo

Introduced in R2007b

 nitfread

1-2539

nlfilter
General sliding-neighborhood operations

Syntax
B = nlfilter(A,[m n],fun)
B = nlfilter(A,'indexed', ___)

Description
B = nlfilter(A,[m n],fun) applies the function fun to each m-by-n sliding block of
the grayscale image A.

B = nlfilter(A,'indexed', ___) processes A as an indexed image, padding with 0s
if the class of A is uint8, uint16, or logical, and padding with 1s otherwise.

Note nlfilter can take a long time to process large images. In some cases, the
colfilt function can perform the same operation much faster.

Examples

Apply Median Filter to Image

This example shows how to apply a median filter to an image using nlfilter. This
example produces the same result as calling medfilt2 with a 3-by-3 neighborhood.

Read an image into the workspace.

A = imread('cameraman.tif');

Convert the image to double.

A = im2double(A);

1 Functions — Alphabetical List

1-2540

Create the function you want to apply to the image--a median filter.

fun = @(x) median(x(:));

Apply the filter to the image.

B = nlfilter(A,[3 3],fun);

Display the original image and the filtered image, side-by-side.

montage({A,B})
title('Original Image (Left) and Median Filtered Image (Right)')

Input Arguments
A — Image to be filtered
numeric array

 nlfilter

1-2541

Image to be filtered, specified as a numeric array of any class supported by fun. When A
is grayscale, it can be any numeric type or logical. When A is indexed, it can be
logical, uint8, uint16, single, or double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows
and n is the number of columns in the block.
Example: B = nlfilter(A,[3 3],fun);
Data Types: single | double | logical

fun — Function handle
handle

Function handle specified as a handle. The function must accept an m-by-n matrix as input
and return a scalar result.

c = fun(x)

c is the output value for the center pixel in the m-by-n block x. nlfilter calls fun for
each pixel in A. nlfilter zero-pads the m-by-n block at the edges, if necessary.
Data Types: function_handle

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as numeric array. The class of B depends on the class of the
output from fun.

See Also
blockproc | colfilt

1 Functions — Alphabetical List

1-2542

Topics
“Anonymous Functions” (MATLAB)
“Parameterizing Functions” (MATLAB)
“Create Function Handle” (MATLAB)

Introduced before R2006a

 nlfilter

1-2543

normxcorr2
Normalized 2-D cross-correlation

Syntax
C = normxcorr2(template,A)

Description
C = normxcorr2(template,A) computes the normalized cross-correlation of the
matrices template and A. The resulting matrix C contains the correlation coefficients.

You optionally can compute the normalized cross-correlation using a GPU (requires
Parallel Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Use Cross-Correlation to Find Template in Image

Read two images into the workspace, and convert them to grayscale for use with
normxcorr2. Display the images side-by-side.

onion = rgb2gray(imread('onion.png'));
peppers = rgb2gray(imread('peppers.png'));
imshowpair(peppers,onion,'montage')

1 Functions — Alphabetical List

1-2544

Perform cross-correlation, and display the result as a surface.

c = normxcorr2(onion,peppers);
figure, surf(c), shading flat

 normxcorr2

1-2545

Find the peak in cross-correlation.

[ypeak, xpeak] = find(c==max(c(:)));

Account for the padding that normxcorr2 adds.

yoffSet = ypeak-size(onion,1);
xoffSet = xpeak-size(onion,2);

Display the matched area.

figure
imshow(peppers);
imrect(gca, [xoffSet+1, yoffSet+1, size(onion,2), size(onion,1)]);

1 Functions — Alphabetical List

1-2546

Use Cross-Correlation to Find Template in Image on a GPU

Read two images into gpuArrays.

onion = gpuArray(imread('onion.png'));
peppers = gpuArray(imread('peppers.png'));

Convert the color images to 2-D grayscale. The rgb2gray function accepts gpuArrays.

onion = rgb2gray(onion);
peppers = rgb2gray(peppers);

 normxcorr2

1-2547

Perform cross-correlation, and display the result as a surface.

c = normxcorr2(onion,peppers);
figure, surf(c), shading flat

Find the peak in cross-correlation.

[ypeak, xpeak] = find(c==max(c(:)));

1 Functions — Alphabetical List

1-2548

Account for the padding that normxcorr2 adds.

yoffSet = ypeak-size(onion,1);
xoffSet = xpeak-size(onion,2);

Move the data back to the CPU for display.

yoffSet = gather(ypeak-size(onion,1));
xoffSet = gather(xpeak-size(onion,2));

Display the matched area.

figure
imshow(peppers);
imrect(gca, [xoffSet+1, yoffSet+1, size(onion,2), size(onion,1)]);

 normxcorr2

1-2549

Input Arguments
template — Input template
numeric matrix | gpuArray

1 Functions — Alphabetical List

1-2550

Input template, specified as a numeric matrix. The values of template cannot all be the
same.

To perform the computation using a GPU, specify template as a gpuArray that contains
a numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

A — Input image
numeric matrix | gpuArray

Input image, specified as a numeric image. A must be larger than the matrix template
for the normalization to be meaningful.

Normalized cross-correlation is an undefined operation in regions where A has zero
variance over the full extent of the template. In these regions, normxcorr2 assigns
correlation coefficients of zero to the output C.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
C — Correlation coefficients
numeric matrix | gpuArray

Correlation coefficients, returned as a numeric matrix with values in the range [-1, 1].

If the correlation coefficients are computed using a GPU, then C is returned as a
gpuArray containing a numeric matrix with values in the range [-1, 1].
Data Types: double

Algorithms
normxcorr2 uses the following general procedure [1], [2]:

 normxcorr2

1-2551

1 Calculate cross-correlation in the spatial or the frequency domain, depending on size
of images.

2 Calculate local sums by precomputing running sums [1].
3 Use local sums to normalize the cross-correlation to get correlation coefficients.

The implementation closely follows the formula from [1]:

γ(u, v) = ∑x, y f x, y − f u, v t x− u, y − v − t

∑x, y f x, y − f u, v
2∑x, y t(x− u, y − v) − t 2 0.5

where

• f is the image.
• t is the mean of the template
• f u, v is the mean of f (x, y) in the region under the template.

References
[1] Lewis, J. P., "Fast Normalized Cross-Correlation," Industrial Light & Magic

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume II,
Addison-Wesley, 1992, pp. 316-317.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

1 Functions — Alphabetical List

1-2552

http://scribblethink.org/Work/nvisionInterface/nip.pdf

See Also
corr2 | corrcoef

Introduced before R2006a

 normxcorr2

1-2553

ntsc2rgb
Convert NTSC values to RGB color space

Syntax
RGB = ntsc2rgb(YIQ)
rgbmap = ntsc2rgb(yiqmap)

Description
RGB = ntsc2rgb(YIQ) converts the luminance (Y) and chrominance (I and Q) values of
an NTSC image to red, green, and blue values of an RGB image.

rgbmap = ntsc2rgb(yiqmap) converts an NTSC colormap to an RGB colormap.

Examples

Convert Image from YIQ to RGB

This example shows how to convert an image from RGB to NTSC color space and back.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YIQ color space.

YIQ = rgb2ntsc(RGB);

Display the NTSC luminance, represented by the first color channel in the YIQ image.

imshow(YIQ(:,:,1))
title('Luminance in YIQ Color Space')

1 Functions — Alphabetical List

1-2554

 ntsc2rgb

1-2555

Convert the YIQ image back to RGB color space.

RGB2 = ntsc2rgb(YIQ);

Display the image that was converted from YIQ to RGB color space.

figure
imshow(RGB2)
title('Image Converted from YIQ to RGB Color Space')

1 Functions — Alphabetical List

1-2556

 ntsc2rgb

1-2557

Input Arguments
YIQ — NTSC image
m-by-n-by-3 numeric array

NTSC image, specified as an m-by-n-by-3 numeric array with values in the range [0, 1].
The third dimension of YIQ defines the luminance (Y) and chrominance (I and Q) for each
pixel, respectively.
Data Types: double

yiqmap — NTSC colormap
c-by-3 numeric matrix

NTSC colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. The
value of c corresponds to the number of colors in rgbmap. Each row of yiqmap is a three-
element YIQ triplet that specifies the luminance (Y) and chrominance (I and Q)
components of a single color in the colormap.
Data Types: double

Output Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image, returned as an m-by-n-by-3 numeric array with values in the range [0, 1]. The
third dimension of RGB defines the red, green, and blue intensity of each pixel,
respectively.
Data Types: double

rgbmap — RGB colormap
c-by-3 numeric matrix

RGB colormap, returned as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of rgbmap is a three-element RGB triplet that specifies the red, green, and blue
components of a single color in the colormap.
Data Types: double

1 Functions — Alphabetical List

1-2558

Algorithms
In the NTSC color space, the luminance is the grayscale signal used to display pictures on
monochrome (black and white) televisions. The other components carry the hue and
saturation information. The value 0 corresponds to the absence of the component, while
the value 1 corresponds to full saturation of the component.

ntsc2rgb computes the RGB values from the NTSC components using

R
G
B

=
1.000 0.956 0.621
1.000 −0.272 −0.647
1.000 −1.106 1.703

Y
I
Q

.

See Also
hsv2rgb | lab2rgb | rgb2ntsc | xyz2rgb | ycbcr2rgb

Introduced before R2006a

 ntsc2rgb

1-2559

offsetstrel
Morphological offset structuring element

Description
An offsetstrel object represents a nonflat morphological structuring element, which is
an essential part of morphological dilation and erosion operations.

A nonflat structuring element is a matrix that identifies the pixel in the image being
processed and defines the neighborhood used in the processing of that pixel. A nonflat
structuring element contains finite values used as additive offsets in the morphological
computation. The center pixel of the matrix, called the origin, identifies the pixel in the
image that is being processed. Pixels in the neighborhood with the value -Inf are not
used in the computation.

You can only use offsetstrel objects for morphological operations on grayscale
images.

To create a flat structuring element, use strel.

Creation

Syntax
SE = offsetstrel(offset)

SE = offsetstrel('ball',r,h)
SE = offsetstrel('ball',r,h,n)

Description
SE = offsetstrel(offset) creates a nonflat structuring element with the additive
offset specified in the matrix offset.

1 Functions — Alphabetical List

1-2560

SE = offsetstrel('ball',r,h) creates a nonflat, ball-shaped structuring element
whose radius in the x-y plane is r and whose maximum offset height is h. For improved
performance, offsetstrel approximates this shape by a sequence of eight nonflat line-
shaped structuring elements.

SE = offsetstrel('ball',r,h,n) creates a nonflat ball-shaped structuring element,
where n specifies the number of nonflat, line-shaped structuring elements that
offsetstrel uses to approximate the shape. Morphological operations using ball
approximations run much faster when you specify a value for n greater than 0.

Input Arguments
offset — Values to be added to each pixel location in the neighborhood
numeric matrix

Values to be added to each pixel location in the neighborhood when performing the
morphological operation, specified as a numeric matrix. Values that are -Inf are not
considered in the computation.
Data Types: double

r — Radius of the ball-shaped structuring element
positive integer

Radius of the ball-shaped structuring element in the x-y plane, specified as a positive
integer.
Data Types: double

h — Maximum offset height
real scalar

Maximum offset height, specified as a real scalar.
Data Types: double

n — Number of nonflat line-shaped structuring elements used to approximate
the shape
8 (default) | positive even number

Number of nonflat line-shaped structuring elements used to approximate the shape,
specified as a positive even number or 0.

 offsetstrel

1-2561

Value of n Behavior
n > 0 offsetstrel uses a sequence of n nonflat, line-shaped

structuring elements to approximate the shape. n must be an
even number.

n = 0 offsetstrel does not use any approximation. The structuring
element members comprise all pixels whose centers are no
greater than r away from the origin. The corresponding height
values are determined from the formula of the ellipsoid
specified by r and h.

Data Types: double

Properties
Offset — Structuring element neighborhood with offsets
numeric matrix

Structuring element neighborhood with offsets, specified as a numeric matrix.
Data Types: double

Dimensionality — Dimensions of structuring element
nonnegative scalar

Dimensions of structuring element, specified as a nonnegative scalar.
Data Types: double

Object Functions
imdilate Dilate image
imerode Erode image
imclose Morphologically close image
imopen Morphologically open image
imbothat Bottom-hat filtering
imtophat Top-hat filtering
decompose Return sequence of decomposed structuring elements
reflect Reflect structuring element
translate Translate structuring element

1 Functions — Alphabetical List

1-2562

Examples

Create Ball-shaped Structuring Element

Create a ball-shaped structuring element.

SE = offsetstrel('ball',5, 6)

SE =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

View the structuring element.

SE.Offset

ans = 11×11

 -Inf -Inf 0 0.7498 1.4996 2.2494 1.4996 0.7498 0 -Inf -Inf
 -Inf 0.7498 1.4996 2.2494 2.9992 2.9992 2.9992 2.2494 1.4996 0.7498 -Inf
 0 1.4996 2.2494 2.9992 3.7491 3.7491 3.7491 2.9992 2.2494 1.4996 0
 0.7498 2.2494 2.9992 3.7491 4.4989 4.4989 4.4989 3.7491 2.9992 2.2494 0.7498
 1.4996 2.9992 3.7491 4.4989 5.2487 5.2487 5.2487 4.4989 3.7491 2.9992 1.4996
 2.2494 2.9992 3.7491 4.4989 5.2487 5.9985 5.2487 4.4989 3.7491 2.9992 2.2494
 1.4996 2.9992 3.7491 4.4989 5.2487 5.2487 5.2487 4.4989 3.7491 2.9992 1.4996
 0.7498 2.2494 2.9992 3.7491 4.4989 4.4989 4.4989 3.7491 2.9992 2.2494 0.7498
 0 1.4996 2.2494 2.9992 3.7491 3.7491 3.7491 2.9992 2.2494 1.4996 0
 -Inf 0.7498 1.4996 2.2494 2.9992 2.9992 2.9992 2.2494 1.4996 0.7498 -Inf
 ⋮

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 offsetstrel

1-2563

Usage notes and limitations:

• offsetstrel supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The 'ball' input argument and all other input arguments must be compile-time
constants.

• The methods associated with offsetstrel objects are not supported in code
generation.

See Also
strel

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions — Alphabetical List

1-2564

OnePlusOneEvolutionary
One-plus-one evolutionary optimizer configuration

Description
A OnePlusOneEvolutionary object describes a one-plus-one evolutionary optimization
configuration that you pass to the function imregister to solve image registration
problems.

Creation
You can create a OnePlusOneEvolutionary object using the following methods:

• imregconfig — Returns a OnePlusOneEvolutionary object paired with an
appropriate metric for registering multimodal images

• Entering

metric = registration.optimizer.OnePlusOneEvolutionary;

on the command line creates a OnePlusOneEvolutionary object with default
settings

Properties
GrowthFactor — Growth factor of the search radius
1.05 (default) | positive scalar

Growth factor of the search radius, specified as a positive scalar. The optimizer uses
GrowthFactor to control the rate at which the search radius grows in parameter space.
If you set GrowthFactor to a large value, the optimization is fast, but it might result in
finding only the metric’s local extrema. If you set GrowthFactor to a small value, the
optimization is slower, but it is likely to converge on a better solution.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

 OnePlusOneEvolutionary

1-2565

Epsilon — Minimum size of the search radius
1.5e-6 (default) | positive scalar

Minimum size of the search radius, specified as a positive scalar. Epsilon controls the
accuracy of convergence by adjusting the minimum size of the search radius. If you set
Epsilon to a small value, the optimization of the metric is more accurate, but the
computation takes longer. If you set Epsilon to a large value, the computation time
deceases at the expense of accuracy.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

InitialRadius — Initial size of search radius
6.25e-3 | positive scalar

Initial size of search radius, specified as a positive scalar. If you set InitialRadius to a
large value, the computation time decreases. However, overly large values of
InitialRadius might result in an optimization that fails to converge.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

MaximumIterations — Maximum number of optimizer iterations
100 (default) | positive integer scalar

Maximum number of optimizer iterations, specified as a positive integer scalar.
MaximumIterations determines the maximum number of iterations the optimizer
performs at any given pyramid level. The registration could converge before the optimizer
reaches the maximum number of iterations.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

Examples
Register Images with One Plus One Evolutionary Optimizer

Create a OnePlusOneEvolutionary object and use it to register two MRI images of a
knee that were obtained using different protocols.

Read the images into the workspace. The images are multimodal because they have
different brightness and contrast.

1 Functions — Alphabetical List

1-2566

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

 OnePlusOneEvolutionary

1-2567

Create the optimizer configuration object suitable for registering multimodal images.

optimizer = registration.optimizer.OnePlusOneEvolutionary

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

1 Functions — Alphabetical List

1-2568

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

Create the metric configuration object suitable for registering multimodal images.

metric = registration.metric.MattesMutualInformation;

Tune the properties of the optimizer so that the problem will converge on a global
maxima. Increase the number of iterations the optimizer will use to solve the problem.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving,fixed,'affine',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

 OnePlusOneEvolutionary

1-2569

1 Functions — Alphabetical List

1-2570

Algorithms
An evolutionary algorithm iterates to find a set of parameters that produce the best
possible registration result. It does this by perturbing, or mutating, the parameters from
the last iteration (the parent). If the new (child) parameters yield a better result, then the
child becomes the new parent whose parameters are perturbed, perhaps more
aggressively. If the parent yields a better result, it remains the parent and the next
perturbation is less aggressive.

References
[1] Styner, M., C. Brechbuehler, G. Székely, and G. Gerig. "Parametric estimate of intensity

inhomogeneities applied to MRI." IEEE Transactions on Medical Imaging. Vol. 19,
Number 3, 2000, pp. 153-165.

See Also
Functions
imregconfig | imregister

Objects
MattesMutualInformation | MeanSquares | RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

 OnePlusOneEvolutionary

1-2571

openrset
Open R-Set file and display R-Set

Syntax
openrset(filename)

Description
openrset(filename) opens the reduced resolution dataset (R-Set) file and displays the
R-Set by using the imtool function.

Examples

Open Image Stored as R-Set File

Load an R-Set file into the workspace.

filename = 'mandi.rset';

Open the R-Set file and display the R-Set data.

openrset(filename)

1 Functions — Alphabetical List

1-2572

Input Arguments
filename — Name of R-Set file
character vector | string scalar

Name of the R-Set file, specified as a character vector or string scalar.
Data Types: char | string

 openrset

1-2573

See Also
imtool | isrset | rsetwrite

Introduced in R2010a

1 Functions — Alphabetical List

1-2574

ordfilt2
2-D order-statistic filtering

Syntax
B = ordfilt2(A,order,domain)
B = ordfilt2(A,order,domain,S)
B = ordfilt2(___ ,padopt)

Description
B = ordfilt2(A,order,domain) replaces each element in A by the orderth element
in the sorted set of neighbors specified by the nonzero elements in domain.

B = ordfilt2(A,order,domain,S) filters A, where ordfilt2 uses the values of S
corresponding to the nonzero values of domain as additive offsets. You can use this
syntax to implement grayscale morphological operations, including grayscale dilation and
erosion.

B = ordfilt2(___ ,padopt) filters A, where padopt specifies how ordfilt2 pads
the matrix boundaries.

Examples

Filter Image with Maximum Filter

Read image into workspace and display it.

A = imread('snowflakes.png');
figure
imshow(A)

 ordfilt2

1-2575

Filter the image and display the result.

B = ordfilt2(A,25,true(5));
figure
imshow(B)

Input Arguments
A — Input matrix
2-D, real, nonsparse, numeric or logical matrix

Input matrix, specified as a 2-D, real, nonsparse, numeric or logical array.

1 Functions — Alphabetical List

1-2576

Example: A = imread('snowflakes.png');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

order — Element to replace the target pixel
real scalar integer

Element to replace the target pixel, specified as a real scalar integer.
Example: B = ordfilt2(A,25,true(5));
Data Types: double

domain — Neighborhood
numeric or logical matrix

Neighborhood, specified as a numeric or logical matrix, containing 1s and 0s. domain is
equivalent to the structuring element used for binary image operations. The 1-valued
elements define the neighborhood for the filtering operation. The following table gives
examples of some common filters.

Type of Filtering
Operation

MATLAB code Neighborhood Sample Image
Data, Indicating
Selected Element

Median filter B =
ordfilt2(A,5,one
s(3,3))

Minimum filter B =
ordfilt2(A,1,one
s(3,3))

 ordfilt2

1-2577

Type of Filtering
Operation

MATLAB code Neighborhood Sample Image
Data, Indicating
Selected Element

Maximum filter B =
ordfilt2(A,9,one
s(3,3))

Minimum of north,
east, south, and west
neighbors

B =
ordfilt2(A,1,[0
1 0; 1 0 1; 0 1
0])

Example: B = ordfilt2(A,25,true(5));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

S — Additive offsets
matrix

Additive offsets, specified as a matrix the same size as domain.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

padopt — Padding option
'zeros' (default) | 'symmetric'

Padding option, specified as either of the following values:

Option Description
'zeros' Pad array boundaries with 0’s.

1 Functions — Alphabetical List

1-2578

Option Description
'symmetric' Pad array with mirror reflections of itself.

Data Types: char | string

Output Arguments
B — Output image
2-D array

Output image, returned as a 2-D array of the same class as the input image A.

Tips
• When working with large domain matrices that do not contain any zero-valued

elements, ordfilt2 can achieve higher performance if A is in an integer data format
(uint8, int8, uint16, int16). The gain in speed is larger for uint8 and int8 than
for the 16-bit data types. For 8-bit data formats, the domain matrix must contain seven
or more rows. For 16-bit data formats, the domain matrix must contain three or more
rows and 520 or more elements.

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I,

Addison-Wesley, 1992.

[2] Huang, T.S., G.J.Yang, and G.Y.Tang. "A fast two-dimensional median filtering
algorithm.", IEEE transactions on Acoustics, Speech and Signal Processing, Vol
ASSP 27, No. 1, February 1979

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 ordfilt2

1-2579

Usage notes and limitations:

• ordfilt2 supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, ordfilt2
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• When generating code, the padopt argument must be a compile-time constant.

See Also
medfilt2

Introduced before R2006a

1 Functions — Alphabetical List

1-2580

otf2psf
Convert optical transfer function to point-spread function

Syntax
PSF = otf2psf(OTF)
PSF = otf2psf(OTF,sz)

Description
PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform of the optical
transfer function (OTF) and creates a point-spread function (PSF), centered at the origin.

PSF = otf2psf(OTF,sz) specifies the size, sz, of the output point-spread function.

Examples

Convert OTF to PSF

Create a point-spread function (PSF).

PSF = fspecial('gaussian',13,1);

Convert the PSF to an Optical Transfer Function (OTF).

OTF = psf2otf(PSF,[31 31]);

Convert the OTF back to a PSF.

PSF2 = otf2psf(OTF,size(PSF));

Plot the PSF and the OTF.

subplot(1,2,1)
surf(abs(OTF))

 otf2psf

1-2581

title('|OTF|');
axis square
axis tight
subplot(1,2,2)
surf(PSF2)
title('Corresponding PSF');
axis square
axis tight

1 Functions — Alphabetical List

1-2582

Input Arguments
OTF — Optical transfer function
numeric array

Optical transfer function, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

sz — Size of point-spread function
vector of positive integers

Size of the output point-spread function PSF, specified as a vector of positive integers.
The size of PSF must not exceed the size of OTF in any dimension. By default, PSF is the
same size as OTF.
Data Types: double

Output Arguments
PSF — Point-spread function
numeric array

Point-spread function, centered at the origin, returned as a numeric array of size sz.
Data Types: double
Complex Number Support: Yes

Tips
• To center the PSF at the origin, otf2psf circularly shifts the values of the output

array down (or to the right) until the (1,1) element reaches the central position, then it
crops the result to match dimensions specified by sz.

• This function is used in image convolution and deconvolution when the operations
involve the FFT.

 otf2psf

1-2583

See Also
circshift | fftn | ifftn | padarray | psf2otf

Topics
“Create Your Own Deblurring Functions”

Introduced before R2006a

1 Functions — Alphabetical List

1-2584

otsuthresh
Global histogram threshold using Otsu's method

Syntax
T = otsuthresh(counts)
[T,EM] = otsuthresh(counts)

Description
T = otsuthresh(counts) computes a global threshold T from histogram counts,
counts, using Otsu's method [1]. Otsu's method chooses a threshold that minimizes the
intraclass variance of the thresholded black and white pixels. The global threshold T can
be used with imbinarize to convert a grayscale image to a binary image.

[T,EM] = otsuthresh(counts) returns the effectiveness metric, EM, which indicates
the effectiveness of the thresholding.

Examples

Compute Threshold from Image Histogram and Binarize Image

Read image into the workspace.

I = imread('coins.png');

Calculate a 16-bin histogram for the image.

[counts,x] = imhist(I,16);
stem(x,counts)

 otsuthresh

1-2585

Compute a global threshold using the histogram counts.

T = otsuthresh(counts);

Create a binary image using the computed threshold and display the image.

BW = imbinarize(I,T);
figure
imshow(BW)

1 Functions — Alphabetical List

1-2586

Input Arguments
counts — Histogram counts
vector of nonnegative numbers

Histogram counts, specified as a vector of nonnegative numbers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
T — Global threshold
numeric scalar

Global threshold, returned as a numeric scalar in the range [0, 1].

 otsuthresh

1-2587

Data Types: double

EM — Effectiveness metric
numeric scalar

Effectiveness metric of the threshold, returned as a numeric scalar in the range [0, 1].
The lower bound is attainable only by histogram counts with all data in a single non-zero
bin. The upper bound is attainable only by histogram counts with two non-zero bins.
Data Types: double

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE

Transactions on Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• otsuthresh supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
adaptthresh | graythresh | imbinarize

Introduced in R2016a

1 Functions — Alphabetical List

1-2588

outputLimits
Package:

Find output spatial limits given input spatial limits

Syntax
[xLimitsOut,yLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn)
[xLimitsOut,yLimitsOut,zLimitsOut] = outputLimits(tform,xLimitsIn,
yLimitsIn,zLimitsIn)

Description
[xLimitsOut,yLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn)
estimates the output spatial limits corresponding to a set of input spatial limits,
xLimitsIn and yLimitsIn, given 2-D geometric transformation tform.

[xLimitsOut,yLimitsOut,zLimitsOut] = outputLimits(tform,xLimitsIn,
yLimitsIn,zLimitsIn) estimates the output spatial limits, given 3-D geometric
transformation tform.

Examples

Estimate the Output Limits for a 2-D Affine Transformation

Create an affine2d object that defines a rotation of 10 degrees counter-clockwise.

theta = 10;
tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

tform =

 affine2d with properties:

 outputLimits

1-2589

 T: [3x3 double]
 Dimensionality: 2

Estimate the output spatial limits, given the geometric transformation.

[xlim, ylim] = outputLimits(tform,[1 240],[1 291])

xlim =

 1.1585 286.8855

ylim =

 -40.6908 286.4054

Estimate the Output Limits for a 3-D Affine Transformation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1]);

tform =

 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Estimate the output spatial limits, given the geometric transformation.

[xlim, ylim, zlim] = outputLimits(tform,[1 128],[1 128],[1 27])

xlim =

 1.2000 153.6000

ylim =

 1.6000 204.8000

1 Functions — Alphabetical List

1-2590

zlim =

 2.4000 64.8000

Input Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform is an affine2d, projective2d,
LocalWeightedMeanTransformation2D, PiecewiseLinearTransformation2D, or
PolynomialTransformation2D geometric transformation object.

For 3-D geometric transformations, tform is an affine3d object.

xLimitsIn — Input spatial limits in the x-dimension
1-by-2 numeric vector

Input spatial limits in the x-dimension, specified as a 1-by-2 numeric vector.
Data Types: double

yLimitsIn — Input spatial limits in the y-dimension
1-by-2 numeric vector

Input spatial limits in the y-dimension, specified as a 1-by-2 numeric vector.
Data Types: double

zLimitsIn — Input spatial limits in the z-dimension
1-by-2 numeric vector

Input spatial limits in the z-dimension, specified as a 1-by-2 numeric vector. Provide
zLimitsIn only when tform is an affine3d object.
Data Types: double

 outputLimits

1-2591

Output Arguments
xLimitsOut — Output spatial limits in the x-dimension
1-by-2 numeric vector

Output spatial limits in the x-dimension, returned as a 1-by-2 numeric vector.
Data Types: double

yLimitsOut — Output spatial limits in the y-dimension
1-by-2 numeric vector

Output spatial limits in the y-dimension, returned as a 1-by-2 numeric vector.
Data Types: double

zLimitsOut — Output spatial limits in the z-dimension
1-by-2 numeric vector

Output spatial limits in the z-dimension, returned as a 1-by-2 numeric vector.
outputLimits returns zLimitsIn only when tform is an affine3d object.
Data Types: double

See Also
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
PolynomialTransformation2D | affine2d | affine3d | projective2d

Introduced in R2013a

1 Functions — Alphabetical List

1-2592

padarray
Pad array

Syntax
B = padarray(A,padsize)
B = padarray(A,padsize,padval)
B = padarray(___ ,direction)

Description
B = padarray(A,padsize) pads array A with 0s (zeros). padsize is a vector of
nonnegative integers that specifies both the amount of padding to add and the dimension
along which to add it. The value of an element in the vector specifies the amount of
padding to add. The order of the element in the vector specifies the dimension along
which to add the padding.

You optionally can perform the padding operation using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

B = padarray(A,padsize,padval) pads array A where padval specifies a constant
value to use for padded elements or a method to replicate array elements.

B = padarray(___ ,direction) pads A in the direction specified by direction.

Examples

Add Padding to 2-D and 3-D Arrays

Pad the Beginning of a Vector

Add three elements of padding to the beginning of a vector with padding value 9.

A = [1 2 3 4]

 padarray

1-2593

A = 1×4

 1 2 3 4

B = padarray(A,3,9,'pre')

B = 4×4

 9 9 9 9
 9 9 9 9
 9 9 9 9
 1 2 3 4

Pad Each Dimension of a 2-D Array

Add three elements of padding to the end of the first dimension of the array and two
elements of padding to the end of the second dimension. Use the value of the last array
element on each dimension as the padding value.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = padarray(A,[3 2],'replicate','post')

B = 5×4

 1 2 2 2
 3 4 4 4
 3 4 4 4
 3 4 4 4
 3 4 4 4

Pad Each Dimension of a 3-D Array

Add three elements of padding to each dimension of a three-dimensional array. Each pad
element contains the value 0.

1 Functions — Alphabetical List

1-2594

First create the 3-D array.

A = [1 2; 3 4];
B = [5 6; 7 8];
C = cat(3,A,B)

C =
C(:,:,1) =

 1 2
 3 4

C(:,:,2) =

 5 6
 7 8

Pad the 3-D Array

D = padarray(C,[3 3],0,'both')

D =
D(:,:,1) =

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 1 2 0 0 0
 0 0 0 3 4 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

D(:,:,2) =

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 5 6 0 0 0
 0 0 0 7 8 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 padarray

1-2595

 0 0 0 0 0 0 0 0

Perform Padding on a GPU

Add padding on all sides of an image.

gcam = gpuArray(imread('cameraman.tif'));
padcam = padarray(gcam,[50 50],'both');
imshow(padcam)

Input Arguments
A — Array to be padded
numeric array | logical array | gpuArray

1 Functions — Alphabetical List

1-2596

Array to be padded, specified as a numeric or logical array of any dimension. When
padding with a constant value, A must be numeric or logical. When padding using the
'circular', 'replicate', or 'symmetric' methods, A can be of any class.

To perform the padding operation using a GPU, specify A as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

padsize — Amount of padding to add to each dimension
vector of nonnegative integers

Amount of padding to add to each dimension, specified as a vector of nonnegative
integers. For example, a padsize value of [2 3] means add two elements of padding
along the first dimension and three elements of padding along the second dimension. By
default, paddarray adds padding before the first element and after the last element
along the specified dimension.
Data Types: double

padval — Value to use for the padding
0 (default) | numeric scalar | 'circular' | 'replicate' | 'symmetric'

Value to use for the padding, specified as one of the following.

Value Meaning
numeric scalar Pad array with elements of constant value.
'circular' Pad with circular repetition of elements within the dimension.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad array with mirror reflections of itself.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

direction — Where to pad array along each dimension
'both' (default) | 'post' | 'pre'

Where to pad array along each dimension, specified as one of the following values:

 padarray

1-2597

Value Meaning
'both' Pads before the first element and after the last array element along

each dimension.
'post' Pad after the last array element along each dimension.
'pre' Pad before the first array element along each dimension.

Data Types: char | string

Output Arguments
B — Padded array
numeric array | gpuArray

Padded array, returned as a numeric array of the same class as A.

If the padding operation is performed using a GPU, then B is returned as a gpuArray
containing a numeric array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• padarray supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, padarray supports only up to 3-D inputs, and the input
arguments, padval and direction must be compile-time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Functions — Alphabetical List

1-2598

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
circshift | imfilter

Introduced before R2006a

 padarray

1-2599

para2fan
Convert parallel-beam projections to fan-beam

Syntax
F = para2fan(P,D)
F = fan2para(P,D,Name,Value)
[F,fan_sensor_positions,fan_rotation_angles] = fan2para(___)

Description
F = para2fan(P,D) converts the parallel-beam data P to the fan-beam data F. Each
column of P contains the parallel-beam sensor samples at one rotation angle. D is the
distance from the fan-beam vertex to the center of rotation.

The parallel-beam sensors are assumed to have a one-pixel spacing. The parallel-beam
rotation angles are spaced equally to cover [0,180] degrees. The calculated fan-beam
rotation angles have the same spacing as the parallel-beam rotation angles, and cover
[0,360) degrees. The calculated fan-beam angles are equally spaced with the spacing set
to the smallest angle implied by the sensor spacing.

F = fan2para(P,D,Name,Value) uses name-value pairs to control aspects of the data
conversion. Argument names can be abbreviated, and case does not matter.

[F,fan_sensor_positions,fan_rotation_angles] = fan2para(___) returns
the fan-beam sensor locations in fan_sensor_positions and rotation angles in
fan_rotation_angles.

Examples

Convert Parallel-beam Projections to Fan-beam Projections

Generate parallel-beam projections

1 Functions — Alphabetical List

1-2600

ph = phantom(128);
theta = 0:180;
[P,xp] = radon(ph,theta);
imshow(P,[],'XData',theta,'YData',xp,'InitialMagnification','fit')
axis normal
title('Parallel-Beam Projections')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

Convert to fan-beam projections

[F,Fpos,Fangles] = para2fan(P,100);
figure

 para2fan

1-2601

imshow(F,[],'XData',Fangles,'YData',Fpos,'InitialMagnification','fit')
axis normal
title('Fan-Beam Projections')
xlabel('\theta (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(gca,hot), colorbar

Input Arguments
P — Parallel-beam projection data
numeric matrix

1 Functions — Alphabetical List

1-2602

Parallel-beam projection data, specified as a numeric matrix. Each column of P contains
the parallel-beam data at one rotation angle. The number of columns indicates the
number of parallel-beam rotation angles and the number of rows indicates the number of
parallel-beam sensors.
Data Types: double | single

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a
positive number. para2fan assumes that the center of rotation is the center point of the
projections, which is defined as ceil(size(F,1)/2). The value of D must be greater
than or equal to ParallelSensorSpacing*(SIZE(P,1)-1)/2

The figure illustrates D in relation to the fan-beam vertex for one fan-beam projection.

Data Types: double | single

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 para2fan

1-2603

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: F = para2fan(P,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of
'FanCoverage' and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair
consisting of 'FanRotationIncrement' and a positive scalar.

• If FanCoverage is 'cycle', then 360/FanRotationIncrement must be an integer.
• If you do not specify FanRotationIncrement, then the default value is equal to the

parallel-beam rotation angle.

Data Types: double

1 Functions — Alphabetical List

1-2604

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal

angles along a circular arc at
distance D from the center of
rotation.

FanSensorSpacing defines the
angular spacing in degrees.

 para2fan

1-2605

Value Meaning Diagram
'line' Sensors are spaced at equal

distances along a line that is
parallel to the x' axis. The closest
sensor is distance D from the
center of rotation.

FanSensorSpacing defines the
distance between fan-beams on
the x' axis, in pixels.

FanSensorSpacing — Fan-beam sensor spacing
positive scalar

Fan-beam sensor spacing, specified as the comma-separated pair consisting of
'FanSensorSpacing' and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular
spacing in degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear
distance between fan-beams, in pixels. Linear spacing is measured on the x' axis.

If you do not specify FanSensorGeometry, then the default value of
FanSensorSpacing is the smallest value implied by ParallelSensorSpacing such
that:

• If FanSensorGeometry is 'arc', then FanSensorSpacing is 180/
pi*ASIN(ParallelSensorSpacing/D)

1 Functions — Alphabetical List

1-2606

• If FanSensorGeometry is 'line', then FanSensorSpacing is
D*ASIN(ParallelSensorSpacing/D)

Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the
comma-separated pair consisting of 'Interpolation' and one of these values.

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

ParallelCoverage — Range of parallel-beam rotation
'halfcycle' (default) | 'cycle

Range of parallel-beam rotation, specified as the comma-separated pair consisting of
'ParallelCoverage' and one of these values.

• 'cycle' — Parallel data covers the full range of [0, 360) degrees.
• 'halfcycle' — Parallel data covers [0, 180) degrees.

ParallelSensorSpacing — Parallel-beam sensor spacing
1 | positive scalar

Parallel-beam sensor spacing in pixels, specified as the comma-separated pair consisting
of 'ParallelSensorSpacing' and a positive scalar.
Data Types: double

Output Arguments
F — Fan-beam projection data
numeric matrix

 para2fan

1-2607

Fan-beam projection data, returned as a numeric matrix. Each column of F contains the
fan-beam sensor samples at one rotation angle.

Parallel-beam projection data, returned as a numeric matrix. Each column of F contains
the fan-beam data at one rotation angle. The number of columns indicates the total
number of fan-beam rotation angles and is equal to the length of
fan_rotation_angles. The number of rows indicates the total number of parallel-beam
sensors and is equal to the length of fan_sensor_positions.
Data Types: double

fan_sensor_positions — Fan-beam sensor locations
numeric column vector

Fan-beam sensor locations, returned as a numeric column vector.

• If 'FanSensorGeometry' is 'arc' (the default), then fan_sensor_positions
contains the fan-beam sensor measurement angles.

• If 'FanSensorGeometry' is 'line', then fan_sensor_positions contains the
fan-beam sensor positions along the line of sensors.

Data Types: double

fan_rotation_angles — Fan-beam rotation angles
numeric row vector

Fan-beam rotation angles, returned as a numeric row vector.
Data Types: double

See Also
fan2para | fanbeam | ifanbeam | iradon | phantom | radon

Introduced before R2006a

1 Functions — Alphabetical List

1-2608

phantom
Create head phantom image

Syntax
P = phantom(def,n)
P = phantom(E,n)
[P,E] = phantom(___)

Description
P = phantom(def,n) generates an image of a head phantom that can be used to test
the numerical accuracy of radon and iradon or other two-dimensional reconstruction
algorithms. P is a grayscale image that consists of one large ellipse (representing the
brain) containing several smaller ellipses (representing features in the brain). def
specifies the type of head phantom to generate, and n specifies the number of rows and
columns in the phantom image.

P = phantom(E,n) generates a user-defined phantom, where each row of the matrix E
specifies an ellipse in the image. E has six columns, with each column containing a
different parameter for the ellipses.

[P,E] = phantom(___) returns the matrix E used to generate the phantom.

Examples

Create Modified Shepp-Logan Head Phantom Image

Create the modified Shepp-Logan head phantom image and display it.

P = phantom('Modified Shepp-Logan',200);
imshow(P)

 phantom

1-2609

Input Arguments
def — Type of head phantom
'Modified Shepp-Logan' (default) | 'Shepp-Logan'

Type of head phantom to generate, specified as one of the following.

• 'Shepp-Logan' — Test image used widely by researchers in tomography
• 'Modified Shepp-Logan' — Variant of the Shepp-Logan phantom in which the

contrast is improved for better visual perception

Data Types: char | string

n — Number of rows and columns
256 (default) | positive integer

Number of rows and columns in the phantom image, specified as a positive integer.
Data Types: double

1 Functions — Alphabetical List

1-2610

E — Ellipses
e-by-6 numeric matrix

Ellipses that define the phantom, specified as an e-by-6 numeric matrix defining e
ellipses. The six columns of E are the ellipse parameters.

Column Parameter Meaning
Column 1 A Additive intensity value of the ellipse
Column 2 a Length of the horizontal semiaxis of the ellipse
Column 3 b Length of the vertical semiaxis of the ellipse
Column 4 x0 x-coordinate of the center of the ellipse
Column 5 y0 y-coordinate of the center of the ellipse
Column 6 phi Angle (in degrees) between the horizontal semiaxis of

the ellipse and the x-axis of the image

The domains for the x- and y-axes are [-1,1]. Columns 2 through 5 must be specified in
terms of this range.
Data Types: double

Output Arguments
P — Phantom image
n-by-n numeric matrix

Phantom image, returned as an n-by-n numeric matrix.
Data Types: double

Tips
For any given pixel in the output image, the pixel's value is equal to the sum of the
additive intensity values of all ellipses that the pixel is a part of. If a pixel is not part of
any ellipse, its value is 0.

 phantom

1-2611

The additive intensity value A for an ellipse can be positive or negative; if it is negative,
the ellipse will be darker than the surrounding pixels. Note that, depending on the values
of A, some pixels can have values outside the range [0, 1].

References
[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice

Hall, 1989, p. 439.

See Also
iradon | radon

Introduced before R2006a

1 Functions — Alphabetical List

1-2612

images.geotrans.PiecewiseLinearTransforma
tion2D
2-D piecewise linear geometric transformation

Description
A PiecewiseLinearTransformation2D object encapsulates a 2-D piecewise linear
geometric transformation.

Creation
You can create a PiecewiseLinearTransformation2D object using the following
methods:

• The fitgeotrans function, which estimates a geometric transformation that maps
pairs of control points between two images.

• The images.geotrans.PiecewiseLinearTransformation2D function described
here. This function creates a PiecewiseLinearTransformation2D object using
coordinates of fixed points and moving points.

Syntax
tform = images.geotrans.PiecewiseLinearTransformation2D(
movingPoints,fixedPoints)

Description
tform = images.geotrans.PiecewiseLinearTransformation2D(
movingPoints,fixedPoints) creates a PiecewiseLinearTransformation2D
object given control point coordinates in movingPoints and fixedPoints, which define
matched control points in the moving and fixed images, respectively.

 images.geotrans.PiecewiseLinearTransformation2D

1-2613

Input Arguments
movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix.
The number of control points m must be greater than or equal to n.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix.
The number of control points m must be greater than or equal to n.
Data Types: double | single

Properties
Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

Examples

Fit Set of Control Points Related by Affine Transformation

Fit a piecewise linear transformation to a set of fixed and moving control points that are
actually related by a single global affine2d transformation across the domain.

1 Functions — Alphabetical List

1-2614

Create a 2D affine transformation.

theta = 10;
tformAffine = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

tformAffine =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Arbitrarily choose 6 pairs of control points.

fixedPoints = [10 20; 10 5; 2 3; 0 5; -5 3; -10 -20];

Apply forward geometric transformation to map fixed points to obtain effect of fixed and
moving points that are related by some geometric transformation.

movingPoints = transformPointsForward(tformAffine,fixedPoints)

movingPoints =

 13.3210 17.9597
 10.7163 3.1876
 2.4906 2.6071
 0.8682 4.9240
 -4.4031 3.8227
 -13.3210 -17.9597

Estimate piecewise linear transformation that maps movingPoints to fixedPoints.

tformPiecewiseLinear = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,fixedPoints)

tformPiecewiseLinear =

 PiecewiseLinearTransformation2D with properties:

 Dimensionality: 2

Verify the fit of the PiecewiseLinearTransformation2D object at the control points.

movingPointsComputed = transformPointsInverse(tformPiecewiseLinear,fixedPoints);

errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
 movingPointsComputed(:,2)-movingPoints(:,2))

 images.geotrans.PiecewiseLinearTransformation2D

1-2615

errorInFit =

 1.0e-15 *

 0
 0
 0.4441
 0
 0
 0

See Also
Functions
cpselect | fitgeotrans | imwarp

Classes
LocalWeightedMeanTransformation2D | PolynomialTransformation2D |
affine2d | projective2d

Introduced in R2013b

1 Functions — Alphabetical List

1-2616

piqe
Perception based Image Quality Evaluator (PIQE) no-reference image quality score

Syntax
score = piqe(A)
[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(A)

Description
score = piqe(A) calculates the no-reference image quality score for image A using a
perception based image quality evaluator.

[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(A) also
returns the spatial quality masks computed from the input image.

Examples

Calculate PIQE Score for Images and Display Results

Calculate PIQE score for an image and the corresponding distorted images. Display the
results with their corresponding image.

Read an image into the workspace. Generate distorted images by adding noise and blur.
Use imnoise function to generate the noisy image and imgaussfilt function to
generate the blurred image.

A = imread('lighthouse.png');
Anoise = imnoise(A,'Gaussian',0,0.05);
Ablur = imgaussfilt(A,2);

Calculate PIQE score for the original image and the distorted images.

 piqe

1-2617

score = piqe(A);
score_noise = piqe(Anoise);
score_blur = piqe(Ablur);

Display the images as a montage with their corresponding scores as a part of the figure
title.

figure
montage({A,Anoise,Ablur},'Size',[1 3])
title({['Original Image: PIQE score = ', num2str(score),' | Noisy Image: PIQE score = ', num2str(score_noise),' ' ...
 '| Blurred Image: PIQE score = ', num2str(score_blur)]}, 'FontSize',12)

Calculate PIQE Score, Spatial Quality Masks for Image, and Display Results

Calculate PIQE score of an image distorted due to blocking artifacts and Gaussian noise.
Generate spatial quality masks that indicate the high spatially active blocks, noticeable
artifacts blocks, and noise blocks in the image. Visualize the spatial quality masks by
overlaying them on the distorted image. Display the image with and without the masks
and the PIQE score for the image.

Read a distorted image (distortion due to JPEG2K) into the workspace.

1 Functions — Alphabetical List

1-2618

Adistorted = imread('DistortedImage.png');

Calculate PIQE score and the spatial quality masks.

[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(Adistorted);

Overlay the spatial quality masks on the input image.

mask_1 = labeloverlay(Adistorted,activityMask,'Colormap','winter','Transparency',0.25);
mask_2 = labeloverlay(Adistorted,noticeableArtifactsMask,'Colormap','autumn','Transparency',0.25);
mask_3 = labeloverlay(Adistorted,noiseMask,'Colormap','hot','Transparency',0.25);

Display the original distorted image and the distorted images with overlaid spatial quality
masks as a montage.

figure
montage({Adistorted,mask_1,mask_2,mask_3},'Size',[1 4])
title('Distorted Image | Overlay activityMask | Overlay noticeableArtifactsMask | Overlay noiseMask','FontSize',12)

Display PIQE score for the distorted image.

fprintf('PIQE score for the distorted image is %0.4f.\n',score)

PIQE score for the distorted image is 65.1855.

 piqe

1-2619

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale image of size m-by-n or 2-D RGB image of size
m-by-n-by-3.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
score — PIQE score
nonnegative scalar

PIQE score for the input image A, returned as a nonnegative scalar in the range [0, 100].
The PIQE score is the no-reference image quality score and it is inversely correlated to
the perceptual quality of an image. A low score value indicates high perceptual quality
and high score value indicates low perceptual quality.
Data Types: double

activityMask — Spatial quality mask of active blocks
2-D Binary image

Spatial quality mask of active blocks, returned as a 2-D binary image of size m-by-n,
where m and n are the dimensions of the input image A. The activityMask is composed
of high spatially active blocks in the input image. The high spatially active blocks in the
input image are the regions with more spatial variability due to factors that include
compression artifacts and noise. The high spatially active blocks are assigned a value '1'
in the activityMask.
Data Types: logical

noticeableArtifactsMask — Spatial quality mask of noticeable artifacts
2-D Binary image

Spatial quality mask of noticeable artifacts, returned as a 2-D binary image of size m-by-n,
where m and n are the dimensions of the input image A. The
noticeableArtifactsMask is composed of blocks in activityMask that contain
blocking artifacts (due to compression) or sudden distortions.

1 Functions — Alphabetical List

1-2620

Data Types: logical

noiseMask — Spatial quality mask of Gaussian noise
2-D Binary image

Spatial quality mask of Gaussian noise, returned as a 2-D binary image of size m-by-n,
where m and n are the dimensions of the input image A. The noiseMask is composed of
blocks in activityMask that contain Gaussian noise.
Data Types: logical

Algorithms
PIQE calculates the no-reference quality score for an image through block-wise distortion
estimation, using these steps:

1 Compute the Mean Subtracted Contrast Normalized (MSCN) coefficient for each
pixel in the image using the algorithm proposed by N. Venkatanath and others [1].

2 Divide the input image into nonoverlapping blocks of size 16-by-16.
3 Identify high spatially active blocks based on the variance of the MSCN coefficients.
4 Generate activityMask using the identified high spatially active blocks.
5 In each block, evaluate distortion due to blocking artifacts and noise using the MSCN

coefficients.
6 Use threshold criteria to classify the blocks as distorted blocks with blocking

artifacts, distorted blocks with Gaussian noise, and undistorted blocks.
7 Generate noticeableArtifactsMask from the distorted blocks with blocking

artifacts and noiseMask from the distorted blocks with Gaussian noise.
8 Compute the PIQE score for the input image as the mean of scores in the distorted

blocks.
9 The quality scale of the image based on its PIQE score is given in this table. The

quality scale and respective score range are assigned through experimental analysis
on the dataset in LIVE Image Quality Assessment Database Release 2 [2].

 piqe

1-2621

Q
u
a
l
i
t
y
S
c
a
l
e

S
c
o
r
e
R
a
n
g
e

E
x
c
e
l
l
e
n
t

[
0
,
2
0
]

G
o
o
d

[
2
1
,
3
5
]

F
a
i
r

[
3
6
,
5
0
]

1 Functions — Alphabetical List

1-2622

P
o
o
r

[
5
1
,
8
0
]

B
a
d

[
8
1
,
1
0
0
]

References
[1] N. Venkatanath, D. Praneeth, Bh. M. Chandrasekhar, S. S. Channappayya, and S. S.

Medasani. "Blind Image Quality Evaluation Using Perception Based Features", In
Proceedings of the 21st National Conference on Communications (NCC).
Piscataway, NJ: IEEE, 2015.

[2] Sheikh, H. R., Z. Wang, L. Cormack and A.C. Bovik, "LIVE Image Quality Assessment
Database Release 2 ", https://live.ece.utexas.edu/research/quality.

See Also
Functions
brisque | immse | niqe | psnr | ssim

Topics
“Image Quality Metrics”

Introduced in R2018b

 piqe

1-2623

https://live.ece.utexas.edu/research/quality

plotChromaticity
Plot color reproduction on chromaticity diagram

Syntax
plotChromaticity(colorTable)
plotChromaticity(colorTable,Name,Value)

plotChromaticity
plotChromaticity(Name,Value)

Description
plotChromaticity(colorTable) plots on a chromaticity diagram the measured and
reference colors, colorTable, for color patch regions of interest (ROIs) in a test chart.

plotChromaticity(colorTable,Name,Value) plots measured and reference colors
with additional parameters to control aspects of the display.

plotChromaticity plots an empty chromaticity diagram.

plotChromaticity(Name,Value) plots an empty chromaticity diagram with additional
parameter 'Parent' that specifies a handle of a parent axes of the plot object.

Examples

Display Chromaticity Diagram from Color Accuracy Measurements

This example shows how to display the chromaticity diagram from measurements of color
accuracy on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

1 Functions — Alphabetical List

1-2624

http://www.imatest.com/mathworks/esfr

Create an esfrChart object. Display the chart, highlighting the 16 color patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

Measure the color in all color patch ROIs.

colorTable = measureColor(chart);

Plot the measured and reference colors in the CIE 1976 L*a*b* color space on a
chromaticity diagram. Red circles indicate the reference color and green circles indicate
the measured color of each color patch. The chromaticity diagram does not portray the
brightness of color.

figure
plotChromaticity(colorTable)

 plotChromaticity

1-2625

Input Arguments
colorTable — Color values
color table

Color values in each color patch, specified as an m-by-8 color table, where m is the
number of patches. The eight columns represent these variables:

1 Functions — Alphabetical List

1-2626

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the

range [1, 16]. The indices match the ROI numbers displayed by
displayChart.

Measured_R Mean value of red channel pixels in an ROI. Measured_R is a
scalar of the same data type as chart.Image, which can be of
type single, double, uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a
scalar of the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a
scalar of the same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a
scalar of type double.

Reference_a Reference a* value corresponding to the ROI. Reference_a is a
scalar of type double.

Reference_b Reference b* value corresponding to the ROI. Reference_b is a
scalar of type double.

Delta_E Euclidean color distance between the measured and reference
color values, as outlined in CIE 1976.

To obtain a color table, use the measureColor function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plotChromaticity(myColorTable,'displayROIIndex',false) turns off
the display of the ROI indices on the chromaticity diagram.

displayROIIndex — Display ROI index labels
true (default) | false

Display ROI index labels, specified as the comma-separated pair consisting of
'displayROIIndex' and true or false. When displayROIIndex is true, then

 plotChromaticity

1-2627

plotChromaticity overlays color patch ROI index labels on the chromaticity diagram.
The indices match the ROI numbers displayed by displayChart.
Data Types: logical

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair
consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by plotChromaticity.

See Also
Functions
displayChart | displayColorPatch | measureColor

Objects
esfrChart

Introduced in R2017b

1 Functions — Alphabetical List

1-2628

plotSFR
Plot spatial frequency response of edge

Syntax
plotSFR(sharpnessMeasurementTable)
plotSFR(sharpnessMeasurementTable,Name,Value)

Description
plotSFR(sharpnessMeasurementTable) plots the spatial frequency response (SFR) in
a sharpness measurement table or aggregate sharpness measurement table.

plotSFR(sharpnessMeasurementTable,Name,Value) plots the SFR, specifying
additional parameters to control aspects of the display.

Examples

Plot Spatial Frequency Response of Specific ROIs from an eSFR Chart

This example shows how to display the spatial frequency response (SFR) plot of a
specified subset of the 60 slanted edge ROIs on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted
edge ROIs are labeled with green numbers.

chart = esfrChart(I);
displayChart(chart,'displayGrayROIs',false,...
 'displayColorROIs',false,'displayRegistrationPoints',false)

 plotSFR

1-2629

http://www.imatest.com/mathworks/esfr

Measure the edge sharpness in all ROIs and return the measurements in
sharpnessTable.

sharpnessTable = measureSharpness(chart);

Display the SFR plot of ROIs 26 and 27 only.

plotSFR(sharpnessTable,'ROIIndex',[26 27]);

1 Functions — Alphabetical List

1-2630

 plotSFR

1-2631

Input Arguments
sharpnessMeasurementTable — SFR measurements
sharpness table | aggregate sharpness table

SFR measurements of edges, specified as a sharpness table or aggregate sharpness table
with m rows:

• When sharpnessMeasurementTable is a sharpness table, m is the number of
sampled ROIs.

1 Functions — Alphabetical List

1-2632

• When sharpnessMeasurementTable is an aggregate sharpness table, m is either 1
or 2, corresponding to the number of sampled orientations.

To obtain a sharpness table or aggregate sharpness table, use the measureSharpness
function.
Data Types: table

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plotSFR(myTable,'ROIIndex',2) displays the measured sharpness only of
ROI 2.

ROIIndex — ROI indices
scalar | vector

ROI indices to display, specified as the comma-separated pair consisting of 'ROIIndex'
and a scalar or vector of integers in the range [1, 60]. The indices match the ROI numbers
displayed by displayChart.

• When sharpnessMeasurementTable is a sharpness table, by default plotSFR
creates only one figure, showing the SFR plot from the first row of the table.

• When sharpnessMeasurementTable is an aggregate sharpness table, plotSFR
ignores the specified ROIIndex, and creates one figure for each row in the table.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

displayLegend — Display plot legend
true (default) | false

Display plot legend, specified as the comma-separated pair consisting of
'displayLegend' and true or false. When displayLegend is true, the SFR plot
shows a legend that identifies the different curves on the plot.
Data Types: logical

 plotSFR

1-2633

displayTitle — Display plot title
true (default) | false

Display plot title, specified as the comma-separated pair consisting of 'displayTitle'
and true or false. When displayTitle is true, the SFR plot shows a title that
indicates the individual ROI index or aggregate ROI orientation.
Data Types: logical

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair
consisting of 'Parent' and an axes handle. Parent specifies the parent of the image
object created by plotSFR.

See Also
Functions
displayChart | measureSharpness

Objects
esfrChart

Introduced in R2017b

1 Functions — Alphabetical List

1-2634

poly2mask
Convert region of interest (ROI) polygon to region mask

Syntax
BW = poly2mask(xi,yi,m,n)

Description
BW = poly2mask(xi,yi,m,n) computes a binary region of interest (ROI) mask, BW, of
size m-by-n, from an ROI polygon with vertices at coordinates xi and yi. poly2mask
closes the polygon automatically, if the polygon is not already closed.

The poly2mask function sets pixels that are inside the polygon to 1 and sets pixels
outside the polygon to 0. For more information about classifying pixels that are partially
enclosed by the ROI, see Algorithm on page 1-2639.

Examples

Define Polygon and Create Mask

Specify the x- and y-coordinates of the polygon.

x = [63 186 54 190 63];
y = [60 60 209 204 60];

Create the mask specifying the size of the image.

bw = poly2mask(x,y,256,256);

Display the mask, drawing a line around the polygon.

imshow(bw)
hold on

 poly2mask

1-2635

plot(x,y,'b','LineWidth',2)
hold off

Create Mask Using Random Points to Define Polygon

Define two sets of random points for the x- and y-coordinates.

x = 256*rand(1,4);
y = 256*rand(1,4);
x(end+1) = x(1);
y(end+1) = y(1);

Create the mask.

bw = poly2mask(x,y,256,256);

Display the mask and draw a line around the polygon.

1 Functions — Alphabetical List

1-2636

imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

Input Arguments
xi, yi — x- or y-coordinate of polygon vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as a numeric vector. The length of xi and
yi must match.
Data Types: double

m — Number of rows in the mask
positive integer

 poly2mask

1-2637

Number of rows in the mask, specified as a positive integer.
Data Types: double

n — Number of columns in the mask
positive integer

Number of columns in the mask, specified as a positive integer.
Data Types: double

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Tips
• To specify a polygon that includes a given rectangular set of pixels, make the edges of

the polygon lie along the outside edges of the bounding pixels, instead of the center of
the pixels.

For example, to include pixels in columns 4 through 10 and rows 4 through 10, you
might specify the polygon vertices like this:
x = [4 10 10 4 4];
y = [4 4 10 10 4];
mask = poly2mask(x,y,12,12)

mask =

 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0

1 Functions — Alphabetical List

1-2638

 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

In this example, the polygon goes through the center of the bounding pixels, with the
result that only some of the desired bounding pixels are determined to be inside the
polygon (the pixels in row 4 and column 4 and not in the polygon). To include these
elements in the polygon, use fractional values to specify the outside edge of the 4th
row (3.5) and the 10th row (10.5), and the outside edge of the 4th column (3.5) and
the outside edge of the 10th column (10.5) as vertices, as in the following example:
x = [3.5 10.5 10.5 3.5 3.5];
y = [3.5 3.5 10.5 10.5 3.5];
mask = poly2mask(x,y,12,12)

mask =

 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

Algorithms
When creating a region of interest (ROI) mask, poly2mask must determine which pixels
are included in the region. This determination can be difficult when pixels on the edge of
a region are only partially covered by the border line. The following figure illustrates a
triangular region of interest, examining in close-up one of the vertices of the ROI. The
figure shows how pixels can be partially covered by the border of a region-of-interest.

 poly2mask

1-2639

Pixels on the Edge of an ROI Are Only Partially Covered by Border

To determine which pixels are in the region, poly2mask uses the following algorithm:

1 Divide each pixel into a 5-by-5 subpixel grid.

The figure shows the pixel that contains the vertex of the ROI shown previously with
this 5-by-5 subpixel grid.

1 Functions — Alphabetical List

1-2640

2 Adjust the position of the vertices.

poly2mask moves each vertex of the polygon to the nearest intersection of the
subpixel grid. Note how poly2mask rounds x and y coordinates to the nearest
subpixel grid corner. This creates a second, modified polygon. The figure shows the
modified vertex with a red "X".

3 Draw a path between adjusted vertices.

poly2mask forms a path from each adjusted vertex to the next, following the edges
of the subpixel grid. The figure shows a portion of this modified polygon by the thick
dark lines.

 poly2mask

1-2641

4 Determine which border pixels are inside the polygon.

poly2mask uses the following rule to determine which border pixels are inside the
polygon: if the pixel's central subpixel is inside the boundaries defined by the path
between adjusted vertices, then the pixel is inside the region.

In the following figure, the central subpixels of pixels on the ROI border are shaded a
dark gray color. Pixels inside the polygon are shaded a lighter gray. Note that the
pixel containing the vertex is not part of the ROI because its center pixel is not inside
the modified polygon.

1 Functions — Alphabetical List

1-2642

See Also
roifilt2 | roipoly

Introduced before R2006a

 poly2mask

1-2643

images.geotrans.PolynomialTransformation2
D
2-D polynomial geometric transformation

Description
A PolynomialTransformation2D object encapsulates a 2-D polynomial geometric
transformation.

Creation
You can create a PolynomialTransformation2D object using the following methods:

• The fitgeotrans function, which estimates a geometric transformation that maps
pairs of control points between two images.

• The images.geotrans.PolynomialTransformation2D function described here.
This function creates a PolynomialTransformation2D object using coordinates of
fixed points and moving points, or the known polynomial coefficients for the forward
and inverse transformation.

Syntax
tform = images.geotrans.PolynomialTransformation2D(movingPoints,
fixedPoints,degree)
tform = images.geotrans.PolynomialTransformation2D(a,b)

Description
tform = images.geotrans.PolynomialTransformation2D(movingPoints,
fixedPoints,degree) creates a PolynomialTransformation2D object and sets the
Degree property. The function estimates the polynomial coefficients A and B from
matrices movingPoints and fixedPoints that define matched control points in the
moving and fixed images, respectively.

1 Functions — Alphabetical List

1-2644

tform = images.geotrans.PolynomialTransformation2D(a,b) creates a
PolynomialTransformation2D object and sets the A and B properties.

Input Arguments
movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix.
Data Types: double | single

Properties
A — Polynomial coefficients used to determine U in the inverse transformation
n-element vector

Polynomial coefficients used to determine U in the inverse transformation, specified as an
n-element vector. For polynomials of degree 2, 3, and 4, n is 6, 10, and 15, respectively.

The quadratic (degree 2) polynomial coefficient vector A is ordered as follows:
U = A(1) + A(2).*X + A(3).*Y + A(4).*X.*Y + A(5).*X.^2 + A(6).*Y.^2

The cubic (degree 3) polynomial coefficient vector adds these terms:
... + A(7).*X.^2.*Y + A(8).*X.*Y.^2 + A(9).*X.^3 + A(10).*Y.^3

The quartic (degree 4) polynomial coefficient vector adds these terms:
... + A(11).*X.^3.*Y + A(12).*X.^2.*Y.^2 + A(12).*X.*Y.^3 + A(14).*X.^3 + A(15).*Y.^4

Data Types: double | single

B — Polynomial coefficients used to determine V in the inverse transformation
n-element vector

 images.geotrans.PolynomialTransformation2D

1-2645

Polynomial coefficients used to determine V in the inverse transformation, specified as an
n-element vector. For polynomials of degree 2, 3, and 4, n is 6, 10, and 15, respectively.

The quadratic (degree 2) polynomial coefficient vector B is ordered as follows:
V = B(1) + B(2).*X + B(3).*Y + B(4).*X.*Y + B(5).*X.^2 + B(6).*Y.^2

The cubic (degree 3) polynomial coefficient vector adds these terms:
... + B(7).*X.^2.*Y + B(8).*X.*Y.^2 + B(9).*X.^3 + B(10).*Y.^3

The quartic (degree 4) polynomial coefficient vector adds these terms:
... + B(11).*X.^3.*Y + B(12).*X.^2.*Y.^2 + B(12).*X.*Y.^3 + B(14).*X.^3 + B(15).*Y.^4

Data Types: double | single

Degree — Degree of the polynomial transformation
2 | 3 | 4

Degree of the polynomial transformation, specified as the scalar values 2, 3, or 4.

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

Examples

Fit a Second Degree Polynomial Transformation to a Set of Fixed and Moving
Control Points

Fit a second degree polynomial transformation to a set of fixed and moving control points
that are actually related by an 2-D affine transformation.

Create 2-D affine transformation.

1 Functions — Alphabetical List

1-2646

theta = 10;
tformAffine = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

Arbitrarily choose six pairs of control points. A second degree polynomial requires six
pairs of control points.

 fixedPoints = [10 20; 10 5; 2 3; 0 5; -5 3; -10 -20];

Apply forward geometric transformation to map fixed points to obtain effect of fixed and
moving points that are related by some geometric transformation.

movingPoints = transformPointsForward(tformAffine,fixedPoints);

Estimate second degree PolynomialTransformation2D transformation that fits
fixedPoints and movingPoints.

tformPolynomial = images.geotrans.PolynomialTransformation2D(movingPoints,fixedPoints,2);

Verify the fit of the PolynomialTransformation2D transformation at the control
points.

movingPointsEstimated = transformPointsInverse(tformPolynomial,fixedPoints);
errorInFit = hypot(movingPointsEstimated(:,1)-movingPoints(:,1),...
 movingPointsEstimated(:,2)-movingPoints(:,2))

Definitions

U and V
U and V are the x- and y-coordinates of control points in the original coordinate system.
This is the same coordinate system as obtained by performing a forward transformation
followed by its inverse transformation.

X and Y
X and Y are the x- and y-coordinates of control points in the forward transformed
coordinate system.

 images.geotrans.PolynomialTransformation2D

1-2647

See Also
Functions
cpselect | fitgeotrans | imwarp

Objects
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
affine2d | projective2d

Introduced in R2013b

1 Functions — Alphabetical List

1-2648

projective2d
2-D projective geometric transformation

Description
A projective2d object encapsulates a 2-D projective geometric transformation.

Creation
A projective2d object encapsulates a 2-D projective geometric transformation.

You can create a projective2d object using the following methods:

• fitgeotrans — Estimates a geometric transformation that maps pairs of control
points between two images

• The projective2d function described here

Syntax
tform = projective2d
tform = projective2d(A)

Description
tform = projective2d creates an affine2d object with default property settings that
correspond to the identity transformation.

tform = projective2d(A) sets the property T with a valid projective transformation
defined by nonsingular matrix A.

 projective2d

1-2649

Properties
T — Forward 2-D projective transformation
nonsingular 3-by-3 numeric matrix

Forward 2-D projective transformation, specified as a nonsingular 3-by-3 numeric matrix.

The matrix T uses the convention:

[x y 1] = [u v 1] * T

where T has the form:

[a b c;...
 d e f;...
 g h i];

The default of T is the identity transformation.
Data Types: double | single

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified
as the value 2.

Object Functions
invert Invert geometric transformation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Apply Projective Transformation to Image

This example shows how to apply rotation and tilt to an image, using a projective2d
geometric transformation object created directly from a transformation matrix.

1 Functions — Alphabetical List

1-2650

Read a grayscale image into the workspace.

I = imread('pout.tif');

Create a geometric transformation object. This example combines rotation and tilt into a
transformation matrix, tm. Use this transformation matrix to construct a projective2d
geometric transformation object, tform.

theta = 10;
tm = [cosd(theta) -sind(theta) 0.001; ...
 sind(theta) cosd(theta) 0.01; ...
 0 0 1];
tform = projective2d(tm);

Apply the transformation using imwarp. View the transformed image.

outputImage = imwarp(I,tform);
figure
imshow(outputImage);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 projective2d

1-2651

Usage notes and limitations:

• projective2d supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not
supported.

See Also
Functions
fitgeotrans | imwarp

Objects
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
PolynomialTransformation2D | affine2d | geometricTransform2d

Topics
“Register an Aerial Photograph to a Digital Orthophoto”
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a

1 Functions — Alphabetical List

1-2652

psf2otf
Convert point-spread function to optical transfer function

Syntax
OTF = psf2otf(PSF)
OTF = psf2otf(PSF,sz)

Description
OTF = psf2otf(PSF) computes the fast Fourier transform (FFT) of the point-spread
function (PSF) array and creates the optical transfer function array, OTF, that is not
influenced by the PSF off-centering.

OTF = psf2otf(PSF,sz) specifies the size, sz, of the optical transfer function.

Examples

Convert PSF to OTF

Create a point-spread function (PSF).

PSF = fspecial('gaussian',13,1);

Convert the PSF to an Optical Transfer Function (OTF).

OTF = psf2otf(PSF,[31 31]);

Plot the PSF and the OTF.

subplot(1,2,1);
surf(PSF);
title('PSF');
axis square;
axis tight

 psf2otf

1-2653

subplot(1,2,2);
surf(abs(OTF));
title('Corresponding |OTF|');
axis square;
axis tight

Input Arguments
PSF — Point-spread function
numeric array

Point-spread function, specified as a numeric array of any dimension.

1 Functions — Alphabetical List

1-2654

Example: PSF = fspecial('gaussian',13,1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

sz — Size of optical transfer function
vector of positive integers

Size of the output optical transfer function OTF, specified as a vector of positive integers.
The size of OTF must not exceed the size of PSF in any dimension. By default, OTF is the
same size as PSF.
Data Types: double

Output Arguments
OTF — Optical transfer function
numeric array

Optical transfer function, returned as a numeric array of size sz.
Data Types: double
Complex Number Support: Yes

Tips
• To ensure that OTF is not altered because of PSF off-centering, psf2otf postpads PSF

(down or to the right) with 0s to match dimensions specified in sz. Then psf2otf
circularly shifts the values of PSF up (or to the left) until the central pixel reaches (1,1)
position.

• This function is used in image convolution and deconvolution when the operations
involve the FFT.

See Also
circshift | fftn | ifftn | otf2psf | padarray

 psf2otf

1-2655

Topics
“Create Your Own Deblurring Functions”

Introduced before R2006a

1 Functions — Alphabetical List

1-2656

psnr
Peak Signal-to-Noise Ratio (PSNR)

Syntax
peaksnr = psnr(A,ref)
peaksnr = psnr(A,ref,peakval)
[peaksnr,snr] = psnr(___)

Description
peaksnr = psnr(A,ref) calculates the peak signal-to-noise ratio for the image A, with
the image ref as the reference. A and ref must be of the same size and class.

peaksnr = psnr(A,ref,peakval) uses peakval as the peak signal value for
calculating the peak signal-to-noise ratio for image A.

[peaksnr,snr] = psnr(___) returns the simple signal-to-noise ratio, snr, in addition
to the peak signal-to-noise ratio.

Examples

Calculate PSNR for Noisy Image Given Original Image as Reference

Read image and create a copy with added noise. The original image is the reference
image.

ref = imread('pout.tif');
A = imnoise(ref,'salt & pepper', 0.02);

Calculate the PSNR.

[peaksnr, snr] = psnr(A, ref);

fprintf('\n The Peak-SNR value is %0.4f', peaksnr);

 psnr

1-2657

 The Peak-SNR value is 22.6437

fprintf('\n The SNR value is %0.4f \n', snr);

 The SNR value is 15.5524

Input Arguments
A — Image to be analyzed
N-D numeric matrix

Image to be analyzed, specified as an N-D numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image
N-D numeric matrix

Reference image, specified as an N-D numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

peakval — Peak signal level
scalar of any numeric class

Peak signal level, specified as a scalar of any numeric class. If not specified, the default
value for peakval depends on the class of A and ref. If the images are of floating point
types, peakval is 1, assuming that the data is in the range [0 1]. If the images are of
integer data types, peakval is the largest value allowed by the range of the class. For
uint8, the default value is 255. For uint16 or int16, the default is 65535.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
peaksnr — Peak signal-to-noise ratio
scalar

Peak signal-to-noise ratio in decibels, returned as a scalar of type double, except if A and
ref are of class single, in which case peaksnr is of class single.

1 Functions — Alphabetical List

1-2658

Data Types: single | double

snr — Signal-to-noise ratio
scalar

Signal-to-noise ratio in decibels, returned as a scalar of type double, except if A and ref
are of class single, in which case peaksnr is of class single.
Data Types: single | double

Algorithms
The psnr function implements the following equation to calculate the Peak Signal-to-
Noise Ratio (PSNR):

PSNR = 10log10 peakval2/MSE

where peakval is either specified by the user or taken from the range of the image
datatype (e.g. for uint8 image it is 255). MSE is the mean square error, i.e. MSE
between A and ref.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• psnr supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
immse | mean | median | ssim | sum | var

 psnr

1-2659

Topics
“Image Quality Metrics”

Introduced in R2014a

1 Functions — Alphabetical List

1-2660

qtdecomp
Quadtree decomposition

Syntax
S = qtdecomp(I)
S = qtdecomp(I,threshold)
S = qtdecomp(I,threshold,mindim)
S = qtdecomp(I,threshold,[mindim maxdim])
S = qtdecomp(I,fun)

Description
S = qtdecomp(I) performs a quadtree decomposition on the grayscale image I and
returns the quadtree structure in the sparse matrix S. By default, qtdecomp splits a block
unless all elements in the block are equal.

S = qtdecomp(I,threshold) splits a block if the maximum value of the block
elements minus the minimum value of the block elements is greater than threshold.

S = qtdecomp(I,threshold,mindim) will not produce blocks smaller than mindim,
even if the resulting blocks do not meet the threshold condition.

S = qtdecomp(I,threshold,[mindim maxdim]) will not produce blocks smaller
than mindim or larger than maxdim. Blocks larger than maxdim are split even if they
meet the threshold condition.

S = qtdecomp(I,fun) uses the function fun to determine whether to split a block.

Examples

Perform Quadtree Decomposition of Sample Matrix

Create a small sample matrix.

 qtdecomp

1-2661

I = uint8([1 1 1 1 2 3 6 6;...
 1 1 2 1 4 5 6 8;...
 1 1 1 1 7 7 7 7;...
 1 1 1 1 6 6 5 5;...
 20 22 20 22 1 2 3 4;...
 20 22 22 20 5 4 7 8;...
 20 22 20 20 9 12 40 12;...
 20 22 20 20 13 14 15 16]);

Perform the quadtree decomposition and display the results.

S = qtdecomp(I,.05);
disp(full(S));

 4 0 0 0 4 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 4 0 0 0 2 0 2 0
 0 0 0 0 0 0 0 0
 0 0 0 0 2 0 1 1
 0 0 0 0 0 0 1 1

View Block Representation of Quadtree Decomposition

Read image into the workspace.

I = imread('liftingbody.png');

Perform the quadtree decomposition and display the block representation in a figure.

S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];
 numblocks = length(find(S==dim));
 if (numblocks > 0)
 values = repmat(uint8(1),[dim dim numblocks]);
 values(2:dim,2:dim,:) = 0;
 blocks = qtsetblk(blocks,S,dim,values);
 end
end

1 Functions — Alphabetical List

1-2662

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;

imshow(I)

 qtdecomp

1-2663

figure
imshow(blocks,[])

1 Functions — Alphabetical List

1-2664

Input Arguments
I — Grayscale image
m-by-n numeric matrix

Grayscale image, specified as an m-by-n numeric matrix. If the syntax includes a function
handle, fun, then the image can be of any class supported by the function.
Data Types: single | double | int16 | uint8 | uint16 | logical

threshold — Threshold of block homogeneity
scalar in the range [0, 1]

Threshold of block homogeneity, specified as a scalar in the range [0, 1].

• If I is of class uint8, then qtdecomp multiplies the value of threshold by 255 to
determine the actual threshold to use.

• If I is of class uint8, then qtdecomp multiplies the value of threshold by 65535 to
determine the actual threshold to use.

mindim — Minimum block dimension
positive integer

Minimum block size, specified as a positive integer. mindim must be a factor of the image
size.

maxdim — Maximum block dimension
positive integer

Maximum block size, specified as a positive integer. maxdim/mindim must be a power of
2.

fun — Function handle
handle

Function handle, specified as a handle. The function must accept as input all m-by-m
blocks stacked into an m-by-m-by-k array, where k is the number of blocks. The function
must return a logical k-element vector, whose values are 1 if the corresponding block
should be split, and 0 otherwise. For example, if k(3) is 0, then the third m-by-m block
should not be split.

For more information about function handles, see “Create Function Handle” (MATLAB).

 qtdecomp

1-2665

Output Arguments
S — Quadtree structure
sparse matrix

Quadtree structure, returned as a sparse matrix. If S(k,m) is nonzero, then (k,m) is the
upper left corner of a block in the decomposition, and the size of the block is given by
S(k,m).
Data Types: double

Tips
• qtdecomp is appropriate primarily for square images whose dimensions are a power

of 2, such as 128-by-128 or 512-by-512. These images can be divided until the blocks
are as small as 1-by-1. If you use qtdecomp with an image whose dimensions are not a
power of 2, at some point the blocks cannot be divided further. For example, if an
image is 96-by-96, it can be divided into blocks of size 48-by-48, then 24-by-24, 12-
by-12, 6-by-6, and finally 3-by-3. No further division beyond 3-by-3 is possible. To
process this image, you must set mindim to 3 (or to 3 times a power of 2); if you are
using the syntax that includes a function, fun, the function must return 0 at the point
when the block cannot be divided further.

Algorithms
The qtdecomp function divides a square image into four equal-sized square blocks, and
then tests each block to see if it meets some criterion of homogeneity. If a block meets the
criterion, it is not divided any further. If it does not meet the criterion, it is subdivided
again into four blocks, and the test criterion is applied to those blocks. This process is
repeated iteratively until each block meets the criterion. The result can have blocks of
several different sizes.

See Also
qtgetblk | qtsetblk

Introduced before R2006a

1 Functions — Alphabetical List

1-2666

qtgetblk
Block values in quadtree decomposition

Syntax
[vals, r, c] = qtgetblk(I, S, dim)
[vals, idx] = qtgetblk(I, S, dim)

Description
[vals, r, c] = qtgetblk(I, S, dim) returns in vals an array containing the dim-
by-dim blocks in the quadtree decomposition of I. S is the sparse matrix returned by
qtdecomp; it contains the quadtree structure. vals is a dim-by-dim-by-k array, where k
is the number of dim-by-dim blocks in the quadtree decomposition; if there are no blocks
of the specified size, all outputs are returned as empty matrices. r and c are vectors
containing the row and column coordinates of the upper left corners of the blocks.

[vals, idx] = qtgetblk(I, S, dim) returns in idx a vector containing the linear
indices of the upper left corners of the blocks.

Class Support
I can be of class logical, uint8, uint16, int16, single, or double. S is of class
sparse.

Examples
I = [1 1 1 1 2 3 6 6
 1 1 2 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 22 20 22 1 2 3 4
 20 22 22 20 5 6 7 8

 qtgetblk

1-2667

 20 22 20 20 9 10 11 12
 22 22 20 20 13 14 15 16];

 S = qtdecomp(I,5);

[vals,r,c] = qtgetblk(I,S,4)

Tips
The ordering of the blocks in vals matches the columnwise order of the blocks in I. For
example, if vals is 4-by-4-by-2, vals(:,:,1) contains the values from the first 4-by-4
block in I, and vals(:,:,2) contains the values from the second 4-by-4 block.

See Also
qtdecomp | qtsetblk

Introduced before R2006a

1 Functions — Alphabetical List

1-2668

qtsetblk
Set block values in quadtree decomposition

Syntax
J = qtsetblk(I, S, dim, vals)

Description
J = qtsetblk(I, S, dim, vals) replaces each dim-by-dim block in the quadtree
decomposition of I with the corresponding dim-by-dim block in vals. S is the sparse
matrix returned by qtdecomp; it contains the quadtree structure. vals is a dim-by-dim-
by-k array, where k is the number of dim-by-dim blocks in the quadtree decomposition.

Class Support
I can be of class logical, uint8, uint16, int16, single, or double. S is of class
sparse.

Examples
I = [1 1 1 1 2 3 6 6
 1 1 2 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 22 20 22 1 2 3 4
 20 22 22 20 5 6 7 8
 20 22 20 20 9 10 11 12
 22 22 20 20 13 14 15 16];

S = qtdecomp(I,5);

newvals = cat(3,zeros(4),ones(4));
J = qtsetblk(I,S,4,newvals)

 qtsetblk

1-2669

Tips
The ordering of the blocks in vals must match the columnwise order of the blocks in I.
For example, if vals is 4-by-4-by-2, vals(:,:,1) contains the values used to replace the
first 4-by-4 block in I, and vals(:,:,2) contains the values for the second 4-by-4 block.

See Also
qtdecomp | qtgetblk

Introduced before R2006a

1 Functions — Alphabetical List

1-2670

radon
Radon transform

Syntax
R = radon(I)
R = radon(I,theta)
[R,xp] = radon(___)

Description
R = radon(I) returns the Radon transform R of 2-D grayscale image I for angles in the
range [0, 179] degrees. The Radon transform is the projection of the image intensity
along a radial line oriented at a specific angle.

You optionally can compute the Radon transform using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

R = radon(I,theta) returns the Radon transform for the angles specified by theta.

[R,xp] = radon(___) returns a vector xp containing the radial coordinates
corresponding to each row of the image.

Examples

Calculate Radon Transform and Display Plot

Make the axes scale visible for this image.

iptsetpref('ImshowAxesVisible','on')

Create a sample image.

I = zeros(100,100);
I(25:75, 25:75) = 1;

 radon

1-2671

Calculate the Radon transform.

theta = 0:180;
[R,xp] = radon(I,theta);

Display the transform.

imshow(R,[],'Xdata',theta,'Ydata',xp,'InitialMagnification','fit')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

Make the axes scale invisible.

iptsetpref('ImshowAxesVisible','off')

1 Functions — Alphabetical List

1-2672

Input Arguments
I — Image
2-D grayscale image

Image, specified as a 2-D grayscale image.

To calculate the Radon transform using a GPU, specify I as a gpuArray that contains a 2-
D grayscale image of data type single, double, uint8, uint16, uint32, int8, int16,
or int32.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

theta — Projection angles
0:179 (default) | numeric scalar | numeric vector | gpuArray

Projection angles (in degrees), specified as a numeric scalar or numeric vector.

If you calculate the Radon transform using a GPU, then theta can optionally be a
gpuArray containing a numeric scalar or vector.
Data Types: double

Output Arguments
R — Radon transform
numeric column vector | numeric matrix | gpuArray

Radon transform of image I, returned as one of the following.

• If theta is a scalar, then R is a numeric column vector containing the Radon transform
for theta degrees.

• If theta is a vector, then R is a matrix in which each column is the Radon transform
for one of the angles in theta.

If the Radon transform is computed using a GPU, then R is returned as a gpuArray
containing a numeric column vector or numeric matrix.

 radon

1-2673

xp — Radial coordinates
numeric vector | gpuArray

Radial coordinates corresponding to each row of R, returned as a numeric vector. The
radial coordinates are the values along the x'-axis, which is oriented at theta degrees
counterclockwise from the x-axis. The origin of both axes is the center pixel of the image,
which is defined as

floor((size(I)+1)/2)

For example, in a 20-by-30 image, the center pixel is (10,15).

If the Radon transform is computed using a GPU, then xp is returned as a gpuArray
containing a numeric vector.

Algorithms
The Radon transform of an image is the sum of the Radon transforms of each individual
pixel.

The algorithm first divides pixels in the image into four subpixels and projects each
subpixel separately, as shown in the following figure.

1 Functions — Alphabetical List

1-2674

Image

Projections

Bins

Each subpixel's contribution is proportionally split into the two nearest bins, according to
the distance between the projected location and the bin centers. If the subpixel projection
hits the center point of a bin, the bin on the axes gets the full value of the subpixel, or
one-fourth the value of the pixel. If the subpixel projection hits the border between two
bins, the subpixel value is split evenly between the bins.

References
[1] Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ, Prentice Hall,

1995, pp. 505-537.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,
Prentice Hall, 1990, pp. 42-45.

 radon

1-2675

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
fan2para | fanbeam | ifanbeam | iradon | para2fan | phantom

Introduced before R2006a

1 Functions — Alphabetical List

1-2676

randomPatchExtractionDatastore
Datastore for extracting random patches from images or pixel label images

Description
A randomPatchExtractionDatastore extracts corresponding randomly-positioned
patches from two datastores. The input datastores can be two image datastores that
contain the network inputs and desired network responses for training deep neural
networks, or ground truth images and pixel label data for training semantic segmentation
networks.

This object requires that you have Deep Learning Toolbox.

Note When you use a randomPatchExtractionDatastore as a source of training
data, the datastore extracts multiple random patches from each image for each epoch, so
that each epoch uses a slightly different data set. The actual number of training patches
at each epoch is the number of training images multiplied by PatchesPerImage. The
image patches are not stored in memory.

Creation

Syntax
patchds = randomPatchExtractionDatastore(imds1,imds2,patchSize)
patchds = randomPatchExtractionDatastore(imds1,pxds,patchSize)
patchds = randomPatchExtractionDatastore(___ ,Name,Value)

Description
patchds = randomPatchExtractionDatastore(imds1,imds2,patchSize)
creates a datastore that extracts randomly-positioned patches of size patchSize from
images in image datastore imds1 and corresponding patches from images in image
datastore imds2.

 randomPatchExtractionDatastore

1-2677

patchds = randomPatchExtractionDatastore(imds1,pxds,patchSize) creates
a datastore that extracts randomly-positioned patches of size patchSize from ground
truth images in image datastore imds1 and corresponding patches from pixel label
images in pixel label datastore pxds.

This syntax requires Computer Vision Toolbox.

patchds = randomPatchExtractionDatastore(___ ,Name,Value) uses name-
value pairs to set the PatchesPerImage, DataAugmentation, and
DispatchInBackground properties. You can specify multiple name-value pairs. Enclose
each argument or property name in quotes.

For example,
randomPatchExtractionDatastore(imds1,imds2,50,'PatchesPerImage',40)
creates a datastore that randomly generates 40 patches of size 50-by-50 pixels from each
image in image datastores imds1 and imds2.

Input Arguments
imds1 — Input image data
ImageDatastore object

Input image data containing training input to the network, specified as an
ImageDatastore object.

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If
you use a custom function for reading the images, then prefetching does not happen.

imds2 — Response image data
ImageDatastore object

Response image data representing the desired network responses, specified as an
ImageDatastore object.

pxds — Response pixel label data
pixelLabelDatastore object

Response pixel label data representing the desired network responses, specified as a
pixelLabelDatastore object.

patchSize — Patch size
positive integer | 2-element vector of positive integers

1 Functions — Alphabetical List

1-2678

Patch size, specified as one of the following.

• A positive integer that specifies the number of rows and columns of square patches.
• A 2-element vector of positive integers, of the form [r c]. The first element specifies

the number of rows in the patch, and the second element specifies the number of
columns.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Properties
PatchesPerImage — Number of random patches per image
128 (default) | positive integer

Number of random patches per image, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or
'none'. When DataAugmentation is 'none', no preprocessing is applied to input
images.

Augment data with random transformations, such as resizing, rotation, and reflection, to
help prevent the network from overfitting and memorizing the exact details of the
training data. The randomPatchExtractionDatastore applies the same random
transformation to both patches in each pair.

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, or classification,
specified as false or true. To use background dispatching, you must have Parallel
Computing Toolbox.

MiniBatchSize — Number of observations in each batch
positive integer

This property is read-only.

 randomPatchExtractionDatastore

1-2679

Number of observations that are returned in each batch. For training, prediction, and
classification, the MiniBatchSize property is set to the mini-batch size defined in
trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the randomPatchExtractionDatastore. The number
of observations is the length of one training epoch.

Object Functions
hasdata Determine if data is available to read
partitionByIndex Partition randomPatchExtractionDatastore according to indices
preview Subset of data in datastore
read Read data from randomPatchExtractionDatastore
readall Read all data in datastore
readByIndex Read data specified by index from randomPatchExtractionDatastore
reset Reset datastore to initial state
shuffle Shuffle data in randomPatchExtractionDatastore

Examples

Create Random Patch Extraction Datastore

Create an image datastore containing training images. The datastore in this example
contains JPEG color images.

imageDir = fullfile(toolboxdir('images'),'imdata');
imds1 = imageDatastore(imageDir,'FileExtensions','.jpg');

Create a second image datastore containing desired network responses. This image
datastore includes a custom read function called myreadfcn (defined at the end of the
example) that smooths images using a Gaussian blur.

imds2 = imageDatastore(imageDir,'FileExtensions','.jpg','ReadFcn',@myreadfcn);

1 Functions — Alphabetical List

1-2680

Create an imageDataAugmenter that rotates images by random angles in the range [0,
90] degrees and randomly reflects image data horizontally.

augmenter = imageDataAugmenter('RandRotation',[0 90],'RandXReflection',true)

augmenter =
 imageDataAugmenter with properties:

 FillValue: 0
 RandXReflection: 1
 RandYReflection: 0
 RandRotation: [0 90]
 RandScale: [1 1]
 RandXScale: [1 1]
 RandYScale: [1 1]
 RandXShear: [0 0]
 RandYShear: [0 0]
 RandXTranslation: [0 0]
 RandYTranslation: [0 0]

Create a randomPatchExtractionDatastore object that extracts random patches of
size [100 100] from the unprocessed training images and corresponding smoothed
response images. Specify the augmentation options by setting the DataAugmentation
property.

patchds = randomPatchExtractionDatastore(imds1,imds2,[100 100], ...
 'DataAugmentation',augmenter)

patchds =
 randomPatchExtractionDatastore with properties:

 PatchesPerImage: 128
 PatchSize: [100 100]
 DataAugmentation: [1×1 imageDataAugmenter]
 MiniBatchSize: 128
 NumObservations: 4736
 DispatchInBackground: 0

Preview a set of augmented image patches and the corresponding smoothed image
patches.

minibatch = preview(patchds);
inputs = minibatch.InputImage;

 randomPatchExtractionDatastore

1-2681

responses = minibatch.ResponseImage;
test = cat(2,inputs,responses);
montage(test','Size',[8 2])
title('Inputs (Left) and Responses (Right)')

1 Functions — Alphabetical List

1-2682

 randomPatchExtractionDatastore

1-2683

Supporting Function

This example defines the myreadfcn function that reads a file from disk then smooths the
image by appling a Gaussian blur. The function returns the smoothed image.

function J = myreadfcn(filename)
 I = imread(filename);
 J = imgaussfilt(I,2);
end

Train Semantic Segmentation Network Using Random Patch Extraction Datastore

Create an image datastore containing training images.

dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataDir,'trainingImages');
imds = imageDatastore(imageDir);

Define class names and their associated label IDs. Then, create a pixel label datastore
containing the ground truth pixel labels for the training images.

classNames = ["triangle","background"];
labelIDs = [255 0];
labelDir = fullfile(dataDir,'trainingLabels');
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create a random patch extraction datastore to extract random patches of size 32-by-32
pixels from the images and corresponding pixel labels. Set the optional
PatchesPerImage property to extract 512 random patches from each image and pixel
label pair.

patchds = randomPatchExtractionDatastore(imds,pxds,32, ...
 'PatchesPerImage',512);

Create a network for semantic segmentation.

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 reluLayer()
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)

1 Functions — Alphabetical List

1-2684

 reluLayer()
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
 convolution2dLayer(1,2)
 softmaxLayer()
 pixelClassificationLayer()
]

layers =
 10x1 Layer array with layers:

 1 '' Image Input 32x32x1 images with 'zerocenter' normalization
 2 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU
 4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 6 '' ReLU ReLU
 7 '' Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
 8 '' Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 9 '' Softmax softmax
 10 '' Pixel Classification Layer Cross-entropy loss

Set up training options. To reduce training time, set MaxEpochs to 5.

options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-3, ...
 'MaxEpochs',5, ...
 'Verbose',false);

Train the network.

net = trainNetwork(patchds,layers,options);

Tips
• The randomPatchExtractionDatastore expects that the output from the read

operation on the input datastores return arrays of the same size.
• The randomPatchExtractionDatastore always reads one image at a time from

each input datastore. It accomplishes this by setting the ReadSize property of the
input datastores to 1.

• If the input datastore is an ImageDatastore, then the values in its Labels property
are ignored by the randomPatchExtractionDatastore.

 randomPatchExtractionDatastore

1-2685

• To visualize the data in a randomPatchExtractionDatastore, you can use the
preview function, which returns a subset of data in a table. Visualize all of the
patches in the same figure by using the montage function. For example, this code
displays a preview of image patches from a randomPatchExtractionDatastore
called patchds.

minibatch = preview(patchds);
montage(minibatch.InputImage)

See Also
augmentedImageDatastore | imageDataAugmenter | imageDatastore |
pixelLabelDatastore | pixelLabelImageDatastore | trainNetwork

Topics
“JPEG Image Deblocking Using Deep Learning”
“Image Processing Operator Approximation Using Deep Learning”
“Semantic Segmentation of Multispectral Images Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Preprocess Images for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2018b

1 Functions — Alphabetical List

1-2686

partitionByIndex
Partition randomPatchExtractionDatastore according to indices

Syntax
patchds2 = partitionByIndex(patchds,ind)

Description
patchds2 = partitionByIndex(patchds,ind) partitions a subset of observations in
a random patch extraction datastore, patchds, into a new datastore, patchds2. The
desired observations are specified by indices, ind.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore
object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
patchds2 — Output datastore
randomPatchExtractionDatastore object

Output datastore, returned as a randomPatchExtractionDatastore object containing
a subset of files from patchds.

 partitionByIndex

1-2687

See Also
randomPatchExtractionDatastore | read | readByIndex | readall

Introduced in R2018b

1 Functions — Alphabetical List

1-2688

read
Read data from randomPatchExtractionDatastore

Syntax
data = read(patchds)
[data,info] = read(patchds)

Description
data = read(patchds) returns a batch of data from a random patch extraction
datastore, patchds. Subsequent calls to the read function continue reading from the
endpoint of the previous call.

[data,info] = read(patchds) also returns information about the extracted data,
including metadata, in info.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore
object. The datastore specifies a MiniBatchSize number of observations in each batch,
and a numObservations total number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows. The first variable
is InputImage, which contains input image patches. If the network responses are images

 read

1-2689

in an image datastore, then the second variable is ResponseImage. If the network
responses are pixel label images in a pixel label datastore, then the second variable is
ResponsePixelLabelImage.

For the last batch of data in the datastore patchds, if numObservations is not cleanly
divisible by MiniBatchSize, then read returns a partial batch containing all the
remaining observations in the datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
RandomPatchRectangles MiniBatchSize-by-4 numeric matrix. Each

row specifies the size and position of the patch
in the format [xywidthheight]. The elements
define the x- and y-coordinate of the top left
corner, and the width and height of the patch.

ImageIndices MiniBatchSize-by-1 numeric vector that
specifies the indices of the read images in the
input datastores.

InputImageFilename MiniBatchSize-by-1 cell array that specifies
the fully resolved path containing the path
string, name of the file, and file extension of
each input image.

ResponseImageFilename MiniBatchSize-by-1 cell array that specifies
the fully resolved path containing the path
string, name of the file, and file extension of
each response image or pixel label image.

See Also
matlab.io.datastore.read | randomPatchExtractionDatastore | readByIndex
| readall

Introduced in R2018b

1 Functions — Alphabetical List

1-2690

readByIndex
Read data specified by index from randomPatchExtractionDatastore

Syntax
data = readByIndex(patchds,ind)
[data,info] = readByIndex(patchds,ind)

Description
data = readByIndex(patchds,ind) returns a subset of observations from a random
patch extraction datastore, patchds. The desired observations are specified by indices,
ind.

[data,info] = readByIndex(patchds,ind) also returns information about the
observations, including metadata, in info.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore
object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

 readByIndex

1-2691

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
RandomPatchRectangles length(ind)-by-4 numeric matrix. Each row

specifies the size and position of the patch in
the format [xywidthheight]. The elements
define the x- and y-coordinate of the top left
corner, and the width and height of the patch.

ImageIndices length(ind)-by-1 numeric vector that
specifies the indices of the read images in the
input datastores.

InputImageFilename length(ind)-by-1 cell array that specifies the
fully resolved path containing the path string,
name of the file, and file extension of each
input image.

ResponseImageFilename length(ind)-by-1 cell array that specifies the
fully resolved path containing the path string,
name of the file, and file extension of each
response image or pixel label image.

See Also
partitionByIndex | randomPatchExtractionDatastore | read | readall

Introduced in R2018b

1 Functions — Alphabetical List

1-2692

shuffle
Shuffle data in randomPatchExtractionDatastore

Syntax
patchds2 = shuffle(patchds)

Description
patchds2 = shuffle(patchds) returns a randomPatchExtractionDatastore
object containing a random ordering of the data from random patch extraction datastore
patchds.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore
object.

Output Arguments
patchds2 — Output datastore
randomPatchExtractionDatastore object

Output datastore, returned as a randomPatchExtractionDatastore object containing
randomly ordered files from patchds.

See Also
randomPatchExtractionDatastore | read | readByIndex | readall

 shuffle

1-2693

Introduced in R2018b

1 Functions — Alphabetical List

1-2694

rangefilt
Local range of image

Syntax
J = rangefilt(I)
J = rangefilt(I,nhood)

Description
J = rangefilt(I) returns the array J, where each output pixel contains the range
value (maximum value − minimum value) of the 3-by-3 neighborhood around the
corresponding pixel in the input image I.

J = rangefilt(I,nhood) performs range filtering of the input image I where you
specify the neighborhood in nhood. nhood is a multidimensional array of zeros and ones
where the nonzero elements specify the neighborhood for the range filtering operation.

Examples

Identify Objects in 2-D Image

Read an image into the workspace.

I = imread('liftingbody.png');

Filter the image. The rangefilt function returns an array where each output pixel
contains the range value (maximum value - minimum value) of the 3-by-3 neighborhood
around the corresponding pixel in the input image.

J = rangefilt(I);

Display the original image and the filtered image side-by-side.

imshowpair(I,J,'montage')

 rangefilt

1-2695

Quantify Land Cover Changes in RGB Image

Read image into the workspace.

RGB = imread('autumn.tif');

Convert the RGB image into a L*a*b* image.

LAB = rgb2lab(RGB);

Perform the range filtering on the LAB image.

rLAB = rangefilt(LAB);

Display the images.

imshow(RGB);

1 Functions — Alphabetical List

1-2696

figure, imshow(rLAB(:,:,1),[]);

 rangefilt

1-2697

figure, imshow(rLAB(:,:,2),[]);

1 Functions — Alphabetical List

1-2698

figure, imshow(rLAB(:,:,3),[]);

 rangefilt

1-2699

Identify Vertical Edges Using Range Filtering

Read an image into the workspace, and display it.

I = imread('circuit.tif');
imshow(I);

1 Functions — Alphabetical List

1-2700

Define a neighborhood. In this example, the neighborhood returns a large value when
there is a large difference between pixel values to the left and right of an input pixel. The
filtering does not consider pixels above and blow the input pixel. Thus, this neighborhood
emphasizes vertical edges.

nhood = [1 1 1];

Perform the range filtering operation using this neighborhood. For comparison, also
perform range filtering using the default 3-by-3 neighborhood. Compare the results.

J = rangefilt(I,nhood);
K = rangefilt(I);
figure
imshowpair(J,K,'montage');
title('Range filtering using specified neighborhood (left) and default neighborhood (right)');

 rangefilt

1-2701

The result using the specified neighborhood emphasizes vertical edges, as expected. In
comparison, the default filter is not sensitive to edge directionality.

Input Arguments
I — Image to be filtered
real, nonsparse, numeric array

Image to be filtered, specified as a real, nonsparse, numeric array of any dimension.
Data Types: double | uint8 | uint16 | uint32 | logical

nhood — Neighborhood
true(3) (default) | multidimensional, logical or numeric array containing zeros and ones

Neighborhood, specified as a multidimensional, logical or numeric array containing zeros
and ones. NHOOD's size must be odd in each dimension.

1 Functions — Alphabetical List

1-2702

By default, rangefilt uses the neighborhood true(3). rangefilt determines the
center element of the neighborhood by floor((size(NHOOD) + 1)/2).

To specify neighborhoods of other shapes, such as a disk, use the strel function to
create a structuring element object of the desired shape. Then, extract the neighborhood
from the structuring element object’s neighborhood property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array, the same size and class as the input image I,
except for signed integer data types. The output class for signed data types is the
corresponding unsigned integer data type. For example, if the class of I is int8, then the
class of J is uint8.

Algorithms
rangefilt uses the morphological functions imdilate and imerode to determine the
maximum and minimum values in the specified neighborhood. Consequently, rangefilt
uses the padding behavior of these morphological functions.

See Also
Functions
entropyfilt | getnhood | imdilate | imerode | stdfilt

Objects
offsetstrel | strel

Topics
“What Is Image Filtering in the Spatial Domain?”

 rangefilt

1-2703

Introduced before R2006a

1 Functions — Alphabetical List

1-2704

reflect
Reflect structuring element

Syntax
SE2 = reflect(SE)

Description
SE2 = reflect(SE) reflects the structuring element (or structuring elements) specified
by SE. This method reflects the structuring element through its center. The effect is the
same as if you rotated the structuring element's domain 180 degrees around its center
(for a 2-D structuring element).

Examples

Reflect a Structuring Element

Create a structuring element.

se = strel([0 0 1; 0 0 0; 0 0 0])

se =
strel is a arbitrary shaped structuring element with properties:

 Neighborhood: [3x3 logical]
 Dimensionality: 2

Look at the neighborhood.

se.Neighborhood

ans = 3x3 logical array

 reflect

1-2705

 0 0 1
 0 0 0
 0 0 0

Reflect it.

se2 = reflect(se)

se2 =
strel is a arbitrary shaped structuring element with properties:

 Neighborhood: [3x3 logical]
 Dimensionality: 2

Look at the reflected neighborhood.

se2.Neighborhood

ans = 3x3 logical array

 0 0 0
 0 0 0
 1 0 0

Reflect Offset Structuring Element

Create offset strel structuring element.

se = offsetstrel('ball', 5, 6.5)

se =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Reflect the structuring element.

se2 = se.reflect()

1 Functions — Alphabetical List

1-2706

se2 =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Input Arguments
SE — Structuring elements
strel or offsetstrel object or array of objects

Structuring element, specified as a strel or offsetstrel object or array of objects. If
SE is an array of structuring element objects, then reflect reflects each element of SE.

Output Arguments
SE2 — Reflected structuring elements
strel or offsetstrel object or array of objects

Reflected structuring elements, returned as a strel or offsetstrel object or array of
objects. SE2 has the same size as SE.

See Also
translate

Introduced before R2006a

 reflect

1-2707

regionfill
Fill in specified regions in image using inward interpolation

Syntax
J = regionfill(I,mask)
J = regionfill(I,x,y)

Description
J = regionfill(I,mask) fills the regions in image I specified by mask. Non-zero
pixels in mask designate the pixels of image I to fill. You can use regionfill to remove
objects in an image or to replace invalid pixel values using their neighbors.

J = regionfill(I,x,y) fills the region in image I corresponding to the polygon with
vertices specified by x and y.

Examples

Fill Region in Grayscale Image

Read grayscale image into the workspace.

I = imread('eight.tif');

Specify a polygon that completely surrounds one of the coins in the image. This example
uses the x-coordinates and y-coordinates (columns and rows) of the polygon vertices to
specify the region.

x = [222 272 300 270 221 194];
y = [21 21 75 121 121 75];

Fill the polygon, using the regionfill function.

J = regionfill(I,x,y);

1 Functions — Alphabetical List

1-2708

Display the original image and the filled image side-by-side.

figure
subplot(1,2,1)
imshow(I)
title('Original image')
subplot(1,2,2)
imshow(J)
title('Image with one less coin')

 regionfill

1-2709

Fill Regions Using Mask Image

Read grayscale image into the workspace.

I = imread('eight.tif');

Create a mask image that covers all the coins.

mask = I < 200;

Fill holes in the mask image.

mask = imfill(mask,'holes');

Remove noise in the mask image.

mask = imerode(mask,strel('disk',10));
mask = imdilate(mask,strel('disk',20));

Fill the regions in the input image using the mask image.

J = regionfill(I,mask);

Display the original image next to the mask image and the filled image.

figure
subplot(1,3,1)
imshow(I)
title('Original image')
subplot(1,3,2)
imshow(mask)
title('Mask of pixels to fill')
subplot(1,3,3)
imshow(J)
title('Resulting image')

1 Functions — Alphabetical List

1-2710

Input Arguments
I — Input grayscale image
2-D numeric array, nonsparse and real

Input grayscale image, specified as a 2-D numeric array, nonsparse and real. I must be
greater than or equal to a 3-by-3 array.
Example: I = imread('eight.tif');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 regionfill

1-2711

mask — Mask binary image
nonsparse logical array

Mask binary image, specified as a nonsparse logical array the same size as I.
Data Types: logical

x — X-coordinates of polygon vertices
numeric vector

X-coordinates of polygon vertices, specified as a numeric vector of class double. Must be
the same length as y.
Example: x = [222 272 300 270 221 194];
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

y — Y-coordinates of polygon vertices
numeric vector

Y-coordinates of polygon vertices, specified as a numeric vector of class double. Must be
the same length as x.
Example: y = [21 21 75 121 121 75];
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
J — Filled grayscale image
2-D numeric array, nonsparse and real

Filled grayscale image, returned as a 2-D numeric array, nonsparse, and real. J has the
same size and class as I.

Tips
• regionfill does not support the interactive syntax that roifill supports to specify

a region of interest (ROI). To define an ROI interactively, use roipoly with
regionfill.

1 Functions — Alphabetical List

1-2712

Algorithms
regionfill smoothly interpolates inward from the pixel values on the outer boundary of
the regions. regionfill computes the discrete Laplacian over the regions and solves
the Dirichlet boundary value problem.

See Also
imfill | impoly | inpaintCoherent | poly2mask | roifilt2 | roipoly

Introduced in R2015a

 regionfill

1-2713

regionprops
Measure properties of image regions

Syntax
stats = regionprops(BW,properties)
stats = regionprops(CC,properties)
stats = regionprops(L,properties)
stats = regionprops(___ ,I,properties)
stats = regionprops(output, ___)

Description
stats = regionprops(BW,properties) returns measurements for the set of
properties specified by properties for each 8-connected component (object) in the
binary image, BW. stats is struct array containing a struct for each object in the image.
You can use regionprops on contiguous regions and discontiguous regions (see
“Algorithms” on page 1-2735).

Note To return measurements of a 3-D volumetric image, consider using regionprops3.
While regionprops can accept 3-D images, regionprops3 calculates more statistics
for 3-D images than regionprops.

For all syntaxes, if you do not specify the properties argument, then regionprops
returns the 'Area', 'Centroid', and 'BoundingBox' measurements.

You optionally can measure properties of image regions using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”. The
'ConvexArea', 'ConvexHull', 'ConvexImage', 'Circularity', 'EulerNumber',
'FilledArea', 'FilledImage', 'MaxFeretProperties', 'MinFeretProperties'
and 'Solidity' properties are not supported on a GPU.

stats = regionprops(CC,properties) measures a set of properties for each
connected component (object) in CC, which is a structure returned by bwconncomp.

1 Functions — Alphabetical List

1-2714

This syntax is not supported on a GPU.

stats = regionprops(L,properties) measures a set of properties for each labeled
region in label matrix L.

stats = regionprops(___ ,I,properties) returns measurements for the set of
properties specified by properties for each labeled region in the image I. The first
input to regionprops (BW, CC, or L) identifies the regions in I.

stats = regionprops(output, ___) returns measurements for a set of properties,
where output specifies the type of return value. regionprops can return measurements
in a struct array or a table.

The 'table' output value is not supported on a GPU.

Examples

Calculate Centroids and Superimpose Locations on Image

Read a binary image into workspace.

BW = imread('text.png');

Calculate centroids for connected components in the image using regionprops. The
regionprops function returns the centroids in a structure array.

s = regionprops(BW,'centroid');

Store the x- and y-coordinates of the centroids into a two-column matrix.

centroids = cat(1,s.Centroid);

Display the binary image with the centroid locations superimposed.

imshow(BW)
hold on
plot(centroids(:,1),centroids(:,2),'b*')
hold off

 regionprops

1-2715

Calculate Centroids and Superimpose Locations on Image on GPU

Read binary image into a gpuArray.

BW = gpuArray(imread('text.png'));

Calculate the centroids of objects in the image.

s = regionprops(BW,'centroid');

Plot the centroids on the image.

centroids = cat(1, s.Centroid);
imshow(BW)
hold on

1 Functions — Alphabetical List

1-2716

plot(centroids(:,1), centroids(:,2), 'b*')
hold off

Estimate Center and Radii of Circular Objects and Plot Circles

Estimate the center and radii of circular objects in an image and use this information to
plot circles on the image. In this example, regionprops returns the measured region
properties in a table.

Read an image into workspace.

a = imread('circlesBrightDark.png');

Turn the input image into a binary image.

bw = a < 100;
imshow(bw)
title('Image with Circles')

 regionprops

1-2717

Calculate properties of regions in the image and return the data in a table.

stats = regionprops('table',bw,'Centroid',...
 'MajorAxisLength','MinorAxisLength')

1 Functions — Alphabetical List

1-2718

stats=4×3 table
 Centroid MajorAxisLength MinorAxisLength
 ________________ _______________ _______________

 256.5 256.5 834.46 834.46
 300 120 81.759 81.759
 330.47 369.83 111.78 110.36
 450 240 101.72 101.72

Get centers and radii of the circles.

centers = stats.Centroid;
diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);
radii = diameters/2;

Plot the circles.

hold on
viscircles(centers,radii);
hold off

 regionprops

1-2719

1 Functions — Alphabetical List

1-2720

Input Arguments
BW — Binary image
logical array of any dimension | gpuArray

Binary image, specified as a logical array of any dimension.

To measure properties of image regions using a GPU, specify BW as a gpuArray that
contains a 2-D logical matrix.
Data Types: logical

CC — Connected components
structure

Connected components, specified as a structure returned by bwconncomp.
Data Types: struct

L — Label matrix
numeric array | gpuArray

Label matrix, specified as a numeric array of any dimension. regionprops treats
negative-valued pixels as background and rounds down input pixels that are not integers.
Positive integer elements of L correspond to different regions. For example, the set of
elements of L equal to 1 corresponds to region 1; the set of elements of L equal to 2
corresponds to region 2; and so on.

To measure properties of image regions using a GPU, specify L as a gpuArray that
contains a 2-D label matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

properties — Type of measurement
comma-separated list of string scalars or character vectors | cell array of string scalars or
character vectors | 'all' | 'basic'

Type of measurement, specified as a comma-separated list of string scalars or character
vectors, a cell array of string scalars or character vectors, or as 'all' or 'basic'.
Property names are case-insensitive and can be abbreviated. When used with code
generation, regionprops does not support cell arrays of string scalars or character
vectors.

 regionprops

1-2721

• If you specify 'all', regionprops computes all the shape measurements and, for
grayscale images, the pixel value measurements as well.

• If you specify 'basic', or do not specify the properties argument, regionprops
computes only the 'Area', 'Centroid', and 'BoundingBox' measurements.

The following tables list all the properties that provide shape measurements. The
properties listed in the Pixel Value Measurements table are valid only when you specify a
grayscale image.

1 Functions — Alphabetical List

1-2722

Shape Measurements

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Area' Actual number of pixels in the region, returned as a
scalar. (This value might differ slightly from the value
returned by bwarea, which weights different patterns
of pixels differently.)

To find the equivalent to the area of a 3-D volume, use
the 'Volume' property of regionprops3.

Yes Yes Yes

'Boundin
gBox'

Smallest rectangle containing the region, returned as
a 1-by-Q*2 vector, where Q is the number of image
dimensions. For example, in the vector [ul_corner
width], ul_corner specifies the upper-left corner
of the bounding box in the form [x y z ...].
width specifies the width of the bounding box along
each dimension in the form [x_width
y_width ...]. regionprops uses ndims to get the
dimensions of label matrix or binary image,
ndims(L), and numel to get the dimensions of
connected components, numel(CC.ImageSize).

Yes Yes Yes

 regionprops

1-2723

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Centroi
d'

Center of mass of the region, returned as a 1-by-Q
vector. The first element of Centroid is the
horizontal coordinate (or x-coordinate) of the center
of mass. The second element is the vertical
coordinate (or y-coordinate). All other elements of
Centroid are in order of dimension. This figure
illustrates the centroid and bounding box for a
discontiguous region. The region consists of the white
pixels; the green box is the bounding box, and the red
dot is the centroid.

Yes Yes Yes

'ConvexA
rea'

Number of pixels in 'ConvexImage', returned as a
scalar.

2-D
only

No No

'ConvexH
ull'

Smallest convex polygon that can contain the region,
returned as a p-by-2 matrix. Each row of the matrix
contains the x- and y-coordinates of one vertex of the
polygon.

2-D
only

No No

'ConvexI
mage'

Image that specifies the convex hull, with all pixels
within the hull filled in (set to on), returned as a
binary image (logical). The image is the size of the
bounding box of the region. (For pixels that the
boundary of the hull passes through, regionprops
uses the same logic as roipoly to determine
whether the pixel is inside or outside the hull.)

2-D
only

No No

1 Functions — Alphabetical List

1-2724

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Circula
rity'

Circularity that specifies the roundness of objects,
returned as a struct with field Circularity. The
struct contains the circularity value for each object in
the input image. The circularity value is computed as
(4*Area*pi)/(Perimeter2). For a perfect circle,
the circularity value is 1. The input must be a label
matrix or binary image with contiguous regions. If the
image contains discontiguous regions, regionprops
returns unexpected results. Circularity is not
recommended for very small objects such as a
3*3 square. For such cases the results might
exceed the circularity value for a perfect circle
which is 1.

2-D
only

No Yes

'Eccentr
icity'

Eccentricity of the ellipse that has the same second-
moments as the region, returned as a scalar. The
eccentricity is the ratio of the distance between the
foci of the ellipse and its major axis length. The value
is between 0 and 1. (0 and 1 are degenerate cases. An
ellipse whose eccentricity is 0 is actually a circle,
while an ellipse whose eccentricity is 1 is a line
segment.)

2-D
only

Yes Yes

'EquivDi
ameter'

Diameter of a circle with the same area as the region,
returned as a scalar. Computed as sqrt(4*Area/
pi).

2-D
only

Yes Yes

'EulerNu
mber'

Number of objects in the region minus the number of
holes in those objects, returned as a scalar. This
property is supported only for 2-D label matrices.
regionprops uses 8-connectivity to compute the
Euler number measurement. To learn more about
connectivity, see “Pixel Connectivity”.

2-D
only

No Yes

'Extent' Ratio of pixels in the region to pixels in the total
bounding box, returned as a scalar. Computed as the
Area divided by the area of the bounding box.

2-D
only

Yes Yes

 regionprops

1-2725

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Extrema
'

Extrema points in the region, returned as an 8-by-2
matrix. Each row of the matrix contains the x- and y-
coordinates of one of the points. The format of the
vector is [top-left top-right right-top
right-bottom bottom-right bottom-left
left-bottom left-top]. This figure illustrates the
extrema of two different regions. In the region on the
left, each extrema point is distinct. In the region on
the right, certain extrema points (e.g., top-left and
left-top) are identical.

2-D
only

Yes Yes

'FilledA
rea'

Number of on pixels in FilledImage, returned as a
scalar.

Yes No Yes

1 Functions — Alphabetical List

1-2726

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'FilledI
mage'

Image the same size as the bounding box of the
region, returned as a binary (logical) array. The on
pixels correspond to the region, with all holes filled
in, as shown in this figure.

Yes No Yes

'Image' Image the same size as the bounding box of the
region, returned as a binary (logical) array. The on
pixels correspond to the region, and all other pixels
are off.

Yes Yes Yes

 regionprops

1-2727

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'MaxFere
tPropert
ies'

Feret properties that include maximum Feret
diameter, its relative angle, and coordinate values,
returned as a struct with fields:

Field Description
MaxFeretDiameter Maximum Feret diameter

measured as the
maximum distance
between any two

boundary points on the
antipodal vertices of

convex hull that enclose
the object.

MaxFeretAngle Angle of the maximum
Feret diameter with

respect to horizontal axis
of the image.

MaxFeretCoordinates Endpoint coordinates of
the maximum Feret

diameter.

The input can be a binary image, connected
component, or a label matrix.

2-D
only

No No

1 Functions — Alphabetical List

1-2728

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'MinFere
tPropert
ies'

Feret properties that include minimum Feret
diameter, its relative angle, and coordinate values,
returned as a struct with fields:

Field Description
MinFeretDiameter Minimum Feret diameter

measured as the minimum
distance between any two

boundary points on the
antipodal vertices of convex
hull that enclose the object.

MinFeretAngle Angle of the minimum Feret
diameter with respect to

horizontal axis of the image.
MinFeretCoordina

tes
Endpoint coordinates of the
minimum Feret diameter.

The input can be a binary image, a connected
component, or a label matrix.

2-D
only

No No

'MajorAx
isLength
'

Length (in pixels) of the major axis of the ellipse that
has the same normalized second central moments as
the region, returned as a scalar.

2-D
only

Yes Yes

'MinorAx
isLength
'

Length (in pixels) of the minor axis of the ellipse that
has the same normalized second central moments as
the region, returned as a scalar.

2-D
only

Yes Yes

 regionprops

1-2729

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Orienta
tion'

Angle between the x-axis and the major axis of the
ellipse that has the same second-moments as the
region, returned as a scalar. The value is in degrees,
ranging from -90 degrees to 90 degrees. This figure
illustrates the axes and orientation of the ellipse. The
left side of the figure shows an image region and its
corresponding ellipse. The right side shows the same
ellipse with the solid blue lines representing the axes.
The red dots are the foci. The orientation is the angle
between the horizontal dotted line and the major axis.

2-D
only

Yes Yes

1 Functions — Alphabetical List

1-2730

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Perimet
er'

Distance around the boundary of the region returned
as a scalar. regionprops computes the perimeter by
calculating the distance between each adjoining pair
of pixels around the border of the region. If the image
contains discontiguous regions, regionprops
returns unexpected results. This figure illustrates the
pixels included in the perimeter calculation for this
object.

2-D
only

Yes Yes

'PixelId
xList'

Linear indices of the pixels in the region, returned as
a p-element vector.

Yes Yes Yes

'PixelLi
st'

Locations of pixels in the region, returned as a p-by-Q
matrix. Each row of the matrix has the form [x y
z ...] and specifies the coordinates of one pixel in
the region.

Yes Yes Yes

'Solidit
y'

Proportion of the pixels in the convex hull that are
also in the region, returned as a scalar. Computed as
Area/ConvexArea.

2-D
only

No No

 regionprops

1-2731

Property
Name

Description N-D
Supp
ort

GPU
Supp
ort

Code
Gener
ation

'Subarra
yIdx'

Elements of L inside the object bounding box,
returned as a cell array that contains indices such
that L(idx{:}) extracts the elements.

Yes Yes No

The pixel value measurement properties in the following table are valid only when you
specify a grayscale image, I.

Pixel Value Measurements

Property
Name

Description N-D
Supp
ort

GPU
Sup
port

Code
Gener
ation

'MaxInten
sity'

Value of the pixel with the greatest intensity in the
region, returned as a scalar.

Yes Yes Yes

'MeanInte
nsity'

Mean of all the intensity values in the region, returned
as a scalar.

Yes Yes Yes

'MinInten
sity'

Value of the pixel with the lowest intensity in the
region, returned as a scalar.

Yes Yes Yes

'PixelVal
ues'

Number of pixels in the region, returned as a p-by-1
vector, where p is the number of pixels in the region.
Each element in the vector contains the value of a
pixel in the region.

Yes Yes Yes

'Weighted
Centroid'

Center of the region based on location and intensity
value, returned as a p-by-Q vector of coordinates. The
first element of WeightedCentroid is the horizontal
coordinate (or x-coordinate) of the weighted centroid.
The second element is the vertical coordinate (or y-
coordinate). All other elements of
WeightedCentroid are in order of dimension.

Yes Yes Yes

Data Types: char | string | cell

I — Image to be measured
grayscale image

1 Functions — Alphabetical List

1-2732

Image to be measured, specified as a grayscale image. The size of the image must match
the size of the binary image BW, connected component structure CC, or label matrix L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32

output — Return type
'struct' (default) | 'table'

Return type, specified as either of the following values.

Value Description
'struct' Returns an array of structures with length equal to the number of

objects in BW, CC.NumObjects, or max(L(:)). The fields of the
structure array denote different properties for each region, as
specified by properties.

'table' Returns a MATLAB table with height (number of rows) equal to the
number of objects in BW, CC.NumObjects, or max(L(:)). The
variables (columns) denote different properties for each region, as
specified by properties. To learn more about MATLAB tables, see
table.

Not supported on a GPU.

Data Types: char | string

Output Arguments
stats — Measurement values
struct array (default) | table

Measurement values, returned as an array of structs or a table. The number of structs in
the array, or the number of rows in the table, corresponds to the number of objects in BW,
CC.NumObjects, or max(L(:)). The fields of each struct, or the variables in each row,
denote the properties calculated for each region, as specified by properties.

When run on a GPU, regionprops can only return struct arrays.

 regionprops

1-2733

Tips
• The function ismember is useful with regionprops, bwconncomp, and

labelmatrix for creating a binary image containing only objects or regions that
meet certain criteria. For example, these commands create a binary image containing
only the regions whose area is greater than 80 and whose eccentricity is less than 0.8.

cc = bwconncomp(BW);
stats = regionprops(cc, 'Area','Eccentricity');
idx = find([stats.Area] > 80 & [stats.Eccentricity] < 0.8);
BW2 = ismember(labelmatrix(cc), idx);

• The comma-separated list syntax for structure arrays is useful when you work with the
output of regionprops. For a field that contains a scalar, you can use this syntax to
create a vector containing the value of this field for each region in the image. For
instance, if stats is a structure array with field Area, then the following expression:

stats(1).Area, stats(2).Area, ..., stats(end).Area

is equivalent to:

stats.Area

Therefore, you can use these calls to create a vector containing the area of each
region in the image. allArea is a vector of the same length as the structure array
stats.

stats = regionprops(L, 'Area');
allArea = [stats.Area];

• The functions bwlabel, bwlabeln, and bwconncomp all compute connected
components for binary images. bwconncomp replaces the use of bwlabel and
bwlabeln. It uses less memory and is sometimes faster than the other functions.

Function Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Label matrix with

double-precision
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

1 Functions — Alphabetical List

1-2734

The output of bwlabel and bwlabeln is a double-precision label matrix. To compute
a label matrix using a more memory-efficient data type, use the labelmatrix
function on the output of bwconncomp:

CC = bwconncomp(BW);
L = labelmatrix(CC);

If you are measuring components in a binary image with default connectivity, it is no
longer necessary to call bwlabel or bwlabeln first. You can pass the binary image
directly to regionprops, which then uses the memory-efficient bwconncomp function
to compute the connected components automatically. To specify nondefault
connectivity, call bwconncomp and pass the result to regionprops.

CC = bwconncomp(BW, CONN);
S = regionprops(CC);

• Most of the measurements take little time to compute. However, the following
measurements can take longer, depending on the number of regions in L:

• 'ConvexHull'
• 'ConvexImage'
• 'ConvexArea'
• 'FilledImage'

• Computing certain groups of measurements takes about the same amount of time as
computing just one of them. regionprops takes advantage of intermediate
computations useful to each computation. Therefore, it is fastest to compute all the
desired measurements in a single call to regionprops.

Algorithms
Contiguous regions are also called objects, connected components, or blobs. A label
matrix containing contiguous regions might look like this:

1 1 0 2 2 0 3 3
1 1 0 2 2 0 3 3

Elements of L equal to 1 belong to the first contiguous region or connected component;
elements of L equal to 2 belong to the second connected component; and so on.

Discontiguous regions are regions that might contain multiple connected components. A
label matrix containing discontiguous regions might look like this:

 regionprops

1-2735

1 1 0 1 1 0 2 2
1 1 0 1 1 0 2 2

Elements of L equal to 1 belong to the first region, which is discontiguous and contains
two connected components. Elements of L equal to 2 belong to the second region, which
is a single connected component.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• regionprops supports the generation of C code (requires MATLAB Coder). Note that
if you choose the generic MATLAB Host Computer target platform, regionprops
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• Supports only 2-D input images or label matrices.
• Specifying the output type 'table' is not supported.
• Passing a cell array of properties is not supported. Use a comma-separated list

instead.
• All properties are supported except 'ConvexArea', 'ConvexHull',

'ConvexImage', 'MaxFeretProperties', 'MinFeretProperties',
'Solidity', and 'SubarrayIdx'.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-2736

• gpuArray input must be a 2-D logical matrix or a 2-D label matrix.
• The connected component structure (CC) input is not supported.
• The following properties are not supported: 'ConvexArea', 'ConvexHull',

'ConvexImage', 'Circularity','EulerNumber', 'FilledArea',
'FilledImage', 'MaxFeretProperties', 'MinFeretProperties' and
'Solidity'.

• 'struct' is the only return type supported.

For more information, see “Image Processing on a GPU”.

See Also
bwconncomp | bwferet | bwlabel | bwlabeln | bwpropfilt | ismember |
labelmatrix | regionprops3 | watershed

Introduced before R2006a

 regionprops

1-2737

regionprops3
Measure properties of 3-D volumetric image regions

Syntax
stats = regionprops3(BW,properties)
stats = regionprops3(CC,properties)
stats = regionprops3(L,properties)
stats = regionprops3(___ ,V,properties)

Description
stats = regionprops3(BW,properties) measures a set of properties for each
connected component (object) in the 3-D volumetric binary image BW. The output stats
is a table with height (number of rows) equal to the number of objects in BW. The
variables (columns) of the table denote different properties for each region, as specified
by properties.

For all syntaxes, if you do not specify the properties argument, regionprops3 returns
the 'Volume', 'Centroid', and 'BoundingBox' measurements.

stats = regionprops3(CC,properties) measures a set of properties for each
connected component (object) in CC, which is a structure returned by bwconncomp.

stats = regionprops3(L,properties) measures a set of properties for each
labeled region in the 3-D label matrix L.

stats = regionprops3(___ ,V,properties) measures a set of properties for each
labeled region in the 3-D volumetric grayscale image V. The first input (BW, CC, or L)
identifies the regions in V.

Examples

1 Functions — Alphabetical List

1-2738

Estimate Centers and Radii of Objects in 3-D Volumetric Image

Create a binary image with two spheres.

[x,y,z] = meshgrid(1:50,1:50,1:50);
bw1 = sqrt((x-10).^2 + (y-15).^2 + (z-35).^2) < 5;
bw2 = sqrt((x-20).^2 + (y-30).^2 + (z-15).^2) < 10;
bw = bw1 | bw2;

Get the centers and radii of the two spheres.

s = regionprops3(bw,"Centroid","PrincipalAxisLength");
centers = s.Centroid

centers = 2×3

 20 30 15
 10 15 35

diameters = mean(s.PrincipalAxisLength,2)

diameters = 2×1

 17.8564
 8.7869

radii = diameters/2

radii = 2×1

 8.9282
 4.3935

Get All Statistics for Cube Within a Cube

Make a 9-by-9 cube of 0s that contains a 3-by-3 cube of 1s at its center.

innercube = ones(3,3,3);
cube_in_cube = padarray(innercube,[3 3],0,'both');

 regionprops3

1-2739

Get all statistics on the cube within the cube.

stats = regionprops3(cube_in_cube,'all')

stats=1×18 table
 Volume Centroid BoundingBox SubarrayIdx Image EquivDiameter Extent VoxelIdxList VoxelList PrincipalAxisLength Orientation EigenVectors EigenValues ConvexHull ConvexImage ConvexVolume Solidity SurfaceArea
 ______ ___________ ____________ __ _______________ _____________ ______ _____________ _____________ __________________________ ___________ ____________ ____________ _____________ _______________ ____________ ________ ___________

 27 5 5 2 [1x6 double] [1x3 double] [1x3 double] [1x3 double] [3x3x3 logical] 3.7221 1 [27x1 double] [27x3 double] 3.4641 3.4641 3.4641 0 0 0 [3x3 double] [3x1 double] [24x3 double] [3x3x3 logical] 27 1 41.07

Input Arguments
BW — Volumetric binary image
3-D logical array

Volumetric binary image, specified as a 3-D logical array.
Data Types: logical

CC — Connected components
structure

Connected components, specified as a structure returned by bwconncomp. The CC
structure must represent a 3-D image, that is, CC.ImageSize must be a 1-by-3 vector.
The CC structure must also have been created using a 3-D connectivity value, such as 6,
18, or 26.
Data Types: struct

L — Label matrix
3-D numeric array

Label matrix, specified as a 3-D numeric array. regionprops3 treats negative-valued
pixels as background and rounds down input pixels that are not integers. Positive integer
elements of L correspond to different regions. For example, the set of elements of L equal
to 1 corresponds to region 1; the set of elements of L equal to 2 corresponds to region 2;
and so on.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Functions — Alphabetical List

1-2740

properties — Type of measurement
'basic' (default) | comma-separated list of strings or character vectors | cell array of
strings or character vectors | 'all'

Type of measurement, specified as a comma-separated list of strings or character vectors,
a cell array of strings or character vectors, 'all' or 'basic'. Property names are case-
insensitive and can be abbreviated.

• If you specify 'all', regionprops3 computes all the shape measurements and, if
you specified a grayscale image, all the pixel value measurements.

• If you specify 'basic' or do not specify the properties argument, then
regionprops3 computes only the 'Volume', 'Centroid', and 'BoundingBox'
measurements.

The following table lists all the properties that provide shape measurements. The Voxel
Value Measurements table lists additional properties that are valid only when you specify
a grayscale image.

 regionprops3

1-2741

Shape Measurements

Property
Name

Description

'BoundingBo
x'

Smallest cuboid containing the region, returned as a 1-by-6 vector of the
form [ulf_x ulf_y ulf_z width_x width_y width_z]. ulf_x,
ulf_y, and ulf_z specify the upper-left front corner of the cuboid.
width_x, width_y, and width_z specify the width of the cuboid along
each dimension.

'Centroid' Center of mass of the region, returned as a 1-by-3 vector of the form
[centroid_x centroid_y and centroid_z]. The first element,
centroid_x, is the horizontal coordinate (or x-coordinate) of the center
of mass. The second element, centroid_y, is the vertical coordinate (or
y-coordinate). The third element, centroid_z, is the planar coordinate
(or z-coordinate).

'ConvexHull
'

Smallest convex polygon that can contain the region, returned as a p-
by-3 matrix. Each row of the matrix contains the x-, y-, and z-coordinates
of one vertex of the polygon.

'ConvexImag
e'

Image of the convex hull, returned as a volumetric binary image
(logical) with all voxels within the hull filled in (set to on). The image
is the size of the bounding box of the region.

'ConvexVolu
me'

Number of voxels in 'ConvexImage', returned as a scalar.

'EigenValue
s'

Eigenvalues of the voxels representing a region, returned as a 3-by-1
vector. regionprops3 uses the eigenvalues to calculate the principal
axes lengths.

'EigenVecto
rs'

Eigenvectors of the voxels representing a region, returned as a 3-by-3
vector. regionprops3 uses the eigenvectors to calculate the orientation
of the ellipsoid that has the same normalized second central moments as
the region.

'EquivDiame
ter'

Diameter of a sphere with the same volume as the region, returned as a
scalar. Computed as (6*Volume/pi)^(1/3).

'Extent' Ratio of voxels in the region to voxels in the total bounding box,
returned as a scalar. Computed as the value of Volume divided by the
volume of the bounding box. [Volume/(bounding box width *
bounding box height * bounding box depth)]

1 Functions — Alphabetical List

1-2742

Property
Name

Description

'Image' Bounding box of the region, returned as a volumetric binary image
(logical) that is the same size as the bounding box of the region. The
on voxels correspond to the region, and all other voxels are off.

'Orientatio
n'

Euler angles, returned as a 1-by-3 vector. The angles are based on the
right-hand rule. regionprops3 interprets the angles by looking at the
origin along the x-, y-, and z-axis representing roll, pitch, and yaw
respectively. A positive angle represents a rotation in the
counterclockwise direction. Rotation operations are not commutative so
they must be applied in the correct order to have the intended effect.
For more information, see “References” on page 1-2745.

'PrincipalA
xisLength'

Length (in voxels) of the major axes of the ellipsoid that have the same
normalized second central moments as the region, returned as 1-by-3
vector. regionprops3 sorts the values from highest to lowest.

'Solidity' Proportion of the voxels in the convex hull that are also in the region,
returned as a scalar. Computed as Volume/ConvexVolume.

'SubarrayId
x'

Indices used to extract elements inside the object bounding box,
returned as a cell array such that L(idx{:}) extracts the elements of L
inside the object bounding box.

'SurfaceAre
a'

Distance around the boundary of the region, returned as a scalar. For
more information, see “References” on page 1-2745.

'Volume' Count of the actual number of 'on' voxels in the region, returned as a
scalar. Volume represents the metric or measure of the number of voxels
in the regions within the volumetric binary image, BW.

'VoxelIdxLi
st'

Linear indices of the voxels in the region, returned as a p-element
vector.

'VoxelList' Locations of voxels in the region, returned as a p-by-3 matrix. Each row
of the matrix has the form [x y z] and specifies the coordinates of one
voxel in the region.

The voxel value measurement properties in the following table are valid only when you
specify a grayscale volumetric image, V.

 regionprops3

1-2743

Voxel Value Measurements
Property
Name

Description

'MaxIntensit
y'

Value of the voxel with the greatest intensity in the region, returned as
a scalar.

'MeanIntensi
ty'

Mean of all the intensity values in the region, returned as a scalar.

'MinIntensit
y'

Value of the voxel with the lowest intensity in the region, returned as a
scalar.

'VoxelValues
'

Value of the voxels in the region, returned as a p-by-1 vector, where p is
the number of voxels in the region. Each element in the vector contains
the value of a voxel in the region.

'WeightedCen
troid'

Center of the region based on location and intensity value, returned as
a p-by-3 vector of coordinates. The first element of
WeightedCentroid is the horizontal coordinate (or x-coordinate) of
the weighted centroid. The second element is the vertical coordinate
(or y-coordinate). The third element is the planar coordinate (or z-
coordinate).

Data Types: char | string | cell

V — Volumetric grayscale image
3-D numeric array

Volumetric grayscale image, specified as a 3-D numeric array. The size of the image must
match the size of the binary image BW, connected component structure CC, or label matrix
L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32

Output Arguments
stats — Measurement values
table

Measurement values, returned as a table. The number of rows in the table corresponds to
the number of objects in BW, CC.NumObjects, or max(L(:)). The variables (columns) in

1 Functions — Alphabetical List

1-2744

each table row denote the properties calculated for each region, as specified by
properties.

References
[1] Lehmann, Gaetan and David Legland, Efficient N-Dimensional surface estimation

using Crofton formula and run-length encoding, https://hdl.handle.net/10380/3342

[2] Shoemake, Ken, Graphics Gems IV Edited by Paul S. Heckbert, Morgan Kaufmann,
1994, Pg 222-229.

See Also
bwconncomp | bwlabeln | ismember | regionprops

Introduced in R2017b

 regionprops3

1-2745

https://hdl.handle.net/10380/3342

RegularStepGradientDescent
Regular step gradient descent optimizer configuration

Description
A RegularStepGradientDescent object describes a regular step gradient descent
optimization configuration that you pass to the function imregister to solve image
registration problems.

Creation
You can create a RegularStepGradientDescent object using the following methods:

• imregconfig — Returns a RegularStepGradientDescent object paired with an
appropriate metric for registering monomodal images

• Entering

metric = registration.optimizer.RegularStepGradientDescent;

on the command line creates a RegularStepGradientDescent object with default
settings

Properties
GradientMagnitudeTolerance — Gradient magnitude tolerance
1e-4 (default) | positive scalar

Gradient magnitude tolerance, specified as a positive scalar.
GradientMagnitudeTolerance controls the optimization process. When the value of
the gradient is smaller than GradientMagnitudeTolerance, it is an indication that the
optimizer might have reached a plateau.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

1 Functions — Alphabetical List

1-2746

MinimumStepLength — Tolerance for convergence
1e-5 (default) | positive scalar

Tolerance for convergence, specified as a positive scalar. MinimumStepLength controls
the accuracy of convergence. If you set MinimumStepLength to a small value, the
optimization takes longer to compute, but it is likely to converge on a more accurate
metric value.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

MaximumStepLength — Initial step length
0.0625 (default) | positive scalar

Initial step length, specified as a positive scalar. The initial step length is the maximum
step length because the optimizer reduces the step size during convergence. If you set
MaximumStepLength to a large value, the computation time decreases. However, the
optimizer might fail to converge if you set MaximumStepLength to an overly large value.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

MaximumIterations — Maximum number of iterations
100 (default) | positive integer scalar

Maximum number of iterations, specified as a positive integer scalar.
MaximumIterations is a positive scalar integer value that determines the maximum
number of iterations the optimizer performs at any given pyramid level. The registration
could converge before the optimizer reaches the maximum number of iterations.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

RelaxationFactor — Step length reduction factor
0.5 (default) | positive scalar between 0 and 1

Step length reduction factor, specified as a positive scalar between 0 and 1.
RelaxationFactor defines the rate at which the optimizer reduces step size during
convergence. Whenever the optimizer determines that the direction of the gradient
changed, it reduces the size of the step length. If your metric is noisy, you can set
RelaxationFactor to a larger value. This leads to a more stable convergence at the
expense of computation time.

 RegularStepGradientDescent

1-2747

Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

Examples
Register Images with Regular Step Gradient Descent Optimizer

Create a RegularStepGradientDescent object and use it to register two images with
similar brightness and contrast.

Read the reference image and create an unregistered copy.

fixed = imread('pout.tif');
moving = imrotate(fixed, 5, 'bilinear', 'crop');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

1 Functions — Alphabetical List

1-2748

Create the optimizer configuration object suitable for registering monomodal images.

optimizer = registration.optimizer.RegularStepGradientDescent

optimizer =
 registration.optimizer.RegularStepGradientDescent

 Properties:
 GradientMagnitudeTolerance: 1.000000e-04
 MinimumStepLength: 1.000000e-05
 MaximumStepLength: 6.250000e-02
 MaximumIterations: 100
 RelaxationFactor: 5.000000e-01

Create the metric configuration object.

metric = registration.metric.MeanSquares;

 RegularStepGradientDescent

1-2749

Modify the optimizer configuration to get more precision.

optimizer.MaximumIterations = 300;
optimizer.MinimumStepLength = 5e-4;

Perform the registration.

movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions — Alphabetical List

1-2750

Algorithms
The regular step gradient descent optimization adjusts the transformation parameters so
that the optimization follows the gradient of the image similarity metric in the direction of
the extrema. It uses constant length steps along the gradient between computations until
the gradient changes direction. At this point, the step length is reduced based on the
RelaxationFactor, which halves the step length by default.

See Also
Functions
imregconfig | imregister

Objects
MattesMutualInformation | MeanSquares | OnePlusOneEvolutionary

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

 RegularStepGradientDescent

1-2751

rgb2lab
Convert RGB to CIE 1976 L*a*b*

Syntax
lab = rgb2lab(rgb)
lab = rgb2lab(rgb,Name,Value)

Description
lab = rgb2lab(rgb) converts sRGB values to CIE 1976 L*a*b* values.

lab = rgb2lab(rgb,Name,Value) specifies additional conversion options, such as the
color space of the RGB image, using one or more name-value pair arguments.

Examples

Convert RGB White to L*a*b*

Use rgb2lab to convert the RGB white value to L*a*b.

rgb2lab([1 1 1])

ans = 1×3

 100 0 0

Convert Color Value to L*a*b* Specifying Color Space

Convert an Adobe RGB (1998) color value to L*a*b* using the ColorSpace parameter.

rgb2lab([.2 .3 .4],'ColorSpace','adobe-rgb-1998')

1 Functions — Alphabetical List

1-2752

ans = 1×3

 30.1783 -5.6902 -20.8223

Convert RGB color to L*a*b* Specifying Reference White

Use rgb2lab to convert an RGB color to L*a*b using the D50 reference white.

rgb2lab([.2 .3 .4],'WhitePoint','d50')

ans = 1×3

 31.3294 -4.0732 -18.1750

Convert RGB Image to L*a*b* and Display L* Component

Read RGB image into the workspace.

rgb = imread('peppers.png');

Convert the RGB image to the L*a*b* color space.

lab = rgb2lab(rgb);

Display the L* component of the L*a*b* image.

imshow(lab(:,:,1),[0 100])

 rgb2lab

1-2753

Input Arguments
rgb — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image

1 Functions — Alphabetical List

1-2754

• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: rgb2lab([0.25 0.40 0.10],'WhitePoint','d50')

ColorSpace — Color space of the input RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and one of 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you
specify 'linear-rgb', then rgb2lab assumes the input RGB values are linearized sRGB
values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of
'WhitePoint' and a 1-by-3 vector or one of the CIE standard illuminants listed in the
following table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a
theoretical reference.

 rgb2lab

1-2755

Value White Point
'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates

warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: single | double | char

Output Arguments
lab — Converted L*a*b* color values
numeric array

Converted L*a*b* color values, returned as a numeric array of the same size as the input.
The output type is double unless the input type is single, in which case the output type
is also single.

Tips
• If you specify the input RGB color space as 'linear-rgb', then rgb2lab assumes

the input values are linearized sRGB values. If instead you want the input color space
to be linearized Adobe RGB (1998), then you can use the lin2rgb function.

For example, to convert linearized Adobe RGB (1998) image RGBlinadobe to the CIE
1976 L*a*b* color space, perform the conversion in two steps:

RGBadobe = lin2rgb(RGBlinadobe,'ColorSpace','adobe-rgb-1998');
LAB = rgb2lab(RGBadobe,'ColorSpace','adobe-rgb-1998');

1 Functions — Alphabetical List

1-2756

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• rgb2lab supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all character vector input arguments must be compile-time
constants.

See Also
lab2rgb | rgb2xyz | xyz2lab

Introduced in R2014b

 rgb2lab

1-2757

rgb2lightness
Convert RGB color values to lightness values

Syntax
lightness = rgb2lightness(rgb)

Description
lightness = rgb2lightness(rgb) converts RGB color values to lightness values,
excluding the color components. lightness is same as the L* component in the CIE
1976 L*a*b* color space.

Examples

Convert RGB Color to Lightness Component

Read RGB image into the workspace.

rgb = imread('peppers.png');

Convert the RGB color values to lightness component, excluding the color information.

lightness = rgb2lightness(rgb);

Display the RGB image and the derived lightness component of image.

figure
imshow(rgb)
title('Input RGB Image')

1 Functions — Alphabetical List

1-2758

figure
imshow(lightness,[])
title('Lightness Component of Image')
colorbar

 rgb2lightness

1-2759

Input Arguments
rgb — RGB color values
m-by-n-by-3 image array

RGB color values, specified as an m-by-n-by-3 image array. The input rgb must be in
sRGB color space with a reference white point of D65.
Data Types: single | double | uint8 | uint16

1 Functions — Alphabetical List

1-2760

Output Arguments
lightness — Converted lightness values
m-by-n image array

Converted lightness values, returned as an m-by-n image array. If the input data type is
double, the output data type is double. Otherwise, the output data type is single.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• rgb2lightness supports the generation of C code (requires MATLAB Coder). For
more information, see “Code Generation for Image Processing”.

See Also
lab2rgb | lab2xyz | rgb2lab | rgb2xyz | xyz2lab | xyz2rgb

Introduced in R2019a

 rgb2lightness

1-2761

rgb2lin
Linearize gamma-corrected RGB values

Syntax
B = rgb2lin(A)
B = rgb2lin(A,Name,Value)

Description
B = rgb2lin(A) undoes the gamma correction of the sRGB values in image A so that B
contains linear RGB values.

B = rgb2lin(A,Name,Value) undoes gamma correction using name-value pairs to
control additional options.

Examples

Linearize an sRGB Image

Open an image. The JPEG file format saves images in the gamma-corrected sRGB color
space.

A = imread('foosball.jpg');

Display the image. To shrink the image so that it appears fully on the screen, set the
optional initial magnification to a value less than 100.

figure
imshow(A,'InitialMagnification',25)
title('Scene With sRGB Gamma Correction')

1 Functions — Alphabetical List

1-2762

To undo the gamma correction and linearize the image, use the rgb2lin function.
Optionally, specify the data type of the linearized values.

B = rgb2lin(A,'OutputType','double');

Display the linearized image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title('Scene Without sRGB Gamma Correction')

 rgb2lin

1-2763

Shadows in the linearized image are darker than in the original image, as expected.

Input Arguments
A — Gamma-corrected RGB color values
numeric array

Gamma-corrected RGB color values, specified as a numeric array in one of the following
formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image

1 Functions — Alphabetical List

1-2764

• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = lin2rgb(I,'ColorSpace','adobe-rgb-1998') linearizes the
gamma-corrected image, I, according to the Adobe RGB (1998) standard.

ColorSpace — Color space of the input image
'srgb' (default) | 'adobe-rgb-1998'

Color space of the input image, specified as the comma-separated pair consisting of
'ColorSpace' and 'srgb' or 'adobe-rgb-1998'.
Data Types: char | string

OutputType — Data type of output RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of the output RGB values, specified as the comma-separated pair consisting of
'OutputType' and 'double', 'single', 'uint8', or 'uint16'. By default, the
output data type is the same as the data type of A.
Data Types: char | string

Output Arguments
B — Linearized RGB color values
numeric array

Linearized RGB color values, returned as a numeric array of the same size as the input A.

 rgb2lin

1-2765

Algorithms

Linearization Using the sRGB Standard
sRGB tristimulus values are linearized using the following parametric curve:

 f(u) = -f(-u), u < 0

 f(u) = c ⋅ u, 0 ≤ u < d

 f(u) = (a ⋅ u + b)ɣ, u ≥ d,

where u represents a color value with these parameters:

 a = 1/1.055

 b = 0.055/1.055

 c = 1/12.92

 d = 0.04045

 ɣ = 2.4

Linearization Using the Adobe RGB (1998) Standard
Adobe RGB (1998) tristimulus values are linearized using a simple power function:

 v = uɣ,

with

 ɣ = 2.19921875

References
[1] Ebner, Marc. "Gamma Correction." Color Constancy. Chichester, West Sussex: John

Wiley & Sons, 2007.

[2] Adobe Systems Incorporated. "Inverting the color component transfer function."
Adobe RGB (1998) Color Image Encoding. Section 4.3.5.2, May 2005, p.12.

1 Functions — Alphabetical List

1-2766

See Also
lin2rgb

Introduced in R2017b

 rgb2lin

1-2767

rgb2ntsc
Convert RGB color values to NTSC color space

Syntax
YIQ = rgb2ntsc(RGB)
yiqmap = rgb2ntsc(rgbmap)

Description
YIQ = rgb2ntsc(RGB) converts the red, green, and blue values of an RGB image to
luminance (Y) and chrominance (I and Q) values of an NTSC image.

yiqmap = rgb2ntsc(rgbmap) converts an RGB colormap to an HSV colormap.

Examples

Convert Image from RGB to YIQ

This example shows how to convert an image from RGB to NTSC color space.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YIQ color space.

YIQ = rgb2ntsc(RGB);

Display the NTSC luminance value, represented by the first color channel in the YIQ
image.

imshow(YIQ(:,:,1));
title('Luminance in YIQ Color Space');

1 Functions — Alphabetical List

1-2768

 rgb2ntsc

1-2769

Input Arguments
RGB — RGB image
m-by-n-by-3 numeric array

RGB image to convert, specified as an m-by-n-by-3 numeric array with values in the range
[0, 1]. The third dimension of RGB defines the red, green, and blue intensity of each pixel,
respectively.
Data Types: double

rgbmap — RGB colormap
c-by-3 numeric matrix

RGB colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each
row of rgbmap is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: double

Output Arguments
YIQ — NTSC image
m-by-n-by-3 numeric array

NTSC image, returned as an m-by-n-by-3 numeric array with values in the range [0, 1].
The third dimension of YIQ defines the luminance (Y) and chrominance (I and Q) for each
pixel, respectively
Data Types: double

yiqmap — NTSC colormap
c-by-3 numeric matrix

NTSC colormap corresponding to the c colors in rgbmap, returned as a c-by-3 numeric
matrix with values in the range [0, 1]. Each row of yiqmap is a three-element YIQ triplet
that specifies the luminance (Y) and chrominance (I and Q) components of a single color
of the colormap.
Data Types: double

1 Functions — Alphabetical List

1-2770

Algorithms
In the NTSC color space, the luminance is the grayscale signal used to display pictures on
monochrome (black and white) televisions. The other components carry the hue and
saturation information. The value 0 corresponds to the absence of the component, while
the value 1 corresponds to full saturation of the component.

rgb2ntsc defines the NTSC components using

Y
I
Q

=
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

R
G
B

See Also
ntsc2rgb | rgb2hsv | rgb2lab | rgb2xyz | rgb2ycbcr

Introduced before R2006a

 rgb2ntsc

1-2771

rgb2xyz
Convert RGB to CIE 1931 XYZ

Syntax
xyz = rgb2xyz(rgb)
xyz = rgb2xyz(rgb,Name,Value)

Description
xyz = rgb2xyz(rgb) converts sRGB values to CIE 1931 XYZ values (2° observer).

xyz = rgb2xyz(rgb,Name,Value) specifies additional conversion options, such as the
color space of the RGB image, using one or more name-value pair arguments.

Examples

Convert RGB to XYZ

Convert images and color values from RGB to CIE 1931 XYZ color space.

Convert RGB Image to XYZ

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Convert the image to XYZ color space.

XYZ = rgb2xyz(RGB);

Display the original image alongside the new image.

1 Functions — Alphabetical List

1-2772

figure
imshowpair(RGB,XYZ,'montage');
title('Image in RGB Color Space (Left) and XYZ Color Space (Right)');

Convert RGB Color Value to XYZ

Convert the value of white from RGB to XYZ color space. In RGB, white is represented by
the vector [1 1 1].

rgb2xyz([1 1 1])

ans = 1×3

 0.9505 1.0000 1.0888

Convert RGB Color to XYZ using D50 as Reference White

XYZ_D50 = rgb2xyz(RGB,'WhitePoint','d50');

Display the first output XYZ image alongside the XYZ image with D50 as reference white.

figure
imshowpair(XYZ,XYZ_D50,'montage');
title('XYZ Image, Without (Left) and With (Right) Reference White');

 rgb2xyz

1-2773

Convert Adobe RGB (1998) Color to XYZ

XYZ_Adobe = rgb2xyz(RGB,'ColorSpace','adobe-rgb-1998');

Display the XYZ images generated from the default RGB and the Adobe RGB (1998) color
spaces.

figure
imshowpair(XYZ,XYZ_Adobe,'montage');
title(['XYZ Image, Starting From Default RGB (Left) and Adobe RGB ',...
 '(Right) Color Space']);

1 Functions — Alphabetical List

1-2774

Input Arguments
rgb — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: rgb2xyz([.2 .3 .4],'WhitePoint','d50')

 rgb2xyz

1-2775

ColorSpace — Color space of the input RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and one of 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you
specify 'linear-rgb', then rgb2xyz assumes the input RGB values are linearized sRGB
values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of
'WhitePoint' and a 1-by-3 vector or one of the CIE standard illuminants listed in the
table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a
theoretical reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates
warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

1 Functions — Alphabetical List

1-2776

Data Types: single | double | char

Output Arguments
xyz — Converted XYZ color values
numeric array

Converted XYZ color values, returned as a numeric array of the same size as the input.
The output type is class double unless the input type is single, in which case the output
type is also single.

Tips
• If you specify the input RGB color space as 'linear-rgb', then rgb2xyz assumes

the input values are linearized sRGB values. If instead you want the input color space
to be linearized Adobe RGB (1998), then you can use the lin2rgb function.

For example, to convert linearized Adobe RGB (1998) image RGBlinadobe to CIE
1931 XYZ color space, perform the conversion in two steps:

RGBadobe = lin2rgb(RGBlinadobe,'ColorSpace','adobe-rgb-1998');
XYZ = rgb2xyz(RGBadobe,'ColorSpace','adobe-rgb-1998');

See Also
lab2xyz | lin2rgb | rgb2lab | xyz2rgb

Introduced in R2014b

 rgb2xyz

1-2777

rgb2ycbcr
Convert RGB color values to YCbCr color space

Syntax
ycbcrmap = rgb2ycbcr(rgbmap)
YCBCR = rgb2ycbcr(RGB)

Description
ycbcrmap = rgb2ycbcr(rgbmap) converts the RGB color space values in rgbmap to
the YCbCr color space. ycbcrmap is an m-by-3 matrix that contains the YCbCr luminance
(Y) and chrominance (Cb and Cr) color values as columns. Each row in ycbcrmap
represents the equivalent color to the corresponding row in rgbmap.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

YCBCR = rgb2ycbcr(RGB) converts the truecolor image RGB to the equivalent image in
YCbCr color space.

Examples

Convert RGB to YCbCr

Convert Image from RGB to YCbCr

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YCbCr.

YCBCR = rgb2ycbcr(RGB);

1 Functions — Alphabetical List

1-2778

Display the original image and the new image

figure
imshow(RGB);
title('Image in RGB Color Space');

 rgb2ycbcr

1-2779

1 Functions — Alphabetical List

1-2780

figure
imshow(YCBCR);
title('Image in YCbCr Color Space');

 rgb2ycbcr

1-2781

1 Functions — Alphabetical List

1-2782

Convert Colormap from RGB to YCbCr.

Load an indexed image into the workspace. The colormap is in RGB colorspace.

[I,map] = imread('forest.tif');

Convert the colormap to YCbCr.

newmap = rgb2ycbcr(map);

Display the grayscale image with the original map and with the new map.

figure
imshow(I,map)
title('Indexed Image with RGB Colormap');

 rgb2ycbcr

1-2783

figure
imshow(I,newmap)
title('Indexed Image with YCbCr Colormap');

Input Arguments
rgbmap — RGB color space values
c-by-3 matrix | gpuArray

RGB color space values, specified as an c-by-3 matrix representing c colors.

To perform the conversion using a GPU, specify rgbmap as a gpuArray that contains a c-
by-3 matrix.
Data Types: single | double

1 Functions — Alphabetical List

1-2784

RGB — RGB image
m-by-n-by-3 array | gpuArray

RGB image, specified as an m-by-n-by-3 array.

To perform the conversion using a GPU, specify RGB as a gpuArray that contains an m-by-
n-by-3 array.
Data Types: single | double | uint8 | uint16

Output Arguments
ycbcrmap — YCbCr color space values
c-by-3 matrix | gpuArray

YCbCr color space values, returned as an c-by-3 matrix. The first column corresponds to
Y. The second and third columns correspond to Cb and Cr. Y is in the range [16/255,
235/255], and Cb and Cr are in the range [16/255, 240/255].

If the conversion is performed using a GPU, then ycbcrmap is returned as a gpuArray
containing a c-by-3 matrix.

YCBCR — Image in YCbCr color space
m-by-n-by-3 array | gpuArray

Image in YCbCr color space, returned as an m-by-n-by-3 array.

• If the input is double or single, then Y is in the range [16/255, 235/255] and Cb and
Cr are in the range [16/255, 240/255].

• If the input is uint8, then Y is in the range [16, 235] and Cb and Cr are in the range
[16, 240].

• If the input is uint16, then Y is in the range [4112, 60395] and Cb and Cr are in the
range [4112, 61680].

If the conversion is performed using a GPU, then YCBCR is returned as a gpuArray
containing an m-by-n-by-3 array.

 rgb2ycbcr

1-2785

References
[1] Poynton, C. A.A Technical Introduction to Digital Video, John Wiley & Sons, Inc., 1996,

p. 175.

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard
4:3 and Wide-screen 16:9 Aspect Ratios, (1982-1986-1990-1992-1994-1995),
Section 3.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• rgb2ycbcr supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, rgb2ycbcr
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
rgb2lab | rgb2ntsc | rgb2xyz | ycbcr2rgb

1 Functions — Alphabetical List

1-2786

Introduced before R2006a

 rgb2ycbcr

1-2787

roicolor
Select region of interest (ROI) based on color

Syntax
BW = roicolor(I,low,high)
BW = roicolor(I,v)

Description
BW = roicolor(I,low,high) returns an ROI selected as those pixels in image I that
lie within the range [low high]. The returned value, BW, is a binary image with 0s
outside the region of interest and 1s inside.

BW = roicolor(I,v) returns an ROI selected as those pixels in image I that match
values in vector v.

Examples

Select Region-of-Interest Based on Color

Load an indexed image.

load clown

Create binary mask image based on color.

BW = roicolor(X,10,20);

Display the original image and the binary mask.

imshow(X,map)

1 Functions — Alphabetical List

1-2788

figure
imshow(BW)

 roicolor

1-2789

Input Arguments
I — Indexed or grayscale image
m-by-n numeric matrix

Indexed or grayscale image, specified as an m-by-n numeric matrix.

low — Minimum value
numeric scalar

Minimum value to include in the ROI, specified as a numeric scalar.

high — Maximum value
numeric scalar

Minimum value to include in the ROI, specified as a numeric scalar.

v — Set of values
numeric vector

1 Functions — Alphabetical List

1-2790

Set of values to include in the ROI, specified as a numeric vector.

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Tips
• You can use the returned image as a mask for masked filtering using roifilt2.
• If you specify a colormap range, [low high], then

BW = (I >= low) & (I <= high)
• If you specify a set of colormap values, v, then the mask generated by roicolor is

equivalent to:

BW = ismember(I,v)

See Also
ismember | roifilt2 | roipoly

Introduced before R2006a

 roicolor

1-2791

roifill
Fill in specified region of interest (ROI) polygon in grayscale image

Note roifill is not recommended. Use regionfill instead. If you want to define the
polygon interactively, then use roipoly with regionfill.

Use the roifill function to fill in a specified region of interest (ROI) polygon in a
grayscale image. roifill smoothly interpolates inward from the pixel values on the
boundary of the polygon by solving Laplace's equation. The boundary pixels are not
modified. roifill can be used, for example, to erase objects in an image.

Syntax
J = roifill
J = roifill(I)

J = roifill(I,mask)
J = roifill(I,xi,yi)
J = roifill(x,y,I,xi,yi)

[J,BW] = roifill(___)
[x2,y2,J,BW,xi2,yi2] = roifill(___)
roifill()

Description
J = roifill creates an interactive polygon selection tool associated with the image
displayed in the current figure. With this syntax and the other interactive syntaxes, the
polygon selection tool blocks the MATLAB command line until you complete the
operation. roifill fills the selected polygon and returns the filled image, J.

For more information about using the polygon selection tool to define and fill ROIs, see
“Interactive Behavior” on page 1-2795.

1 Functions — Alphabetical List

1-2792

J = roifill(I) displays the image I in a figure window and creates an interactive
polygon tool associated with the image.

J = roifill(I,mask) fills regions in I corresponding to the nonzero pixels in the
mask. If there are multiple regions, then roifill performs the interpolation on each
region independently.

J = roifill(I,xi,yi) fills in the polygon with vertices defined by X-Y coordinates xi
and yi in the default spatial coordinate system.

J = roifill(x,y,I,xi,yi) defines a nondefault spatial coordinate system using the
vectors x and y. The polygon vertices have coordinates xi and yi in this coordinate
system.

[J,BW] = roifill(___) returns the binary image BW with 1s for pixels corresponding
to the interpolated region of I and 0s elsewhere.

[x2,y2,J,BW,xi2,yi2] = roifill(___) also returns the image XData and YData
in x2 and y2 and the polygon coordinates in xi2 and yi2.

roifill() without an output argument displays the filled image in a new figure window.

Examples

Fill Region Using roifill
This example uses roifill to fill a region in the input image, I. For more examples,
especially of the interactive syntaxes, see “Fill Region of Interest in an Image”.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure
imshow(J)

 roifill

1-2793

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

mask — Mask
numeric matrix | logical matrix

Mask, specified as a numeric or logical matrix of the same size as the input image, I.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

xi, yi — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as numeric vectors of equal length. If you
specify a nondefault coordinate system using the x and y arguments, then xi and yi
specify coordinates in this coordinate system. Otherwise, xi and yi specify coordinates in
the default coordinate system.

x, y — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates, specified as a 2-element numeric vector of the
form [min max]. The two elements of x give the x-coordinates (horizontal) of the first

1 Functions — Alphabetical List

1-2794

and last columns of image I, respectively. The two elements of y give the y-coordinates
(vertical) of the first and last rows of I.

Output Arguments
J — Filled image
numeric matrix

Filled image, returned as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

BW — Binary image
logical matrix

Binary image, returned as a logical matrix of the same size as the input image, I.
Data Types: logical

xi2, yi2 — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as numeric vectors. xi and yi are empty
if you specify the polygon ROI using the mask argument.

x2, y2 — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates,, returned as 2-element numeric vectors of the
form [min max]. If you specify image limits x and y, then x2 and y2 are equal to these
values. Otherwise, x2 and y2 are equal to the original image XData and YData.

Additional Capabilities

Interactive Behavior
When you call roifill with an interactive syntax, a polygon selection tool opens that
enables you to select and adjust polygon vertices interactively using the mouse.

 roifill

1-2795

When the polygon tool is active, the pointer changes to cross hairs when you move
the pointer over the image in the figure. Using the mouse, specify the region by selecting
vertices of the polygon. You can move or resize the polygon using the mouse. When you
are finished positioning and sizing the polygon, fill the polygon by double-clicking, or by
right-clicking inside the region and selecting Fill Area from the context menu.

The following figure illustrates a polygon defined by multiple vertices.

Polygon
vertices

ROI tool
pointer

Interactive Behavior Description
Closing the polygon.
(Completing the region-of-
interest.)

Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon
that you selected. The shape changes to a circle .
Click either mouse button.

• Double-click the left mouse button. This action creates a
vertex at the point under the mouse and draws a straight
line connecting this vertex with the initial vertex.

• Click the right mouse button. This action draws a line
connecting the last vertex selected with the initial
vertex; it does not create a new vertex.

1 Functions — Alphabetical List

1-2796

Interactive Behavior Description
Deleting the polygon Press Backspace, Escape or Delete, or right-click inside

the region and select Cancel from the context menu.

Note: If you delete the ROI, the function returns empty
values.

Moving the polygon Move the pointer inside the region. The pointer changes to

a fleur . Click and drag the mouse to move the polygon.
Changing the color of the
polygon

Move the pointer inside the region. Right-click and select
Set color from the context menu.

Adding a new vertex. Move the pointer over an edge of the polygon and press the
A key. The shape of the pointer changes . Click the left
mouse button to create a new vertex at that position on the
line.

Moving a vertex. (Reshaping
the region-of-interest.)

Move the pointer over a vertex. The pointer changes to a
circle . Click and drag the vertex to its new position.

Deleting a vertex. Move the pointer over a vertex. The pointer changes to a
circle . Right-click and select Delete Vertex from the
context menu. This action deletes the vertex and adjusts the
shape of the polygon, drawing a new straight line between
the two vertices that were neighbors of the deleted vertex.

Retrieving the coordinates
of the vertices

Move the pointer inside the region. Right-click and select
Copy position from the context menu to copy the current
position to the Clipboard. Position is an n-by-2 array
containing the x- and y-coordinates of each vertex, where n
is the number of vertices you selected.

See Also
impoly | inpaintCoherent | regionfill | roifilt2 | roipoly

Introduced before R2006a

 roifill

1-2797

roifilt2
Filter region of interest (ROI) in image

Syntax
J = roifilt2(h,I,BW)
J = roifilt2(I,BW,fun)

Description
J = roifilt2(h,I,BW) filters regions of interest (ROIs) in the 2-D image I using the 2-
D linear filter h. BW is a binary mask, the same size as I, that defines the ROIs in I.
roifilt2 returns an image that consists of filtered values for pixels in locations where
BW contains 1s, and unfiltered values for pixels in locations where BW contains 0s.

J = roifilt2(I,BW,fun) processes the data in ROIs of I using the function fun. The
value fun must be a function handle.

Examples

Filter Image Using Polygonal Mask

Read an image into the workspace.

I = imread('eight.tif');

Define the vertices of the mask polygon.

c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];

Create the binary mask image.

BW = roipoly(I,c,r);

1 Functions — Alphabetical List

1-2798

Filter the region of the image I specified by the mask BW.

H = fspecial('unsharp');
J = roifilt2(H,I,BW);

Display the original image and the filtered image.

imshow(I)

figure
imshow(J)

 roifilt2

1-2799

Input Arguments
h — Linear filter
2-D numeric matrix

Linear filter, specified as a 2-D numeric matrix.
Data Types: double

I — Image
2-D numeric matrix

Image, specified as a 2-D numeric matrix.

• If you specify a filter, h, then I can be any of the listed data types.
• If you specify a function handle, fun, then I can be any class supported by fun.

1 Functions — Alphabetical List

1-2800

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

BW — Mask
2-D logical matrix | 2-D numeric matrix

Mask, specified as a 2-D logical matrix or a 2-D numeric matrix, the same size as I,
containing 0s and 1s.
Data Types: logical

fun — Function handle
handle

Function handle, specified as a handle. For more information about function handles, see
“Create Function Handle” (MATLAB).

Output Arguments
J — Filtered image
2-D matrix

Filtered image, returned as a 2-D matrix.

• If you specify a filter, h, then J has the same class as the input image, I.
• If you specify a function handle, fun, then the class of J is determined by fun.

Algorithms
If you specify a filter, h, then roifilt2 calls filter2 to implement the filter.

See Also
filter2 | imfilter | roipoly

Introduced before R2006a

 roifilt2

1-2801

roipoly
Specify polygonal region of interest (ROI)

Syntax
BW = roipoly
BW = roipoly(I)

BW = roipoly(I,xi,yi)
BW = roipoly(x,y,I,xi,yi)

[BW,xi2,yi2] = roipoly(___)
[x2,y2,BW,xi2,yi2] = roipoly(___)
roipoly(___)

Description
BW = roipoly creates an interactive polygon tool associated with the image displayed in
the current figure. With this syntax and the other interactive syntaxes, the polygon
selection tool blocks the MATLAB command line until you complete the operation.
roipoly returns the mask as a binary image, setting pixels inside the ROI to 1 and pixels
outside the ROI to 0.

For more information about using the polygon selection tool, see “Interactive Behavior”
on page 1-2807.

BW = roipoly(I) displays the grayscale or RGB image I in a figure window and creates
an interactive polygon selection tool associated with the image.

BW = roipoly(I,xi,yi) specifies the polygon vertices as X-Y coordinates xi and yi in
the default spatial coordinate system.

BW = roipoly(x,y,I,xi,yi) defines a nondefault spatial coordinate system using the
vectors x and y. The polygon vertices have coordinates xi and yi in this coordinate
system.

1 Functions — Alphabetical List

1-2802

[BW,xi2,yi2] = roipoly(___) also returns the coordinates of the vertices of the
closed polygon, xi2 and yi2.

[x2,y2,BW,xi2,yi2] = roipoly(___) also returns the image limits in x2 and y2.

roipoly(___) without an output argument displays the resulting mask image in a new
figure window.

Examples

Create Polygonal Mask

Read an image into the workspace.

I = imread('eight.tif');

Define the vertices of the mask polygon.

c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];

Create the binary mask image.

BW = roipoly(I,c,r);

Display the original image and the polygonal mask.

imshow(I)

 roipoly

1-2803

figure
imshow(BW)

1 Functions — Alphabetical List

1-2804

Input Arguments
I — Grayscale or RGB image
m-by-n numeric matrix | m-by-n-by-3 numeric array

Grayscale or RGB image, specified as an m-by-n numeric matrix for a grayscale image, or
an m-by-n-by-3 numeric array for an RGB image.

xi, yi — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as numeric vectors of equal length. If you
specify a nondefault coordinate system using the x and y arguments, then xi and yi
specify coordinates in this coordinate system. Otherwise, xi and yi specify coordinates in
the default coordinate system.

 roipoly

1-2805

x, y — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates, specified as 2-element numeric vectors of the form
[min max]. The values of x and y set the image XData and YData.

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

xi2, yi2 — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of vertices of the closed polygon, returned as numeric vectors of equal
length. The first and last element in each vector are identical, so that the polygon is
closed. If you specify a nondefault coordinate system using the x and y arguments, then
xi2 and yi2 are this coordinate system. Otherwise, xi2 and yi2 are in the default
coordinate system.

Note roipoly always produces a closed polygon. If you specify input vertex positions of
a closed polygon (such that the last pair of coordinates is identical to the first pair), then
the length of the output coordinate vectors is equal to the number of points specified. If
the points specified do not describe a closed polygon, then roipoly adds a final point
having the same coordinates as the first point. In this case the length of the output
coordinate vectors is one greater than the number of points specified.

x2, y2 — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates, returned as 2-element numeric vectors of the form
[min max]. If you specify a nondefault coordinate system using the x and y arguments,
then x2 and y2 are equal to these values. Otherwise, x2 and y2 are equal to the original
image XData and YData.

1 Functions — Alphabetical List

1-2806

Definitions

Interactive Behavior
The polygon selection tool enables you to select and adjust polygon vertices interactively
using the mouse.

When the polygon tool is active, the pointer changes to cross hairs when you move
the pointer over the image in the figure. Using the mouse, you specify the region by
selecting vertices of the polygon. You can move or resize the polygon using the mouse.
When you are finished positioning and sizing the polygon, create the mask by double-
clicking, or by right-clicking inside the region and selecting Create mask from the
context menu.

The figure illustrates a polygon defined by multiple vertices. The following table describes
all the interactive behavior of the polygon tool.

Polygon
vertices

ROI tool
pointer

 roipoly

1-2807

Interactive Behavior Description
Closing the polygon.
(Completing the region-of-
interest.)

Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon
that you selected. The pointer changes to a circle .
Click either mouse button.

• Double-click the left mouse button. This action creates a
vertex at the point under the mouse pointer and draws a
straight line connecting this vertex with the initial
vertex.

• Right-click the mouse. This draws a line connecting the
last vertex selected with the initial vertex; it does not
create a new vertex at the point under the mouse.

Moving the entire polygon Move the pointer inside the region. The pointer changes to

a fleur shape . Click and drag the polygon over the
image.

Deleting the polygon Press Backspace, Escape or Delete, or right-click inside
the region and select Cancel from the context menu.

Note: If you delete the ROI, the function returns empty
values.

Moving a vertex. (Reshaping
the region-of-interest.)

Move the pointer over a vertex. The pointer changes to a
circle . Click and drag the vertex to its new position.

Adding a new vertex. Move the pointer over an edge of the polygon and press the
A key. The pointer changes shape to . Click the left mouse
button to create a new vertex at that point on the edge.

Deleting a vertex.
(Reshaping the region-of-
interest.)

Move the pointer over the vertex. The pointer changes to a
circle . Right-click and select Delete vertex from the
context menu. roipoly draws a new straight line between
the two vertices that were neighbors of the deleted vertex.

Changing the color of the
polygon

Move the pointer anywhere inside the boundary of the
region and click the right mouse button. Select Set color
from the context menu.

1 Functions — Alphabetical List

1-2808

Interactive Behavior Description
Retrieving the coordinates
of the vertices

Move the pointer inside the region. Right-click and select
Copy position from the context menu to copy the current
position to the Clipboard. The position is an n-by-2 array
containing the x- and y-coordinates of each vertex, where n
is the number of vertices.

Tips
• For any of the roipoly syntaxes, you can replace the input image I with two

arguments, m and n, that specify the row and column dimensions of an arbitrary
image. For example, these commands create a 100-by-200 binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n black image is
displayed. Use the mouse to specify a polygon within this image.

See Also
drawpolygon | poly2mask | regionfill | roicolor | roifilt2

Introduced before R2006a

 roipoly

1-2809

rsetwrite
Create R-Set file from image file

Syntax
rsetfile = rsetwrite(filename)
rsetfile = rsetwrite(filename,rsetfilename)
rsetfile = rsetwrite(adapter,rsetfilename)

Description
rsetfile = rsetwrite(filename) creates a reduced resolution dataset (R-Set) file
from the specified input. The input file must be a TIFF or NITF image file. The function
writes the generated R-Set file to the current working folder and has same file name as
the input but with a rset extension.

rsetfile = rsetwrite(filename,rsetfilename) specifies the name of R-Set file
using rsetfilename.

rsetfile = rsetwrite(adapter,rsetfilename) creates an R-Set file named
rsetfilename from an ImageAdapter object, adapter. An ImageAdapter object is a
user-defined object that provides rsetwrite function with a common API to read a
particular image file format. For more details on ImageAdapter objects, see the
ImageAdapter class.

Examples

Create R-Set From Large TIFF Image File

Load a TIFF image file into the workspace.

filename = 'mandi.tif';

1 Functions — Alphabetical List

1-2810

Create an R-Set file from the image file. The function creates the R-Set in the current
working folder.

rsetfile = rsetwrite(filename);

Display the R-Set file by using the imtool function.

imtool(rsetfile)

Zoom in on the R-Set by 65% to view the spatial tiles.

 rsetwrite

1-2811

imtool(rsetfile,'InitialMagnification',65);

Create R-Set from ImageAdapter Object

Load a file containing an ImageAdapter object into the workspace.

1 Functions — Alphabetical List

1-2812

load('MandiImageAdapter.mat')

Specify a name for the R-Set file to be created.

rsetfilename = 'MandiRSet';

Create an R-Set file from the ImageAdapter object. The function creates the R-Set in the
current working folder.

rsetfile = rsetwrite(adapter,rsetfilename)

rsetfile =
'MandiRSet'

Display the R-Set file using the imtool function.

imtool(rsetfile)

 rsetwrite

1-2813

Zoom in on the R-Set by 53% to view the spatial tiles.

imtool(rsetfile,'InitialMagnification',53)

1 Functions — Alphabetical List

1-2814

Input Arguments
filename — Name of TIFF or NITF image file
character vector | string scalar

 rsetwrite

1-2815

Name of a TIFF or NITF image file, specified as a character vector or string scalar.
Data Types: char | string

rsetfilename — Name for output R-Set file
character vector | string scalar

Name for the output R-Set file, specified as a character vector or string scalar. If
rsetfilename is not specified, filename sets the name of R-Set file, rsetfile.
Data Types: char | string

adapter — Image adapter object
ImageAdapter object

Image adapter object, specified as an ImageAdapter object.

Output Arguments
rsetfile — Name of R-Set file
string scalar

Name of the R-Set file, returned as a string scalar. This value specifies the name of the file
to which the R-Set is stored.

Algorithms
rsetwrite creates an R-Set by dividing an image into spatial tiles and resampling the
image at different resolution levels. The R-Set file contains a compressed copy of the full-
resolution image data. You can use the imtool function to open the R-Set file and zoom
in to view the tiles at a higher resolution. When you zoom out, the function displays tiles
at a lower resolution. In this way, an R-Set file balances clarity of the image and memory
usage for optimal performance.

Note

• When creating an R-Set, a progress bar shows the status of the completion. If you
cancel the creation process before it is complete, the function does not create an R-Set
and returns an empty rsetfile.

1 Functions — Alphabetical List

1-2816

• rsetwrite supports NITF image files that are uncompressed and Version 2.0 or
higher. This function does not support NITF files with more than three data bands or
with floating-point data. Images with more than one data band are accepted if they
contain unsigned integer data.

• You can create an R-Set from an image whose dimensions are smaller than the size of
a single R-Set tile. But, the resulting R-Set file might be larger and take longer to load
than the original file. The current size of a tile in an R-Set is 512-by-512 pixels.

See Also
imread | imtool | isrset | openrset

Introduced in R2009a

 rsetwrite

1-2817

sizesMatch
Determine if object and image are size-compatible

Syntax
TF = sizesMatch(R,A)

Description
TF = sizesMatch(R,A) returns True if the size of image A is consistent with the
ImageSize property of spatial referencing object R.

Examples

Check If 2-D Grayscale Image and 2-D Spatial Referencing Object Are Size-
Compatible

Read a 2-D grayscale image into the workspace. View the size of the image.

I = imread('cameraman.tif');
size(I)

ans = 1×2

 256 256

Create an imref2d spatial referencing object with the same dimensions as the image.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 256.5000]

1 Functions — Alphabetical List

1-2818

 YWorldLimits: [0.5000 256.5000]
 ImageSize: [256 256]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 XIntrinsicLimits: [0.5000 256.5000]
 YIntrinsicLimits: [0.5000 256.5000]

Confirm that the size of the image matches the ImageSize property of the object.

res = sizesMatch(R,I)

res = logical
 1

Read another 2-D grayscale image that has a different size. View the size of this image.

I2 = imread('coins.png');
size(I2)

ans = 1×2

 246 300

Check if the size of this image matches the size of the original spatial referencing object.

res2 = sizesMatch(R,I2)

res2 = logical
 0

The result is false, as expected.

Check If 2-D RGB Image and 2-D Spatial Referencing Object Are Size-Compatible

Read an RGB image into the workspace. View the size of the image.

I = imread('peppers.png');
size(I)

 sizesMatch

1-2819

ans = 1×3

 384 512 3

Create an imref2d spatial referencing object with the same dimensions as the image.
The object does not retain information about the third dimension of the image array.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 512.5000]
 YWorldLimits: [0.5000 384.5000]
 ImageSize: [384 512]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 512
 ImageExtentInWorldY: 384
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 384.5000]

Check if the size of the image is compatible with the ImageSize property of the object.

res = sizesMatch(R,I)

res = logical
 1

Check If 3-D Image Array and 3-D Spatial Referencing Object Are Size-
Compatible

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128
pixel grayscale images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);
size(D)

ans = 1×3

1 Functions — Alphabetical List

1-2820

 128 128 27

Create an imref3d spatial referencing object associated with the volume.

R = imref3d(size(D))

R =
 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Confirm that the size of the volume matches the ImageSize property of the object.

res = sizesMatch(R,D)

res = logical
 1

The sizes match, as expected.

Read another image that has a different size. This image a 3-D array representing an RGB
image.

I = imread('peppers.png');
size(I)

ans = 1×3

 384 512 3

 sizesMatch

1-2821

Check if the size of this image matches the size of the original spatial referencing object.

res2 = sizesMatch(R,I)

res2 = logical
 0

The result is false, as expected.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

A — Input image
numeric m-by-n or m-by-n-by-p array

Input image, specified as a numeric m-by-n or m-by-n-by-p array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
TF — Flag indicating size compatibility
logical scalar

Flag indicating size compatibility, returned as a logical scalar. TF is True if the size of the
image A is consistent with the referencing object R. When R is:

• An imref2d spatial referencing object, TF returns true when R.ImageSize ==
[size(A,1) size(A,2)].

Note The dimensionality of A does not need to match the dimensionality of an
imref2d spatial referencing object. For example, an RGB image can be consistent
with an imref2d object. In this case, sizesMatch ignores the third image dimension.

1 Functions — Alphabetical List

1-2822

• An imref3d spatial referencing object, TF returns true when R.ImageSize ==
size(A). A must be a 3-D array.

Data Types: logical

See Also
Introduced in R2013a

 sizesMatch

1-2823

ssim
Structural Similarity Index (SSIM) for measuring image quality

Syntax
ssimval = ssim(A,ref)
[ssimval,ssimmap] = ssim(A,ref)
___ = ssim(A,ref,Name,Value)

Description
ssimval = ssim(A,ref) computes the Structural Similarity Index (SSIM) value for
image A using ref as the reference image.

[ssimval,ssimmap] = ssim(A,ref) also returns the local SSIM value for each pixel
in A.

___ = ssim(A,ref,Name,Value) computes the SSIM, using name-value pairs to
control aspects of the computation.

Examples

Calculate Structural Similarity Index (SSIM)

Read an image into the workspace. Create another version of the image, applying a
blurring filter. Display both images.

ref = imread('pout.tif');
H = fspecial('Gaussian',[11 11],1.5);
A = imfilter(ref,H,'replicate');

subplot(1,2,1); imshow(ref); title('Reference Image');
subplot(1,2,2); imshow(A); title('Blurred Image');

1 Functions — Alphabetical List

1-2824

Calculate the global SSIM value for the image and local SSIM values for each pixel.
Return the global SSIM value and display the local SSIM value map.

[ssimval, ssimmap] = ssim(A,ref);

fprintf('The SSIM value is %0.4f.\n',ssimval);

The SSIM value is 0.9407.

figure, imshow(ssimmap,[]);
title(sprintf('ssim Index Map - Mean ssim Value is %0.4f',ssimval));

 ssim

1-2825

Input Arguments
A — Image whose quality is to be measured
2-D grayscale image | 3-D volume image

Image whose quality is to be measured, specified as a 2-D grayscale image or 3-D volume
image. Must be the same size and class as ref
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image against which quality is measured
2-D grayscale image | 3-D volume image

1 Functions — Alphabetical List

1-2826

Reference image against which quality if measured, specified as a 2-D grayscale image or
3-D volume image. Must be the same size and class as A
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ssim(A,ref,'DynamicRange',100)

DynamicRange — Dynamic range of the input image
diff(getrangefromclass(A)) (default) | positive scalar

Dynamic range of the input image, specified as a positive scalar. The default value of
DynamicRange depends on the data type of image A, and is calculated as
diff(getrangefromclass(A)). For example, the default dynamic range is 255 for
images of data type uint8, and the default is 1 for images of data type double or
single with pixel values in the range [0, 1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Exponents — Exponents for the luminance, contrast, and structural terms
respectively
[1 1 1] (default) | 3-element vector of nonnegative real numbers

Exponents for the luminance, contrast, and structural terms, specified as a 3-element
vector of nonnegative real numbers, [alpha beta gamma].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Radius — Standard deviation of isotropic Gaussian function
1.5 (default) | positive scalar

Standard deviation of isotropic Gaussian function, specified as a positive scalar. This value
is used for weighting the neighborhood pixels around a pixel for estimating local
statistics. This weighting is used to avoid blocking artifacts in estimating local statistics.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 ssim

1-2827

RegularizationConstants — Regularization constants for the luminance,
contrast, and structural terms
3-element vector of nonnegative real numbers

Regularization constants for the luminance, contrast, and structural terms, specified as a
3-element vector of nonnegative real numbers of the form [c1 c2 c3]. The ssim
function uses these regularization constants to avoid instability for image regions where
the local mean or standard deviation is close to zero. Therefore, small non-zero values
should be used for these constants.

By default,

• C1 = (0.01*L).^2, where L is the specified DynamicRange value.
• C2 = (0.03*L).^2, where L is the specified DynamicRange value.
• C3 = C2/2

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
ssimval — Structural Similarity (SSIM) Index
scalar

Structural Similarity (SSIM) Index, returned as a scalar double, except when A and ref
are of class single, in which case ssimval is of class single.

ssimmap — Local values of Structural Similarity (SSIM) Index
numeric array

Local values of Structural Similarity (SSIM) Index, returned as a numeric array of class
double except when A and ref are of class single, in which case ssimmap is of class
single. ssimmap is an array of the same size as input image A.

1 Functions — Alphabetical List

1-2828

Definitions

Structural Similarity Index
An image quality metric that assesses the visual impact of three characteristics of an
image: luminance, contrast and structure.

Algorithms
The Structural Similarity (SSIM) Index quality assessment index is based on the
computation of three terms, namely the luminance term, the contrast term and the
structural term. The overall index is a multiplicative combination of the three terms.

SSIM(x, y) = [l(x, y)]α ⋅ [c(x, y)]β ⋅ [s(x, y)]γ

where

l(x, y) =
2μxμy + C1

μx
2 + μy

2 + C1
,

c(x, y) =
2σxσy + C2

σx
2 + σy

2 + C2
,

s(x, y) =
σxy + C3

σxσy + C3

where μx, μy, σx,σy, and σxy are the local means, standard deviations, and cross-covariance
for images x, y. If α = β = γ = 1 (the default for Exponents), and C3 = C2/2 (default
selection of C3) the index simplifies to:

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)

References
[1] Zhou, W., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. "Image Qualifty Assessment:

From Error Visibility to Structural Similarity." IEEE Transactions on Image
Processing. Vol. 13, Issue 4, April 2004, pp. 600–612.

 ssim

1-2829

See Also
immse | mean | median | psnr | sum | var

Topics
“Compare Image Quality at Various Compression Levels”

Introduced in R2014a

1 Functions — Alphabetical List

1-2830

std2
Standard deviation of matrix elements

Syntax
B = std2(A)

Description
B = std2(A) computes the standard deviation of all values in array A.

You optionally can compute the standard deviation using a GPU (requires Parallel
Computing Toolbox). For more information, see “Image Processing on a GPU”.

Examples

Compute 2-D Standard Deviation

Read a grayscale image into the workspace, then calculate the standard deviation of the
pixel intensity values.

I = imread('liftingbody.png');
val = std2(I)

val = 31.6897

Compute 2–D Standard Deviation on a GPU

Read a grayscale image into the workspace as a gpuArray object, then calculate the
standard deviation of the pixel intensity values using a GPU.

 std2

1-2831

I = gpuArray(imread('liftingbody.png'));
val = std2(I)

Input Arguments
A — Input data
numeric array | logical array | gpuArray

Input data, specified as a numeric or logical array.

To perform the computation using a GPU, specify A as a gpuArray that contains a
numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
B — Standard deviation
numeric scalar | gpuArray

Standard deviation of input data, returned as a numeric scalar. If the data type of A is
single, then the data type of B is also single. Otherwise, the data type of B is double.

If the standard deviation is computed using a GPU, then B is returned as a gpuArray
containing a numeric scalar.
Data Types: single | double

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

1 Functions — Alphabetical List

1-2832

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
corr2 | mean | mean2 | std

Introduced before R2006a

 std2

1-2833

stdfilt
Local standard deviation of image

Syntax
J = stdfilt(I)
J = stdfilt(I,nhood)

Description
J = stdfilt(I) performs standard deviation filtering of image I and returns the
filtered image J. The value of each output pixel is the standard deviation of the 3-by-3
neighborhood around the corresponding input pixel. For pixels on the borders of I,
stdfilt uses symmetric padding. In symmetric padding, the values of padding pixels are
a mirror reflection of the border pixels in I.

You optionally can perform the operation using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

J = stdfilt(I,nhood) specifies the neighborhood, nhood, used to compute the
standard deviation.

Examples

Perform Standard Deviation Filtering

This example shows how to perform standard deviation filtering using stdfilt. Brighter
pixels in the filtered image correspond to neighborhoods in the original image with larger
standard deviations.

Read an image into the workspace.

I = imread('circuit.tif');

1 Functions — Alphabetical List

1-2834

Perform standard deviation filtering using stdfilt.

J = stdfilt(I);

Show the original image and the processed image.

imshow(I)
title('Original Image')

figure
imshow(J,[])
title('Result of Standard Deviation Filtering')

 stdfilt

1-2835

Perform Standard Deviation Filtering on a GPU

Read an images into a gpuArray.

I = gpuArray(imread('circuit.tif'));

Perform standard deviation filtering using stdfilt.

J = stdfilt(I);

Show the original image and the processed image.

imshow(I)
title('Original Image')
figure

1 Functions — Alphabetical List

1-2836

imshow(J,[])
title('Result of Standard Deviation Filtering')

Input Arguments
I — Image to be filtered
numeric array | logical array | gpuArray

Image to be filtered, specified as a numeric or logical array of any dimension.

To perform the operation using a GPU, specify I as a gpuArray that contains a numeric
or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

nhood — Neighborhood
true(3) (default) | multidimensional, logical, or numeric array containing zeros and ones

Neighborhood, specified as a multidimensional, logical, or numeric array containing zeros
and ones. The size of nhood must be odd in each dimension.

By default, stdfilt uses the neighborhood true(3). stdfilt determines the center
element of the neighborhood by floor((size(nhood) + 1)/2).

To specify neighborhoods of various shapes, such as a disk, use the strel function to
create a structuring element object of the desired shape. Then extract the neighborhood
from the neighborhood property of the structuring element.

Note When running this function on a GPU, the neighborhood must be 2-D.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Output Arguments
J — Filtered image
numeric array | gpuArray

 stdfilt

1-2837

Filtered image, returned as a numeric array of the same size as the input image I. The
class of J is double.

If the filtered image is computed using a GPU, then J is returned as a gpuArray
containing a numeric array of the same class as in I.

Algorithms
If the image contains Infs or NaNs, then the behavior of stdfilt is undefined.
Propagation of Infs or NaNs might not be localized to the neighborhood around the Inf
or NaN pixel.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The filtering neighborhood must be two-dimensional.

For more information, see “Image Processing on a GPU”.

See Also
Functions
entropyfilt | getnhood | rangefilt | std2

Objects
offsetstrel | strel

Topics
“What Is Image Filtering in the Spatial Domain?”

1 Functions — Alphabetical List

1-2838

Introduced before R2006a

 stdfilt

1-2839

strel
Morphological structuring element

Description
A strel object represents a flat morphological structuring element, which is an essential
part of morphological dilation and erosion operations.

A flat structuring element is a binary valued neighborhood, either 2-D or
multidimensional, in which the true pixels are included in the morphological
computation, and the false pixels are not. The center pixel of the structuring element,
called the origin, identifies the pixel in the image being processed. Use the strel
function (described below) to create a flat structuring element. You can use flat
structuring elements with both binary and grayscale images. The following figure
illustrates a flat structuring element.

To create a nonflat structuring element, use offsetstrel.

Creation

Syntax
SE = strel(nhood)
SE = strel('arbitrary',nhood)

1 Functions — Alphabetical List

1-2840

SE = strel('diamond',r)
SE = strel('disk',r,n)
SE = strel('octagon',r)
SE = strel('line',len,deg)
SE = strel('rectangle',[m n])
SE = strel('square',w)

SE = strel('cube',w)
SE = strel('cuboid',[m n p])
SE = strel('sphere',r)

Description
SE = strel(nhood) creates a flat structuring element with specified neighborhood
nhood.

You can also use the syntax SE = strel('arbitrary',nhood) to create a flat
structuring element with a specified neighborhood.

SE = strel('diamond',r) creates a diamond-shaped structuring element, where r
specifies the distance from the structuring element origin to the points of the diamond.

SE = strel('disk',r,n) creates a disk-shaped structuring element, where r specifies
the radius and n specifies the number of line structuring elements used to approximate
the disk shape. Morphological operations using disk approximations run much faster
when the structuring element uses approximations.

SE = strel('octagon',r) creates a octagonal structuring element, where r specifies
the distance from the structuring element origin to the sides of the octagon, as measured
along the horizontal and vertical axes. r must be a nonnegative multiple of 3.

SE = strel('line',len,deg) creates a linear structuring element that is symmetric
with respect to the neighborhood center, with approximate length len and angle deg.

SE = strel('rectangle',[m n]) creates a rectangular structuring element of size
[m n].

SE = strel('square',w) creates a square structuring element whose width is w
pixels.

SE = strel('cube',w) creates a 3-D cubic structuring element whose width is w
pixels.

 strel

1-2841

SE = strel('cuboid',[m n p]) creates a 3-D cuboidal structuring element of size
[m n p].

SE = strel('sphere',r) creates a 3-D spherical structuring element whose radius is
r pixels.

Compatibility

The following syntaxes still work, but offsetstrel is the preferred way to create these
nonflat structuring element shapes:

• SE = strel('arbitrary',nhood,h)
• SE = strel('ball',r,h,n)

The following syntaxes still work, but are not recommended for use:

• SE = strel('pair',offset)
• SE = strel('periodicline',p,v)

Input Arguments
nhood — Neighborhood
numeric array

Neighborhood, specified as numeric array of any dimension. All nonzero pixels of
nhoodbelong to the neighborhood for the morphological operation. The center (or origin)
of nhood is its center element, given by floor((size(nhood) + 1)/2).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

r — Radius of the structuring element in the x-y plane
positive integer

Radius of the structuring element in the x-y plane, specified as a positive integer.

• For the disk shape, r is the distance from the origin to the edge of the disk.
• For the diamond shape, r is the distance from the structuring element origin to the

points of the diamond.

1 Functions — Alphabetical List

1-2842

• For the octagon shape, r is the distance from the structuring element origin to the
sides of the octagon, as measured along the horizontal and vertical axes. r must be a
multiple of 3.

Data Types: double

n — Number of periodic line structuring elements used to approximate shape
4 (default) | 0 | 6 | 8

Number of periodic line structuring elements used to approximate shape, specified as 0,
4, 6, or 8. When n is greater than 0, the disk-shaped structuring element is approximated
by a sequence of n periodic-line structuring elements. When n is 0, strel does no
approximation, and the structuring element members comprise all pixels whose centers
are no greater than r away from the origin. Morphological operations using disk
approximations run much faster when the structuring element uses approximations (n >
0). Sometimes it is necessary for strel to use two extra line structuring elements in the
approximation, in which case the number of decomposed structuring elements used is n
+2.

Value of n Behavior
n > 0 strel uses a sequence of n (or sometimes n+2) periodic line-

shaped structuring elements to approximate the shape.
n = 0 strel does not use any approximation. The structuring

element members comprise all pixels whose centers are no
greater than r away from the origin and the corresponding
height values are determined from the formula of the ellipsoid
specified by r and h.

Data Types: double

len — Length of linear structuring element
positive number

Length of linear structuring element, specified as a positive number. len is approximately
the distance between the centers of the structuring element members at opposite ends of
the line.
Data Types: double

deg — Angle of linear structuring element
numeric scalar

 strel

1-2843

Angle of linear structuring element, in degrees, specified as numeric scalar. The angle is
measured in a counterclockwise direction from the horizontal axis.
Data Types: double

[m n] — Size of rectangular structuring element
2-element vector of positive integers

Size of rectangular structuring element, specified as a 2-element vector of positive
integers. The structuring element has m rows and n columns.
Data Types: double

w — Width of square or cubic structuring element
positive integer

Width of square or cubic structuring element, specified as a positive integer.
Data Types: double

[m n p] — Size of cuboidal structuring element
3-element vector of positive integers

Size of cuboidal structuring element, specified as a 3-element vector of positive integers.
The structuring element has m rows, n columns, and p planes.
Data Types: double

Properties
Neighborhood — Structuring element neighborhood
logical array

Structuring element neighborhood, specified as a logical array.
Data Types: logical

Dimensionality — Dimensions of structuring element
nonnegative scalar

Dimensions of structuring element, specified as a nonnegative scalar.
Data Types: double

1 Functions — Alphabetical List

1-2844

Object Functions
imdilate Dilate image
imerode Erode image
imclose Morphologically close image
imopen Morphologically open image
imbothat Bottom-hat filtering
imtophat Top-hat filtering
bwhitmiss Binary hit-miss operation
decompose Return sequence of decomposed structuring elements
reflect Reflect structuring element
translate Translate structuring element

Examples

Create Square Structuring Element

Create an 11-by-11 square structuring element.

SE = strel('square', 11)

SE =
strel is a square shaped structuring element with properties:

 Neighborhood: [11x11 logical]
 Dimensionality: 2

Create Line-Shaped Structuring Element

Create a line-shaped structuring element with a length of 10 at an angle of 45 degrees.

SE = strel('line', 10, 45)

SE =
strel is a line shaped structuring element with properties:

 Neighborhood: [7x7 logical]

 strel

1-2845

 Dimensionality: 2

View the structuring element.

SE.Neighborhood

ans = 7x7 logical array

 0 0 0 0 0 0 1
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 1 0 0 0 0 0
 1 0 0 0 0 0 0

Create Disk-Shaped Structuring Element

Create a disk-shaped structuring element with a radius of 15.

SE3 = strel('disk', 15)

SE3 =
strel is a disk shaped structuring element with properties:

 Neighborhood: [29x29 logical]
 Dimensionality: 2

Display the disk-shaped structuring element.

figure
imshow(SE3.Neighborhood)

1 Functions — Alphabetical List

1-2846

Create 3-D Sphere-shaped Structuring Element

Create a 3-D sphere-shaped structuring element with a radius of 15.

SE = strel('sphere', 15)

SE =
strel is a sphere shaped structuring element with properties:

 Neighborhood: [31x31x31 logical]
 Dimensionality: 3

Display the structuring element.

figure
isosurface(SE.Neighborhood)

 strel

1-2847

Tips
• Structuring elements that do not use approximations (n = 0) are not suitable for

computing granulometries.

Algorithms
For all shapes except 'arbitrary', structuring elements are constructed using a family
of techniques known collectively as structuring element decomposition. The principle is

1 Functions — Alphabetical List

1-2848

that dilation by some large structuring elements can be computed faster by dilation with a
sequence of smaller structuring elements. For example, dilation by an 11-by-11 square
structuring element can be accomplished by dilating first with a 1-by-11 structuring
element and then with an 11-by-1 structuring element. This results in a theoretical
performance improvement of a factor of 5.5, although in practice the actual performance
improvement is somewhat less. Structuring element decompositions used for the 'disk'
shape is an approximations—all other decompositions are exact.

Compatibility Considerations

Linear Structuring Elements Use Angle in Range [0, 180]
Behavior changed in R2017b

Starting in R2017b, strel constrains linear structuring elements to have an angle in the
range [0, 180]. If you specify a value of deg outside this range, then strel computes the
angle as mod(deg,180).

Prior to R2017b, in some situations, strel would create different linear structuring
elements for angles that differ by a factor of 180 degrees.

References
[1] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image

Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 54, Number 3, pp. 252–
254, May 1992.

[2] Adams, R., "Radial Decomposition of Discs and Spheres," Computer Vision, Graphics,
and Image Processing: Graphical Models and Image Processing, Vol. 55, Number
5, pp. 325–332, September 1993.

[3] Jones, R., and P. Soille, "Periodic lines: Definition, cascades, and application to
granulometrie," Pattern Recognition Letters, Vol. 17, pp. 1057–1063, 1996.

 strel

1-2849

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• strel supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• All input arguments must be compile-time constants.
• The methods associated with strel objects are not supported in code generation.
• Arrays of strel objects are not supported.

See Also
offsetstrel

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions — Alphabetical List

1-2850

stretchlim
Find limits to contrast stretch image

Syntax
lowhigh = stretchlim(I)
lowhigh = stretchlim(I,Tol)

Description
lowhigh = stretchlim(I) computes the lower and upper limits that can be used for
contrast stretching grayscale or RGB image I. The limits are returned in lowhigh. By
default, the limits specify the bottom 1% and the top 1% of all pixel values.

You optionally can calculate the limits using a GPU (requires Parallel Computing Toolbox).
For more information, see “Image Processing on a GPU”.

lowhigh = stretchlim(I,Tol) specifies the fraction, Tol, of the image to saturate at
low and high pixel values.

Examples

Find Limits to Stretch Contrast in Grayscale Image

Read grayscale image into the workspace and display it.

I = imread('pout.tif');
figure
imshow(I)

 stretchlim

1-2851

Adjust the contrast in the image using stretchlim to set the limits, and display the
result. The example uses the default limits [0.01 0.99], saturating the upper 1% and
the lower 1%.

J = imadjust(I,stretchlim(I),[]);
figure
imshow(J)

1 Functions — Alphabetical List

1-2852

Find Limits to Stretch Contrast in Grayscale Image on a GPU

Read grayscale image, creating a gpuArray.

gpuarrayI = gpuArray(imread('pout.tif'));
figure, imshow(gpuarrayI)

Adjust the contrast in the image using stretchlim to set the limits. Display the result.

 stretchlim

1-2853

gpuarrayJ = imadjust(gpuarrayI,stretchlim(I),[]);
figure, imshow(gpuarrayJ)

Input Arguments
I — Image to be contrast stretched
2-D grayscale image | 2-D RGB image | gpuArray

Image to be contrast stretched, specified as a 2-D grayscale or RGB image.

To compute the limits using a GPU, specify I as a gpuArray that contains a 2-D grayscale
or RGB image.
Example: I = imread('pout.tif');
Example: I = imread('peppers.png');
Example: I = gpuArray(imread('pout.tif'));
Data Types: single | double | int16 | uint8 | uint16

Tol — Fraction of image to saturate
[0.01 0.99] (default) | numeric scalar | 2-element numeric vector

Fraction of the image to saturate, specified as a numeric scalar or two-element vector
[Low_Fract High_Fract] in the range [0 1].

Value Description
Scalar If Tol is a scalar, then Low_Fract = Tol, and High_Fract = 1 -

Low_Fract, which saturates equal fractions at low and high pixel values.
0 If Tol = 0, then lowhigh = [min(I(:)); max(I(:))].
Default If you omit the Tol argument, then [Low_Fract High_Fract] defaults

to [0.01 0.99], saturating 2%.
Too big If Tol is too big, such that no pixels would be left after saturating low

and high pixel values, then stretchlim returns [0 1].

Example: lohi = stretchlim(I,[.02 .80]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

1 Functions — Alphabetical List

1-2854

Output Arguments
lowhigh — Lower and upper limits for contrast stretching
2-element numeric vector | 2-by-3 numeric matrix | gpuArray

Lower and upper limits for contrast stretching, returned as one of the following.

• A 2-element numeric vector when I is a grayscale image.
• A 2-by-3 numeric matrix when I is an RGB image. The columns indicate the lower and

upper limit for each of the three color channels.

If the limits are computed using a GPU, then lowhigh is returned as a gpuArray
containing a 2-element numeric vector or a 2-by-3 numeric array.
Data Types: double

Tips
• Use the imadjust function to adjust the contrast of image I using the limits,

lowhigh.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• stretchlim supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, stretchlim
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

 stretchlim

1-2855

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

See Also
brighten | decorrstretch | histeq | imadjust

Introduced before R2006a

1 Functions — Alphabetical List

1-2856

subimage
Display multiple images in single figure

Note subimage is not recommended. Use imshow with subplot to display multiple
images in the same figure window. For more information, see “Compatibility
Considerations”.

Syntax
subimage(I)
subimage(X,map)
subimage(x,y, ___)
h = subimage(___)

Description
subimage(I) displays the RGB (truecolor), grayscale, or binary image I in the current
axes.

You can use subimage in conjunction with subplot to create figures with multiple
images, even if the images have different colormaps. subimage converts images to RGB
for display purposes, thus avoiding colormap conflicts.

subimage(X,map) displays the indexed image X with colormap map in the current axes.

subimage(x,y, ___) displays an image using a nondefault spatial coordinate system,
where x and y specify the image limits in the world coordinate system.

h = subimage(___) returns a handle to an image object.

 subimage

1-2857

Examples

Display Two Indexed Images in Same Figure
load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)

Input Arguments
I — Image to display
RGB image | grayscale image | binary image

Image to display, specified as an RGB (truecolor), grayscale, or binary image.
Data Types: double | uint8 | uint16 | logical

X — Indexed image to display
m-by-n matrix of integers

Indexed image, specified as an m-by-n matrix of integers.

• If you specify X as an array of integer data type, then the value 0 corresponds to the
first color in the colormap map. For a colormap containing c colors, values of image X
are clipped to the range [0, c-1].

• If you specify X as an array of data type double, then the value 1 corresponds to the
first color in the colormap. For a colormap containing c colors, values of image X are
clipped to the range [1, c].

Data Types: double | uint8 | uint16 | logical

map — Colormap
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix with values in the
range [0, 1]. Each row of map is a three-element RGB triplet that specifies the red, green,
and blue components of a single color of the colormap.
Data Types: double

1 Functions — Alphabetical List

1-2858

x — Image limits in the x direction
2-element numeric vector

Image limits in the x direction in world coordinates, specified as a 2-element numeric
vector of the form [xmin xmax]. The value of x sets the image XData.

y — Image limits in the y direction
2-element numeric vector

Image limits in the y direction in world coordinates, specified as a 2-element numeric
vector of the form [ymin ymax]. The value of y sets the image YData.

Output Arguments
h — Handle to image object
handle

Handle to an image graphics object, specified as a handle.

Compatibility Considerations

subimage is not recommended
Not recommended starting in R2016b

Before R2016b, imshow set the colormap of a figure window, and all axes within the
figure would have an identical colormap. subimage was introduced in R2006a as a
workaround to display multiple images with different colormaps in the same figure.
However, subimage does not provide all of the syntaxes and options that imshow
provides, such as the ability to specify the display range.

In R2016b, imshow was enhanced so that images displayed within a figure could have
different colormaps. This enhancement renders the subimage function irrelevant. There
are no plans to remove subimage at this time.

To update your code, replace instances of subimage with imshow. You do not need to
change the input arguments.

 subimage

1-2859

See Also
imshow | montage | subplot

Introduced before R2006a

1 Functions — Alphabetical List

1-2860

superpixels
2-D superpixel oversegmentation of images

Syntax
[L,NumLabels] = superpixels(A,N)
[L,NumLabels] = superpixels(___ ,Name,Value,...)

Description
[L,NumLabels] = superpixels(A,N) computes superpixels of the 2-D grayscale or
RGB image A. N specifies the number of superpixels you want to create. The function
returns L, a label matrix of type double, and NumLabels, the actual number of
superpixels that were computed.

The superpixels function uses the simple linear iterative clustering (SLIC) algorithm
[1]. This algorithm groups pixels into regions with similar values. Using these regions in
image processing operations, such as segmentation, can reduce the complexity of these
operations.

[L,NumLabels] = superpixels(___ ,Name,Value,...) computes superpixels of
image A using with Name-Value pairs used to control aspects of the segmentation.

Examples

Compute Superpixels of Input RGB Image

Read image into the workspace.

A = imread('kobi.png');

Calculate superpixels of the image.

[L,N] = superpixels(A,500);

 superpixels

1-2861

Display the superpixel boundaries overlaid on the original image.

figure
BW = boundarymask(L);
imshow(imoverlay(A,BW,'cyan'),'InitialMagnification',67)

Set the color of each pixel in the output image to the mean RGB color of the superpixel
region.

outputImage = zeros(size(A),'like',A);
idx = label2idx(L);
numRows = size(A,1);
numCols = size(A,2);

1 Functions — Alphabetical List

1-2862

for labelVal = 1:N
 redIdx = idx{labelVal};
 greenIdx = idx{labelVal}+numRows*numCols;
 blueIdx = idx{labelVal}+2*numRows*numCols;
 outputImage(redIdx) = mean(A(redIdx));
 outputImage(greenIdx) = mean(A(greenIdx));
 outputImage(blueIdx) = mean(A(blueIdx));
end

figure
imshow(outputImage,'InitialMagnification',67)

 superpixels

1-2863

Input Arguments
A — Input image
real, nonsparse matrix

Input image, specified as a real, nonsparse matrix. For int16 data, A must be a 2-D
grayscale image. For all other data types, A can be a 2-D grayscale or 2-D RGB image.
When the parameter isInputLab is true, the input image must be single or double.
Data Types: single | double | int16 | uint8 | uint16

N — Desired number of superpixels
numeric scalar

Desired number of superpixels, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = superpixels(A,100,'NumIterations', 20);

Compactness — Shape of superpixels
10 (default) | numeric scalar

Shape of superpixels, specified as a numeric scalar. The compactness parameter of the
SLIC algorithm controls the shape of superpixels. A higher value makes superpixels more
regularly shaped, that is, a square. A lower value makes superpixels adhere to boundaries
better, making them irregularly shaped. The allowed range is (0 Inf). Typical values for
compactness are in the range [1,20].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

IsInputLab — Input image data is in the L*a*b* colorspace
false (default) | true

1 Functions — Alphabetical List

1-2864

Input image data is in the L*a*b* colorspace, specified as the logical scalar true or
false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

Method — Algorithm used to compute superpixels
'slic0' (default) | 'slic'

Algorithm used to compute superpixels, specified as one of the following values. The
superpixels function uses two variations of the simple linear iterative clustering (SLIC)
algorithm.

Value Meaning
'slic0' superpixels uses the SLIC0 algorithm to refine 'Compactness'

adaptively after the first iteration. This is the default.
'slic' 'Compactness' is constant during clustering.

Data Types: char | string

NumIterations — Number of iterations used in the clustering phase of the
algorithm
10 (default) | numeric scalar

Number of iterations used in the clustering phase of the algorithm, specified as a numeric
scalar. For most problems, it is not necessary to adjust this parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
L — Label matrix
numeric array

Label matrix, returned as a numeric array of type double. The values are positive
integers, where 1 indicates the first region, 2 the second region, and so on for each
superpixel region in the image.

NumLabels — Number of superpixels computed
numeric scalar

 superpixels

1-2865

Number of superpixels computed, returned as a numeric scalar of type double.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Susstrunk, SLIC Superpixels Compared to State-of-the-art Superpixel
Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Volume 34, Issue 11, pp. 2274-2282, May 2012

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• superpixels supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• All character vector inputs must be compile-time constants.
• The value of 'IsInputLab' (true or false) must be a compile-time constant.

See Also
boundarymask | imoverlay | label2idx | label2rgb | superpixels3

Topics
“Plot Land Classification with Color Features and Superpixels”

Introduced in R2016a

1 Functions — Alphabetical List

1-2866

superpixels3
3-D superpixel oversegmentation of 3-D image

Syntax
[L,NumLabels] = superpixels3(A,N)
[L,NumLabels] = superpixels3(___ ,Name,Value,...)

Description
[L,NumLabels] = superpixels3(A,N) computes 3-D superpixels of the 3-D image A.
N specifies the number of superpixels you want to create. The function returns L, a 3-D
label matrix, and NumLabels, the actual number of superpixels returned.

[L,NumLabels] = superpixels3(___ ,Name,Value,...) computes superpixels of
image A using Name-Value pairs to control aspects of the segmentation.

Examples

Compute 3-D Superpixels of Input Volumetric Intensity Image

Load 3-D MRI data, remove any singleton dimensions, and convert the data into a
grayscale intensity image.

load mri;
D = squeeze(D);
A = ind2gray(D,map);

Calculate the 3-D superpixels. Form an output image where each pixel is set to the mean
color of its corresponding superpixel region.

[L,N] = superpixels3(A,34);

Show all xy-planes progressively with superpixel boundaries.

 superpixels3

1-2867

imSize = size(A);

Create a stack of RGB images to display the boundaries in color.

imPlusBoundaries = zeros(imSize(1),imSize(2),3,imSize(3),'uint8');
for plane = 1:imSize(3)
 BW = boundarymask(L(:, :, plane));
 % Create an RGB representation of this plane with boundary shown
 % in cyan.
 imPlusBoundaries(:, :, :, plane) = imoverlay(A(:, :, plane), BW, 'cyan');
end

implay(imPlusBoundaries,5)

1 Functions — Alphabetical List

1-2868

Set the color of each pixel in output image to the mean intensity of the superpixel region.
Show the mean image next to the original. If you run this code, you can use implay to
view each slice of the MRI data.

pixelIdxList = label2idx(L);
meanA = zeros(size(A),'like',D);
for superpixel = 1:N
 memberPixelIdx = pixelIdxList{superpixel};
 meanA(memberPixelIdx) = mean(A(memberPixelIdx));
end
implay([A meanA],5);

 superpixels3

1-2869

Input Arguments
A — Input image
real, nonsparse 3-D array

Input image, specified as a real, nonsparse 3-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

N — Desired number of superpixels
numeric scalar

Desired number of superpixels, specified as a numeric scalar.

1 Functions — Alphabetical List

1-2870

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: B = superpixels3(A,100,'NumIterations', 20);

Compactness — Shape of superpixels
0.001 if method is slic0 and 0.05 if method is slic (default) | numeric scalar

Shape of superpixels, specified as a numeric scalar. The compactness parameter of the
SLIC algorithm controls the shape of the superpixels. A higher value makes the
superpixels more regularly shaped, that is, a square. A lower value makes the superpixels
adhere to boundaries better, making them irregularly shaped. You can specify any value in
the range [0 Inf) but typical values are in the range [0.01,0.1].

Note If you specify the 'slic0' method, you typically do not need to adjust the
'Compactness' parameter. With the 'slic0' method, superpixel3 adaptively refines
the 'Compactness' parameter automatically, thus eliminating the need to determine a
good value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Method — Algorithm used to compute superpixels
'slic0' (default) | 'slic'

Algorithm used to compute the superpixels, specified as one of the following values. For
more information, see “Algorithms” on page 1-2872.

Value Meaning
'slic0' superpixels3 uses the SLIC0 algorithm to refine 'Compactness'

adaptively after the first iteration. This is the default.

 superpixels3

1-2871

Value Meaning
'slic' 'Compactness' is constant during clustering.

Data Types: char | string

NumIterations — Number of iterations used in the clustering phase of the
algorithm
10 (default) | numeric scalar

Number of iterations used in the clustering phase of the algorithm, specified as a numeric
scalar. For most problems it is not necessary to adjust this parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
L — Label matrix
3-D array of type double

Label matrix, returned as a 3-D array of type double. The values are positive integers,
where 1 indicates the first region, 2 the second region, and so on for each superpixel
region in the image.

NumLabels — Number of superpixels computed
numeric scalar

Number of superpixels computed, returned as a numeric scalar of type double.

Algorithms
The algorithm used in superpixels3 is a modified version of the Simple Linear Iterative
Clustering (SLIC) algorithm used by superpixels. At a high level, it creates cluster
centers and then iteratively alternates between assigning pixels to the closest cluster
center and updating the locations of the cluster centers. superpixels3 uses a distance
metric to determine the closest cluster center for each pixel. This distance metric
combines intensity distance and spatial distance.

The function's Compactness argument comes from the mathematical form of the
distance metric. The compactness parameter of the algorithm is a scalar value that

1 Functions — Alphabetical List

1-2872

controls the shape of the superpixels. The distance between two pixels i and j, where m is
the compactness value, is:

dintensity = li− l j
2

dspatial = (xi− x j)2 + (yi− y j)2 + (zi− z j)2

D = (
dintensity

m)
2

+ (
dspatial

S)
2

Compactness has the same meaning as in the 2-D superpixels function: It determines
the relative importance of the intensity distance and the spatial distance in the overall
distance metric. A lower value makes the superpixels adhere to boundaries better, making
them irregularly shaped. A higher value makes the superpixels more regularly shaped.
The allowable range for compactness is (0 Inf), as in the 2-D function. The typical
range has been found through experimentation to be [0.01 0.1]. The dynamic range of
input images is normalized within the algorithm to be from 0 to 1. This enables a
consistent meaning of compactness values across images.

See Also
boundarymask | imoverlay | label2idx | label2rgb | superpixels

Introduced in R2016b

 superpixels3

1-2873

tformarray
Apply spatial transformation to N-D array

Syntax
B = tformarray(A,T,R,tdims_A,tdims_B,tsize_B,tmap_B,F)

Description
B = tformarray(A,T,R,tdims_A,tdims_B,tsize_B,tmap_B,F) applies a spatial
transformation to array A to produce array B.

Examples

Transform Checkerboard Image

Create a 2-by-2 square checkerboard image where each square is 20 pixels wide. Display
the image.

I = checkerboard(20,1,1);
figure
imshow(I)

Transform the checkerboard with a projective transformation. First create a spatial
transformation structure.

1 Functions — Alphabetical List

1-2874

T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
 [5 5; 40 5; 35 30; -10 30]);

Create a resampler. Use the pad method 'circular' when creating the resampler, so
that the output appears to be a perspective view of an infinite checkerboard.

R = makeresampler('cubic','circular');

Perform the transformation, specifying the transformation structure and the resampler.
For this example, swap the output dimensions, and specify a 100-by-100 output image.
Leave argument tmap_B empty since you specify argument tsize_B. Leave argument F
empty since the fill value is not needed.

J = tformarray(I,T,R,[1 2],[2 1],[100 100],[],[]);
figure
imshow(J)

Transform Checkerboard Image, with Nonuniform Mapping from Input to Output
Space

Create a 2-by-2 square checkerboard image where each square is 20 pixels wide. Display
the image.

I = checkerboard(20,1,1);
figure
imshow(I)

 tformarray

1-2875

Transform the checkerboard with a projective transformation. First create a spatial
transformation structure.

T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
 [5 5; 40 5; 35 30; -10 30]);

Create a resampler. Use the pad method 'circular' when creating the resampler, so
that the output appears to be a perspective view of an infinite checkerboard.

R = makeresampler('cubic','circular');

Create arrays that specify the mapping of points from input space to output space. This
example uses anisotropic sampling, where the distance between samples is larger in one
direction than the other.

samp_x = 1:1.5:150;
samp_y = 1:100;
[x,y] = meshgrid(samp_x,samp_y);
tmap = cat(3,x,y);
size(tmap)

ans = 1×3

 100 100 2

Note the size of tmap. The output image will have dimensions 100-by-100.

Perform the transformation, specifying the transformation structure and the resampler.
Specify the output map as tmap. Leave argument tsize_B empty, since you specify
argument tmap_B. The fill value does not matter since the resampler is circular.

J = tformarray(I,T,R,[1 2],[1 2],[],tmap,[]);
figure
imshow(J)

1 Functions — Alphabetical List

1-2876

The length of checkerboard squares is larger in the y-direction than in the x-direction,
which agrees with the larger sampling distance between points in the vector samp_x.
Compared to the result using isotopic point mapping (see example “Transform
Checkerboard Image” on page 1-2874), three additional columns of the checkerboard
appear at the right of the transformed image, and no new rows are added to the
transformed image.

Input Arguments
A — Input image
nonsparse numeric array

Input image, specified as a nonsparse numeric array. A can be real or complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
logical

T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure. You
typically use the maketform function to create a TFORM structure.

tformarray uses T and the function tforminv to compute the corresponding location in
the input transform subscript space for each location in the output transform subscript
space. tformarray defines the input transform space by tdims_B and tsize_B and the
output transform subscript space by tdims_A and size(A).

 tformarray

1-2877

If T is empty, then tformarray operates as a direct resampling function. Further, if
tmap_B is:

• Not empty, then tformarray applies the resampler defined in R to compute values at
each transform space location defined in tmap_B

• Empty, then tformarray applies the resampler at each location in the output
transform subscript grid

Data Types: struct

R — Resampler
structure

Resampler, specified as a structure. A resampler structure defines how to interpolate
values of the input array at specified locations. R is created with makeresampler, which
allows fine control over how to interpolate along each dimension. makeresampler also
controls what input array values to use when interpolating close to the edge of the array.
Data Types: struct

tdims_A — Input transform dimensions
row vector of finite, positive integers

Input transform dimensions, specified as a row vector of finite, positive integers.

tdims_A and tdims_B indicate which dimensions of the input and output arrays are
involved in the spatial transformation. Each element must be unique. The entries need not
be listed in increasing order, but the order matters. The order specifies the precise
correspondence between dimensions of arrays A and B and the input and output spaces of
the transformation T.

length(tdims_A) must equal T.ndims_in, and length(tdims_B) must equal
T.ndims_out.

For example, if T is a 2-D transformation, tdims_A = [2 1], and tdims_B = [1 2],
then the row and column dimensions of A correspond to the second and first
transformation input-space dimensions, respectively. The row and column dimensions of B
correspond to the first and second output-space dimensions, respectively.
Data Types: double

tdims_B — Output transform dimensions
row vector of finite, positive integers

1 Functions — Alphabetical List

1-2878

Output transform dimensions, specified as a row vector of finite, positive integers. For
more information, see tdims_A.
Data Types: double

tsize_B — Size of output array in the transform dimensions
row vector of finite, positive integers

Size of the output array transform dimensions, specified as a row vector of finite, positive
integers. The size of B along nontransform dimensions is taken directly from the size of A
along those dimensions.

For example, if T is a 2-D transformation, size(A) = [480 640 3 10], tdims_B is [2
1], and tsize_B is [300 200], then size(B) is [200 300 3 10].
Data Types: double

tmap_B — Point locations in output space
nonsparse, finite, real-valued array

Point locations in output space, specified as a nonsparse, finite real-valued array. tmap_B
is an optional argument that provides an alternative way of specifying the correspondence
between the position of elements of B and the location in output transform space. tmap_B
can be used, for example, to compute the result of an image warp at a set of arbitrary
locations in output space.

If tmap_B is not empty, then the size of tmap_B is

 [D1 D2 D3 ... DN L]

where N equals length(tdims_B). tsize_B should be [].

The value of L depends on whether T is empty. If T is:

• Not empty, then L is T.ndims_out, and each L-dimension point in tmap_B is
transformed to an input-space location using T

• Empty, then L is length(tdims_A), and each L-dimensional point in tmap_B is used
directly as a location in input space.

Data Types: double

F — Fill values
numeric array or scalar

 tformarray

1-2879

Fill values, specified as a numeric array or scalar. The fill values in F can be used in three
situations:

• When a separable resampler is created with makeresampler and its padmethod is
set to either 'fill' or 'bound'.

• When a custom resampler is used that supports the 'fill' or 'bound' pad methods
(with behavior that is specific to the customization).

• When the map from the transform dimensions of B to the transform dimensions of A is
deliberately undefined for some points. Such points are encoded in the input transform
space by NaNs in either tmap_B or in the output of tforminv.

In the first two cases, fill values are used to compute values for output locations that map
outside or near the edges of the input array. Fill values are copied into B when output
locations map well outside the input array. See makeresampler for more information
about 'fill' and 'bound'.

When F is:

• A scalar (including NaN), its value is replicated across all the nontransform
dimensions.

• Nonscalar, its size depends on size(A) in the nontransform dimensions. Specifically,
if K is the Jth nontransform dimension of A, then size(F,J) must be either
size(A,K) or 1. As a convenience, tformarray replicates F across any dimensions
with unit size such that after the replication size(F,J) equals size(A,K).

For example, suppose A represents 10 RGB images and has size 200-by-200-by-3-by-10, T
is a 2-D transformation, and tdims_A and tdims_B are both [1 2]. In other words,
tformarray applies the same 2-D transform to each color plane of each of the 10 RGB
images. In this situation you have several options for F:

• F can be a scalar, in which case the same fill value is used for each color plane of all
10 images.

• F can be a 3-by-1 vector, [R G B]'. tformarray uses the RGB value as the fill value
for the corresponding color planes of each of the 10 images.

• F can be a 1-by-10 vector. tformarray uses a different fill value for each of 10
images, with that fill value being used for all three color planes.

• F can be a 3-by-10 matrix. tformarray uses a different RGB fill color for each of the
10 images.

Data Types: double

1 Functions — Alphabetical List

1-2880

Output Arguments
B — Transformed image
numeric array

Transformed image, returned as a numeric array.

See Also
findbounds | imtransform | makeresampler | maketform

Introduced before R2006a

 tformarray

1-2881

tformfwd
Apply forward spatial transformation

Syntax
[X,Y] = tformfwd(T,U,V)
[X1,X2,...,X_ndims_out] = tformfwd(T,U1,U2,...,U_ndims_in)
X = tformfwd(T,U)
[X1,X2,...,X_ndims_out] = tformfwd(T,U)
X = tformfwd(T,U1,U2,...,U_ndims_in)

Description
[X,Y] = tformfwd(T,U,V) applies the 2D-to-2D forward spatial transformation
defined in T to coordinate arrays U and V, mapping the point [U(k) V(k)] to the point
[X(k) Y(k)].

Both T.ndims_in and T.ndims_out must equal 2. U and V are typically column vectors,
but they can have any dimensionality. X and Y are the same size as U and V.

[X1,X2,...,X_ndims_out] = tformfwd(T,U1,U2,...,U_ndims_in) applies the
ndims_in-to-ndims_out spatial transformation defined in T to the coordinate arrays
U1,U2,...,U_ndims_in. The transformation maps the point [U1(k)
U2(k) ...U_ndims_in(k)] to the point [X1(k) X2(k) ... X_ndims_out(k)].

The number of input coordinate arrays, ndims_in, must equal T.ndims_in. The number
of output coordinate arrays, ndims_out, must equal T.ndims_out. The arrays
U1,U2,...,U_ndims_in can have any dimensionality, but must be the same size. The
output arrays X1,X2,...,X_ndims_out must be this size also.

X = tformfwd(T,U) applies the spatial transformation defined in T to coordinate array
U.

• When U is a 2-D matrix with dimensions m-by-ndims_in, X is a 2-D matrix with
dimensions m-by-ndims_out. tformfwd applies the ndims_in-to-ndims_out
transformation to each row of U. tformfwd maps the point U(k, :) to the point X(k, :).

1 Functions — Alphabetical List

1-2882

• When U is an (N+1)-dimensional array, tformfwd maps the point U(k1, k2, … ,kN, :) to
the point X(k1, k2, … ,kN, :).

size(U,N+1) must equal ndims_in. X is an (N+1)-dimensional array, with
size(X,I) equal to size(U,I) for I = 1, … ,N, and size(X,N+1) equal to
ndims_out.

The syntax X = tformfwd(U,T) is an older form of this syntax that remains supported
for backward compatibility.

[X1,X2,...,X_ndims_out] = tformfwd(T,U) maps one (N+1)-dimensional array to
ndims_out equally sized N-dimensional arrays.

X = tformfwd(T,U1,U2,...,U_ndims_in) maps ndims_in N-dimensional arrays to
one (N+1)-dimensional array.

Examples

Create an Affine Transformation and Validate It with Forward Mapping

Create an affine transformation that maps the triangle with vertices (0,0), (6,3), (-2,5) to
the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tformfwd. The results should equal x and y.

[xm, ym] = tformfwd(tform, u, v)

xm = 3×1

 -1
 0
 4

ym = 3×1

 tformfwd

1-2883

 -1
 -10
 4

Input Arguments
T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure. Create T
using maketform, fliptform, or cp2tform.
Data Types: struct

U — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. The size and dimensionality of U can
have additional limitations depending on the syntax used.
Data Types: double

V — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. V must be the same size as U.
Data Types: double

U1,U2,...,U_ndims_in — Input coordinate points
multiple numeric arrays

Input coordinate points, specified as multiple numeric arrays. The size and dimensionality
of U1,U2,...,U_ndims_in can have additional limitations depending on the syntax
used.
Data Types: double

1 Functions — Alphabetical List

1-2884

Output Arguments
X — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. The size and
dimensionality of X can have additional limitations depending on the syntax used.

Y — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. Y is the same size as V.

X1,X2,...,X_ndims_out — Coordinates of output points
multiple numeric arrays

Coordinates of output points, returned as multiple numeric arrays. The size and
dimensionality of X1,X2,...,X_ndims_out can have additional limitations depending
on the syntax used.

See Also
cp2tform | fliptform | maketform | tforminv

Introduced before R2006a

 tformfwd

1-2885

tforminv
Apply inverse spatial transformation

Syntax
[U,V] = tforminv(T,X,Y)
[U1,U2,...,U_ndims_in] = tforminv(T,X1,X2,...,X_ndims_out)
U = tforminv(T,X)
[U1,U2,...,U_ndims_in] = tforminv(T,X)
U = tforminv(T,X1,X2,...,X_ndims_out)

Description
[U,V] = tforminv(T,X,Y) applies the 2D-to-2D inverse spatial transformation defined
in T to coordinate arrays X and Y, mapping the point [X(k) Y(k)] to the point [U(k)
V(k)].

Both T.ndims_in and T.ndims_out must equal 2. X and Y are typically column vectors,
but they can have any dimensionality. U and V are the same size as X and Y

[U1,U2,...,U_ndims_in] = tforminv(T,X1,X2,...,X_ndims_out) applies the
ndims_out-to-ndims_in inverse transformation defined in T to the coordinate arrays
X1,X2,...,X_ndims_out. The transformation maps the point [X1(k) X2(k) ...
X_ndims_out(k)] to the point [U1(k) U2(k) ... U_ndims_in(k)].

The number of input coordinate arrays, ndims_out, must equal T.ndims_out. The
number of output coordinate arrays, ndims_in, must equal T.ndims_in. The arrays
X1,X2,...,X_ndims_out can have any dimensionality, but must be the same size. The
output arrays U1,U2,...,U_ndims_in must be this size also.

U = tforminv(T,X) applies the ndims_out-to-ndims_in inverse transformation
defined in T to array X.

• When X is a 2-D matrix with dimensions m-by-ndims_out matrix, U is a 2-D matrix
with dimensions m-by-ndims_in. tforminv applies the transformation to each row of
X. tforminv maps the point X(k, :) to the point U(k, :).

1 Functions — Alphabetical List

1-2886

• When X is an (N+1)-dimensional array, tforminv maps the point X(k1, k2, … ,kN, :) to
the point U(k1, k2, … ,kN, :).

size(X,N+1) must equal ndims_out. U is an (N+1)-dimensional array, with
size(U,I) equal to size(X,I) for I = 1, … ,N, and size(U,N+1) equal to
ndims_in.

The syntax U = tforminv(X,T) is an older form of this syntax that remains supported
for backward compatibility.

[U1,U2,...,U_ndims_in] = tforminv(T,X) maps one (N+1)-dimensional array to
ndims_in equally sized N-dimensional arrays.

U = tforminv(T,X1,X2,...,X_ndims_out) maps ndims_out N-dimensional arrays
to one (N+1)-dimensional array.

Examples

Create an Affine Transformation and Validate It with Inverse Mapping

Create an affine transformation that maps the triangle with vertices (0,0), (6,3), (-2,5) to
the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tforminv. The results should equal u and v.

[um, vm] = tforminv(tform, x, y)

um = 3×1

 0
 6.0000
 -2.0000

vm = 3×1

 tforminv

1-2887

 0
 3.0000
 5.0000

Input Arguments
T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure. Create T
using maketform, fliptform, or cp2tform.
Data Types: struct

X — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. The size and dimensionality of X can
have additional limitations depending on the syntax used.
Data Types: double

Y — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. Y must be the same size as X.
Data Types: double

X1,X2,...,X_ndims_out — Input coordinate points
multiple numeric arrays

Input coordinate points, specified as multiple numeric arrays. The size and dimensionality
of X1,X2,...,X_ndims_out can have additional limitations depending on the syntax
used.
Data Types: double

1 Functions — Alphabetical List

1-2888

Output Arguments
U — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. The size and
dimensionality of U can have additional limitations depending on the syntax used.

V — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. V is the same size as Y.

U1,U2,...,U_ndims_in — Coordinates of output points
multiple numeric arrays

Coordinates of output points, returned as multiple arrays. The size and dimensionality of
U1,U2,...,U_ndims_in can have additional limitations depending on the syntax used.

See Also
cp2tform | fliptform | maketform | tformfwd

Introduced before R2006a

 tforminv

1-2889

tonemap
Render high dynamic range image for viewing

Syntax
RGB = tonemap(HDR)
RGB = tonemap(HDR,Name,Value)

Description
RGB = tonemap(HDR) converts the high dynamic range image HDR to a lower dynamic
range image, RGB, suitable for display, using a process called tone mapping. Tone
mapping is a technique used to approximate the appearance of high dynamic range
images on a display with a more limited dynamic range.

RGB = tonemap(HDR,Name,Value) uses name-value pairs to control various aspects of
the tone mapping.

Examples

Display High Dynamic Range Image

This example shows how to display a high dynamic range (HDR) image. To view an HDR
image, you must first convert the data to a dynamic range that can be displayed correctly
on a computer.

Read a high dynamic range (HDR) image, using hdrread. If you try to display the HDR
image, notice that it does not display correctly.

hdr_image = hdrread('office.hdr');
imshow(hdr_image)

1 Functions — Alphabetical List

1-2890

Convert the HDR image to a dynamic range that can be viewed on a computer, using the
tonemap function. This function converts the HDR image into an RGB image of class
uint8 .

rgb = tonemap(hdr_image);
whos

 Name Size Bytes Class Attributes

 hdr_image 665x1000x3 7980000 single
 rgb 665x1000x3 1995000 uint8

Display the RGB image.

imshow(rgb)

 tonemap

1-2891

Input Arguments
HDR — High dynamic range image
m-by-n-by-3 array

High dynamic range image, specified as an m-by-n-by-3 array.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1 Functions — Alphabetical List

1-2892

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: RGB = tonemap(HDR,'AdjustLightness',[0.05 0.95]);

AdjustLightness — Overall lightness of the rendered image
2-element vector

Overall lightness of the rendered image, specified as a two-element vector. The vector
takes the form [low high], where low and high are luminance values of the low
dynamic range image, in the range (0, 1]. These values are passed to imadjust.
Data Types: double

AdjustSaturation — Saturation of colors in the rendered image
1 (default) | positive scalar

Saturation of colors in the rendered image, specified as a positive scalar. When the value
is greater than 1, the colors are more saturated. When the value is in the range (0, 1],
colors are less saturated.
Data Types: double

NumberOfTiles — Number of tiles used during adaptive histogram equalization
[4 4] (default) | 2-element vector of positive integers

Number of tiles used during the adaptive histogram equalization part of the tone mapping
operation, specified as a 2-element vector of positive integers. The vector takes the form
[rows cols], where rows and cols specify the number of rows and columns of tiles.
Both rows and cols must be at least 2. The total number of image tiles is equal to
rows*cols. A larger number of tiles results in an image with greater local contrast.
Data Types: double

Output Arguments
RGB — Low dynamic range image
m-by-n-by-3 array

Low dynamic range image, specified as an m-by-n-by-3 array.
Data Types: uint8

 tonemap

1-2893

See Also
adapthisteq | hdrread | makehdr | stretchlim | tonemapfarbman

Introduced in R2007b

1 Functions — Alphabetical List

1-2894

tonemapfarbman
Convert HDR image to LDR using edge-preserving multiscale decompositions

Syntax
LDR = tonemapfarbman(HDR)
LDR = tonemapfarbman(HDR,Name,Value)

Description
LDR = tonemapfarbman(HDR) converts the high dynamic range (HDR) image to a low
dynamic range (LDR) image, suitable for display, using a process called edge-preserving
decompositions for multiscale tone and detail manipulation.

LDR = tonemapfarbman(HDR,Name,Value) uses one or more name-value pairs to
control various aspects of the tone mapping.

Examples

Compress Dynamic Range of HDR Image Using Edge-Preserving Multiscale
Decompositions

Load a high dynamic range (HDR) image into the workspace. Convert the HDR image to a
low dynamic range (LDR) image using the basic tone mapping function tonemap. Display
the result.

HDR = hdrread('office.hdr');
LDR = tonemap(HDR);
imshow(LDR)

 tonemapfarbman

1-2895

The LDR image is displayed with an acceptable dynamic range, but colors are muted.

Convert the HDR image to an LDR image using edge-preserving multiscale
decompositions. Display the result.

RGB = tonemapfarbman(HDR);
imshow(RGB)

1 Functions — Alphabetical List

1-2896

Colors appear more saturated, but the image is bright and has poor contrast. This
brightness and contrast indicate that the default value of 'Exposure' is too large. The
poor contrast is especially evident in the shadow of the tree.

Repeat the conversion with a lower value of 'Exposure' to darken the image. Display
the result.

RGB2 = tonemapfarbman(HDR,'Exposure',1.5);
imshow(RGB2)

 tonemapfarbman

1-2897

The image contrast is improved. Also, the image shows a decrease in the clipping of pixel
values in bright regions, such as the sky, road, and monitor.

Input Arguments
HDR — High dynamic range image
m-by-n matrix | m-by-n-by-3 array

High dynamic range image, specified as an m-by-n matrix or an m-by-n-by-3 array.
Data Types: single | double

1 Functions — Alphabetical List

1-2898

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: LDR = tonemapFarbman(HDR,'Saturation',2.1);

RangeCompression — Range compression
0.3 (default) | number in the range [0, 1]

Range compression, specified as the comma-separated pair consisting of
'RangeCompression' and a number in the range [0, 1]. A value of 1 represents
maximum compression and a value of 0 represents minimum compression.

Saturation — Saturation
1.6 (default) | nonnegative number

Saturation, specified as the comma-separated pair consisting of 'Saturation' and a
nonnegative number. The recommended range for 'Saturation' is [0, 5]. As the
saturation value increases, colors become more rich and intense. As the saturation value
decreases, colors fade away to gray. The 'Saturation' argument does not affect
grayscale HDR images.

Exposure — Exposure
3 (default) | positive number

Exposure, specified as the comma-separated pair consisting of 'Exposure' and a
positive number. The recommended range for 'Exposure' is (0, 5]. As this value
decreases, the exposure length decreases, so the image darkens. As this value increases,
the exposure length increases, so the image brightens.

NumberOfScales — Number of scales
3 (default) | positive integer

Number of scales, specified as the comma-separated pair consisting of
'NumberOfScales' and a positive integer. The recommended range for
'NumberOfScales' is [1, 5]. The default number of scales is length(Weights) when
you specify 'Weights'. Otherwise, the default number of scales is 3.

Weights — Weights of detail layers
[1.5 1.5 1.5] (default) | n-element vector of positive numbers

 tonemapfarbman

1-2899

Weights of detail layers, specified as the comma-separated pair consisting of 'Weights'
and an n-element vector of positive numbers, where n is the number of scales specified by
'NumberOfScales'. The recommended range of each element in Weights is (0, 3]. The
default value of 'Weights' is an n-element numeric vector with all elements set to 1.5.
For Weights <1, the amount of detail in the output image decreases and Weights >1,
the amount of detail in the output image increases.

Output Arguments
LDR — Low dynamic range image
numeric array

Low dynamic range image, specified as a numeric array of the same size as HDR.
Data Types: uint8

Tips
• This function uses an anisotropic diffusion filter, imdiffusefilt, for the

approximation of the weighted least squares filter, as proposed by Farbman et al. [1]

References
[1] Farbman, Z., R. Fattal, D. Lischinski, and R. Szeliski. "Edge-Preserving Decompositions

for Multi-Scale Tone and Detail Manipulation." ACM Transactions on Graphics.
Vol. 27, Number 3, August 2008, pp. 1–10.

See Also
hdrread | imdiffusefilt | locallapfilt | localtonemap | makehdr | tonemap

Introduced in R2018b

1 Functions — Alphabetical List

1-2900

transformPointsForward
Apply forward geometric transformation

Syntax
[x,y] = transformPointsForward(tform,u,v)
[x,y,z] = transformPointsForward(tform,u,v,w)
X = transformPointsForward(tform,U)

Description
[x,y] = transformPointsForward(tform,u,v) applies the forward transformation
of 2-D geometric transformation tform to the points specified by coordinates u and v.

[x,y,z] = transformPointsForward(tform,u,v,w) applies the forward
transformation of 3-D geometric transformation tform to the points specified by
coordinates u, v, and w.

X = transformPointsForward(tform,U) applies the forward transformation of
tform to the input coordinate matrix U and returns the coordinate matrix X.
transformPointsForward maps the kth point U(k,:) to the point X(k,:).

Examples

Apply Forward Transformation of 2-D Geometric Transformation

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

tform =

 transformPointsForward

1-2901

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply forward geometric transformation to an input (u,v) point.

[X,Y] = transformPointsForward(tform,5,10)

X =

 6.6605

Y =

 8.9798

Transform Coordinate Arrays Using Custom 2-D Transformation

Specify the x- and y-coordinates vectors of five points to transform.

x = [10 11 15 2 2];
y = [15 32 34 7 10];

Define the inverse and forward mapping functions. Both functions accept and return
points in packed (x,y) format.

inversefn = @(c) [c(:,1).^2,sqrt(c(:,2))];
forwardfn = @(c) [sqrt(c(:,1)),c(:,2).^2];

Create a 2-D geometric transform object, tform, that stores the inverse mapping function
and the optional forward mapping function.

tform = geometricTransform2d(inversefn,forwardfn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1).^2,sqrt(c(:,2))]
 ForwardFcn: @(c)[sqrt(c(:,1)),c(:,2).^2]
 Dimensionality: 2

1 Functions — Alphabetical List

1-2902

Apply the inverse geometric transform to the input points.

[u,v] = transformPointsInverse(tform,x,y)

u = 1×5

 100 121 225 4 4

v = 1×5

 3.8730 5.6569 5.8310 2.6458 3.1623

Apply the forward geometric transform to the transformed points u and v.

[x,y] = transformPointsForward(tform,u,v)

x = 1×5

 10 11 15 2 2

y = 1×5

 15.0000 32.0000 34.0000 7.0000 10.0000

Apply Forward Transformation of 3-D Geometric Transformation

Create an affine3d object that defines the transformation.

tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])

tform =

 affine3d with properties:

 T: [4×4 double]
 Dimensionality: 3

Apply forward transformation of 3-D geometric transformation to an input (u,v,w) point.

[X,Y,Z] = transformPointsForward(tform,2,3,5)

 transformPointsForward

1-2903

X =

 48

Y =

 27

Z =

 33

Transform Coordinate Arrays Using Custom 3-D Transformation

Specify the x-, y- and the z-coordinate vectors of five points to transform.

x = [3 5 7 9 11];
y = [2 4 6 8 10];
z = [5 9 13 17 21];

Define the inverse and forward mapping functions that accept and return points in
packed (x,y,z) format.

inverseFcn = @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2];
forwardFcn = @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))];

Create a 3-D geometric transformation object, tform, that stores these inverse and
forward mapping functions.

tform = geometricTransform3d(inverseFcn,forwardFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2]
 ForwardFcn: @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))]
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

[u,v,w] = transformPointsInverse(tform,x,y,z)

1 Functions — Alphabetical List

1-2904

u = 1×5

 9 25 49 81 121

v = 1×5

 4 16 36 64 100

w = 1×5

 25 81 169 289 441

Apply the forward geometric transform to the transformed points u, v, and w.

[x,y,z] = transformPointsForward(tform,u,v,w)

x = 1×5

 3 5 7 9 11

y = 1×5

 2 4 6 8 10

z = 1×5

 5 9 13 17 21

Input Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform is an affine2d, projective2d, or
geometricTransform2d geometric transformation object.

 transformPointsForward

1-2905

For 3-D geometric transformations, tform is an affine3d object or
geometricTransform3d geometric transformation object.

u — x-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

x-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric
array. The number of dimensions of u matches the dimensionality of tform.
Data Types: single | double

v — y-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

y-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric
array. The size of v must match the size of u.
Data Types: single | double

w — z-coordinates of points to be transformed
m-by-n-by-p numeric array

z-coordinates of points to be transformed, specified as an m-by-n-by-p numeric array. w is
used only when tform is a 3-D geometric transformation. The size of w must match the
size of u.
Data Types: single | double

U — Coordinates of points to be transformed
l-by-2 or l-by-3 numeric array

Coordinates of points to be transformed, specified as an l-by-2 or l-by-3 numeric array.
The number of columns of U matches the dimensionality of tform.

The first column lists the x-coordinate of each point to transform, and the second column
lists the y-coordinate. If tform represents a 3-D geometric transformation, U has size l-
by-3 and the third column lists the z-coordinate of the points to transform.
Data Types: single | double

1 Functions — Alphabetical List

1-2906

Output Arguments
x — x-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

x-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p
numeric array. The number of dimensions of x matches the dimensionality of tform.
Data Types: single | double

y — y-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

y-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p
numeric array. The size of y matches the size of x.
Data Types: single | double

z — z-coordinates of points after transformation
m-by-n-by-p numeric array

z-coordinates of points after transformation, returned as an m-by-n-by-p numeric array.
The size of z matches the size of x.
Data Types: single | double

X — Coordinates of points after transformation
numeric array

Coordinates of points after transformation, returned as a numeric array. The size of X
matches the size of U.

The first column lists the x-coordinate of each point after transformation, and the second
column lists the y-coordinate. If tform represents a 3-D geometric transformation, the
third column lists the z-coordinate of the points after transformation.
Data Types: single | double

See Also
imwarp | transformPointsInverse

 transformPointsForward

1-2907

Introduced in R2013a

1 Functions — Alphabetical List

1-2908

transformPointsInverse
Package:

Apply inverse geometric transformation

Syntax
[u,v] = transformPointsInverse(tform,x,y)
[u,v,w] = transformPointsInverse(tform,x,y,z)
U = transformPointsInverse(tform,X)

Description
[u,v] = transformPointsInverse(tform,x,y) applies the inverse transformation
of 2-D geometric transformation tform to the points specified by coordinates x and y.

[u,v,w] = transformPointsInverse(tform,x,y,z) applies the inverse
transformation of 3-D geometric transformation tform to the points specified by
coordinates x, y, and z.

U = transformPointsInverse(tform,X) applies the inverse transformation of
tform to the input coordinate matrix X and returns the coordinate matrix U.
transformPointsInverse maps the kth point X(k,:) to the point U(k,:).

Examples

Apply Inverse Transformation of 2-D Geometric Transformation

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

 transformPointsInverse

1-2909

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply forward transformation of 2-D geometric transformation to an input point.

[X,Y] = transformPointsForward(tform,5,10)

X =

 6.6605

Y =

 8.9798

Apply inverse transformation of 2-D geometric transformation to output point from the
previous step to recover the original coordinates.

[U,V] = transformPointsInverse(tform,X,Y)

U =

 5.0000

V =

 10

Transform Packed Coordinates Using Custom 2-D Transformation

Specify the packed (x,y) coordinates of five input points. The packed coordinates are
stored in a 5-by-2 matrix, where the x-coordinate of each point is in the first column, and
the y-coordinate of each point is in the second column.

XY = [10 15;11 32;15 34;2 7;2 10];

Define the inverse mapping function. The function accepts and returns points in packed
(x,y) format.

1 Functions — Alphabetical List

1-2910

inversefn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2)]

inversefn = function_handle with value:
 @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]

Create a 2-D geometric transform object, tform, that stores the inverse mapping
function.

tform = geometricTransform2d(inversefn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

UV = transformPointsInverse(tform,XY)

UV = 5×2

 25 -5
 43 -21
 49 -19
 9 -5
 12 -8

Apply Inverse Transformation of 3-D Geometric Transformation

Create an affine3d object that defines the transformation.

tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])

tform =

 affine3d with properties:

 transformPointsInverse

1-2911

 T: [4×4 double]
 Dimensionality: 3

Apply forward transformation of 3-D geometric transformation to an input point.

[X,Y,Z] = transformPointsForward(tform,2,3,5)

X =

 48

Y =

 27

Z =

 33

Apply inverse transformation of 3-D geometric transformation to output point from the
previous step to recover the original coordinates.

[U,V,W] = transformPointsInverse(tform,X,Y,Z)

U =

 2.0000

V =

 3

W =

 5.0000

1 Functions — Alphabetical List

1-2912

Transform Packed Coordinates Using Custom 3-D Transformation

Specify the packed (x,y,z) coordinates of five input points. The packed coordinates are
stored as a 5-by-3 matrix, where the first, second, and third columns contain the x-, y-,
and z- coordinates,respectively.

XYZ = [5 25 20;10 5 25;15 10 5;20 15 10;25 20 15];

Define an inverse mapping function that accepts and returns points in packed (x,y,z)
format.

inverseFcn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping
function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2]
 ForwardFcn: []
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

UVW = transformPointsInverse(tform,XYZ)

UVW = 5×3

 30 -20 400
 15 5 625
 25 5 25
 35 5 100
 45 5 225

Input Arguments
tform — Geometric transformation
geometric transformation object

 transformPointsInverse

1-2913

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform is an affine2d, projective2d,
geometricTransform2d, LocalWeightedMeanTransformation2D,
PiecewiseLinearTransformation2D, or PolynomialTransformation2D geometric
transformation object.

For 3-D geometric transformations, tform is an affine3d object or
geometricTransform3d geometric transformation object.

x — x-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

x-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric
array. The number of dimensions of x matches the dimensionality of tform.
Data Types: single | double

y — y-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

y-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric
array. The size of y must match the size of x.
Data Types: single | double

z — z-coordinates of points to be transformed
m-by-n-by-p numeric array

z-coordinates of points to be transformed, specified as an m-by-n-by-p numeric array. z is
used only when tform is a 3-D geometric transformation. The size of z must match the
size of x.
Data Types: single | double

X — Coordinates of points to be transformed
l-by-2 or l-by-3 numeric array

Coordinates of points to be transformed, specified as an l-by-2 or l-by-3 numeric array.
The number of columns of X matches the dimensionality of tform.

The first column lists the x-coordinate of each point to transform, and the second column
lists the y-coordinate. If tform represents a 3-D geometric transformation, X has size l-
by-3 and the third column lists the z-coordinate of the points to transform.

1 Functions — Alphabetical List

1-2914

Data Types: single | double

Output Arguments
u — x-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

x-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p
numeric array. The number of dimensions of u matches the dimensionality of tform.
Data Types: single | double

v — y-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

y-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p
numeric array. The size of v matches the size of u.
Data Types: single | double

w — z-coordinates of points after transformation
m-by-n-by-p numeric array

z-coordinates of points after transformation, returned as an m-by-n-by-p numeric array.
The size of w matches the size of u.
Data Types: single | double

U — Coordinates of points after transformation
numeric array

Coordinates of points after transformation, returned as a numeric array. The size of U
matches the size of X.

The first column lists the x-coordinate of each point after transformation, and the second
column lists the y-coordinate. If tform represents a 3-D geometric transformation, the
third column lists the z-coordinate of the points after transformation.
Data Types: single | double

 transformPointsInverse

1-2915

See Also
imwarp | transformPointsForward

Introduced in R2013a

1 Functions — Alphabetical List

1-2916

translate
Translate structuring element

Syntax
SE2 = translate(SE,v)

Description
SE2 = translate(SE,v) translates the structuring element SE in N-D space. v is an N-
element vector containing the offsets of the desired translation in each dimension.

Examples

Translate Structuring Element

Read an image into the workspace.

I = imread('cameraman.tif');

Create a structuring element and translate it down and to the right by 25 pixels.

se = translate(strel(1), [25 25]);

Dilate the image using the translated structuring element.

J = imdilate(I,se);

Display the original image and the translated image.

figure
imshow(I), title('Original')

 translate

1-2917

figure
imshow(J), title('Translated');

1 Functions — Alphabetical List

1-2918

Translate Offset Structuring Element

Create an offset structuring element.

SE = offsetstrel('ball', 5, 6.5)

SE =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

SE.Offset

ans = 11×11

 translate

1-2919

 -Inf -Inf 0 0.8123 1.6246 2.4369 1.6246 0.8123 0 -Inf -Inf
 -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 2.4369 3.2492 4.0615 4.8738 5.6861 6.4984 5.6861 4.8738 4.0615 3.2492 2.4369
 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 ⋮

Translate the structuring element.

V = [2 2];
SE2 = translate(SE,V)

SE2 =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [15x15 double]
 Dimensionality: 2

SE2.Offset

ans = 15×15

 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf 0 0.8123 1.6246 2.4369 1.6246 0.8123 0 -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 -Inf -Inf -Inf -Inf 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 -Inf -Inf -Inf -Inf 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 -Inf -Inf -Inf -Inf 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 -Inf -Inf -Inf -Inf 2.4369 3.2492 4.0615 4.8738 5.6861 6.4984 5.6861 4.8738 4.0615 3.2492 2.4369
 ⋮

1 Functions — Alphabetical List

1-2920

Input Arguments
SE — Structuring element
strel or offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

v — Translation offsets
numeric vector

Translation offsets, specified as a numeric vector. Each element specifies the amount of
desired translation in the corresponding dimension.

Output Arguments
SE2 — Translated structuring element
strel or offsetstrel object

Translated structuring elements, returned as a strel or offsetstrel object.

See Also
reflect

Introduced before R2006a

 translate

1-2921

truesize
Adjust display size of image

Syntax
truesize(fig,[mrows ncols])
truesize(fig)

Description
truesize(fig,[mrows ncols]) adjusts the display size of an image in a figure, fig,
to the dimensions [mrows ncols], in pixels.

truesize(fig) adjusts the display size such that each image pixel covers one screen
pixel.

If you do not specify a figure, truesize adjusts the display size of the current figure.

Examples

Adjust Display Size of Image

Create a default checkerboard image, which has size 80-by-80 pixels. Display the
checkerboard image to fill the full size of the figure window. The image is magnified to fill
the window.

c = checkerboard;
imshow(c,'InitialMagnification','fit')

1 Functions — Alphabetical List

1-2922

Display the checkerboard image so that each image pixel covers one screen pixel.

truesize

 truesize

1-2923

You can adjust the size of the figure window to arbitrary dimension. The image scales to
fit within the figure window.

truesize([300 200]);

1 Functions — Alphabetical List

1-2924

Input Arguments
fig — Figure
gcf (default) | figure handle

Figure containing a single image or a single image with a colorbar, specified as a figure
handle. By default, truesize uses the current figure, with handle gcf.

[mrows ncols] — Screen dimensions
2-element numeric row vector

Screen dimensions (in pixels) that the image should occupy, specified as a 2-element
numeric row vector. By default, [mrows ncols] is equal to the image size, so each
image pixel covers one screen pixel.

See Also
imshow | iptgetpref | iptsetpref

Introduced before R2006a

 truesize

1-2925

visboundaries
Plot region boundaries

Syntax
visboundaries(BW)
visboundaries(B)
visboundaries(ax, ___)
visboundaries(___,Name,Value)
h = visboundaries(___)

Description
visboundaries(BW) draws boundaries of regions in the binary image BW on the current
axes. BW is a 2D binary image where pixels that are logical true belong to the foreground
region and pixels that are logical false constitute the background. visboundaries
uses bwboundaries to find the boundary pixel locations in the image.

visboundaries(B) draws region boundaries specified by B, where B is a cell array
containing the boundary pixel locations of the regions, similar in structure to the first
output from bwboundaries. Each cell contains a Q-by-2 matrix, where Q is the number
of boundary pixels for the corresponding region. Each row of these Q-by-2 matrices
contains the row and column coordinates of a boundary pixel.

visboundaries(ax, ___) draws region boundaries on the axes specified by ax.

visboundaries(___,Name,Value) passes the name-value pair arguments to specify
additional properties of the boundaries. Parameter names can be abbreviated.

h = visboundaries(___) returns a handle h, for the boundaries.

Examples

1 Functions — Alphabetical List

1-2926

Compute Boundaries and Plot on Image

Read image.

BW = imread('blobs.png');

Compute boundaries.

B = bwboundaries(BW);

Display image and plot boundaries on image.

imshow(BW)
hold on
visboundaries(B)

 visboundaries

1-2927

Visualize Segmentation Result

Read image and display it.

I = imread('toyobjects.png');
imshow(I)
hold on

Segment the image using the active contours (snakes) algorithm. First, specify the initial
contour location close to the object that is to be segmented.

1 Functions — Alphabetical List

1-2928

mask = false(size(I));
mask(50:150,40:170) = true;

Display the initial contour on the original image in blue.

visboundaries(mask,'Color','b');

Segment the image using the 'edge' method using 200 iterations.

bw = activecontour(I, mask, 200, 'edge');

Display the final contour on the original image in red.

 visboundaries

1-2929

visboundaries(bw,'Color','r');
title('Blue - Initial Contour, Red - Final Contour');

Input Arguments
BW — Binary image
logical array

1 Functions — Alphabetical List

1-2930

Binary image, specified as a logical array.
Data Types: logical

B — Boundary pixel locations
cell array of Q-by-2 matrices containing row and column coordinates

Boundary pixel locations, specified as a cell array of Q-by-2 matrices containing row and
column coordinates, where Q is the number of boundary pixels for the corresponding
region.
Data Types: cell

ax — Image on which to draw boundaries
current axes (default) | axes object

Image on which to draw boundaries, specified as an axes object.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: visboundaries(bw,'Color','b');

Color — Color of boundary
'red' (default) | RGB triplet | hexadecimal color code | color name | short color name

Color of the boundary, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

 visboundaries

1-2931

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: visboundaries(bw,'Color','r');
Example: visboundaries(bw,'Color','green');
Example: visboundaries(bw,'Color',[0 0 1]);

1 Functions — Alphabetical List

1-2932

Example: visboundaries(bw,'Color','#FF8800');

LineStyle — Style of boundary line
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of boundary edge, specified as the comma-separated pair consisting of
'LineStyle' and any line specifier in the table below.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Example: visboundaries(bw,'LineStyle','-.');

LineWidth — Width of the line used for the boundary
2 points (default) | numeric value

Width of the line used for the boundary, specified as a numeric value. Specify this value in
points, where one point = 1/72 inch.
Example: visboundaries(bw,'LineWidth', 4);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

EnhanceVisibility — Augment the drawn boundary with contrasting features
true (default) | false

Augment the drawn boundary with contrasting features to improve visibility on a varying
background, specified as the logical flag true or false.
Example: visboundaries(bw,'EnhanceVisibility',true);
Data Types: logical

 visboundaries

1-2933

Output Arguments
h — Boundary lines
hggroup object

Boundary line, returned as an hggroup object. h is the child of the axes ax if specified,
otherwise h is the child of the current axes.

See Also
bwboundaries | bwperim | bwtraceboundary | viscircles

Introduced in R2015a

1 Functions — Alphabetical List

1-2934

viscircles
Create circle

Syntax
viscircles(centers,radii)
viscircles(ax,centers,radii)
viscircles(___ ,Name,Value)
h = viscircles(___)

Description
viscircles(centers,radii) draws circles with specified centers and radii onto
the current axes.

viscircles(ax,centers,radii) draws circles onto the axes specified by ax.

viscircles(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments, using any of the previous syntaxes. Parameter names can
be abbreviated.

h = viscircles(___) returns a handle, h, to the drawn circles.

Examples

Draw Lines Around Bright and Dark Circles in Image

Read the image into the workspace and display it.

A = imread('circlesBrightDark.png');
imshow(A)

 viscircles

1-2935

Define the radius range.

Rmin = 30;
Rmax = 65;

Find all the bright circles in the image within the radius range.

1 Functions — Alphabetical List

1-2936

[centersBright, radiiBright] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','bright');

Find all the dark circles in the image within the radius range.

[centersDark, radiiDark] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','dark');

Draw blue lines around the edges of the bright circles.

viscircles(centersBright, radiiBright,'Color','b');

 viscircles

1-2937

Draw red dashed lines around the edges of the dark circles.

viscircles(centersDark, radiiDark,'LineStyle','--');

1 Functions — Alphabetical List

1-2938

 viscircles

1-2939

Clear Axes Before Plotting Circles

The viscircles function does not clear the target axes before plotting circles. To
remove circles that have been previously plotted in an axes, use the cla function. To
illustrate, this example creates a new figure and then loops, drawing a set of circles with
each iteration, clearing the axes each time.

figure
colors = {'b','r','g','y','k'};

for k = 1:5
 % Create 5 random circles to display,
 X = rand(5,1);
 Y = rand(5,1);
 centers = [X Y];
 radii = 0.1*rand(5,1);

 % Clear the axes.
 cla

 % Fix the axis limits.
 xlim([-0.1 1.1])
 ylim([-0.1 1.1])

 % Set the axis aspect ratio to 1:1.
 axis square

 % Set a title.
 title(['k = ' num2str(k)])

 % Display the circles.
 viscircles(centers,radii,'Color',colors{k});

 % Pause for 1 second.
 pause(1)
end

1 Functions — Alphabetical List

1-2940

Input Arguments
centers — Coordinates of circle centers
two-column matrix

Coordinates of circle centers, specified as a P-by-2 matrix, such as that obtained from
imfindcircles. The x-coordinates of the circle centers are in the first column and the y-
coordinates are in the second column. The coordinates can be integers (of any numeric
type) or floating-point values (of type double or single).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 viscircles

1-2941

radii — Circle radii
column vector

Circle radii, specified as a column vector such as that returned by imfindcircles. The
radius value at radii(j) corresponds to the circle with center coordinates
centers(j,:). The values of radii can be nonnegative integers (of any numeric type)
or floating-point values (of type double or single).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ax — Axes in which to draw circles
handle

Axes in which to draw circles, specified as a handle object returned by gca or axes.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: viscircles(centers,radii,'Color','b') specifies blue circle edges,
using the short color name for blue.

EnhanceVisibility — Augment drawn circles with contrasting features to
improve visibility
true (default) | false

Augment drawn circles with contrasting features to improve visibility, specified as a
logical value true or false. If you set the value to true, viscircles draws a
contrasting circle below the colored circle.
Data Types: logical

Color — Color of boundary
'red' (default) | RGB triplet | hexadecimal color code | color name | short color name

Color of the boundary, specified as an RGB triplet, a hexadecimal color code, a color
name, or a short color name.

1 Functions — Alphabetical List

1-2942

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 viscircles

1-2943

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: viscircles(centers,radii,'Color','r');
Example: viscircles(centers,radii,'Color','green');
Example: viscircles(centers,radii,'Color',[0 0 1]);
Example: viscircles(centers,radii,'Color','#FF8800');

LineStyle — Line style of circle edge
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of circle edge, specified as the comma-separated pair consisting of
'LineStyle' and any line specifier in the table below.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of circle edge
2 (default) | double

Width of circle edge, specified a positive floating-point double value. Line width is
expressed in points, where each point equals 1/72 of an inch.

Output Arguments
h — Circles drawn
hggroup object

1 Functions — Alphabetical List

1-2944

Circles drawn, returned as an hggroup object. h is the child of the axes ax if specified,
otherwise h is the child of the current axes.

See Also
imdistline | imfindcircles | imtool | visboundaries

Introduced in R2012a

 viscircles

1-2945

volshow
Display volumetric data

Description
Display volumetric data, creating a volshow object with properties that control the
appearance of the display.

Creation

Syntax
volshow(V)
volshow(V,Name,Value)
h = volshow(___)

Description
volshow(V) displays 3-D grayscale volume V in a figure. You can rotate and zoom in and
out on the display interactively using the mouse.

volshow(V,Name,Value) displays the volume, using one or more name-value pairs to
set properties that control the visualization of the volume. For a list of name-value pairs,
see “Properties” on page 1-2947. Enclose each property in quotes. For example,
'BackgroundColor'.

h = volshow(___) returns a volshow object with properties that can be used to
control visualization of the volume.

Input Arguments
V — Volumetric data
3-D grayscale volume

1 Functions — Alphabetical List

1-2946

Volumetric data, specified as a 3-D grayscale volume.

Properties
Alphamap — Transparency map for the volume content
linspace(0,1,256)' (default) | 256-by-1 numeric vector

Transparency map for the volume content, specified as a 256-by-1 numeric array, with
values in the range [0 1].

BackgroundColor — Color of the background
[0.3 0.75 0.93] (default) | RGB triplet | color name | short color name

Color of the background, specified as a MATLAB ColorSpec. The intensities must be in
the range [0,1].

CameraPosition — Location of camera
[4 4 2.5] (default) | three-element vector

Location of camera, or the viewpoint, specified as a three-element vector of the form [x
y z]. This vector defines the axes coordinates of the camera location, which is the point
from which you view the axes. The camera is oriented along the view axis, which is a
straight line that connects the camera position and the camera target. Changing the
CameraPosition property changes the point from which you view the volume. For an
illustration, see “Camera Graphics Terminology” (MATLAB). Interactively rotating the
volume modifies the value of this property.

CameraUpVector — Vector defining upwards direction
[0 0 1] (default) | three-element vector

Vector defining upwards direction, specified as a three-element direction vector of the
form [x y z]. By default, volshow defines the z-axis as the up direction ([0 0 1]). For
an illustration, see “Camera Graphics Terminology” (MATLAB). Interactively rotating the
volume modifies the value of this property.

CameraViewAngle — Field of view
15 (default) | numeric scalar

Field of view, specified as a scalar angle greater than or equal to 0 and less than 180. The
greater the angle, the larger the field of view. Also, the bigger the angle, objects appear
smaller in the scene. For an illustration, see “Camera Graphics Terminology” (MATLAB).

 volshow

1-2947

CameraTarget — Point used as camera target
[0 0 0] (default) | three-element vector

Point used as camera target, specified as a three-element vector of the form [x y z].
The camera is oriented along the view axis, which is a straight line that connects the
camera position and the camera target. For an illustration, see “Camera Graphics
Terminology” (MATLAB).

Colormap — Colormap of the volume content
gray(256) (default) | 256-by-3 numeric array

Colormap of the volume content, specified as a 256-by-3 numeric array with values in the
range [0 1].

InteractionsEnabled — Interactivity of the volume
true (default) | false

Interactivity of the volume, specified as true or false. When true (default), you can
zoom using the mouse scroll wheel, and rotate by clicking and dragging on the volume.
Rotation and zoom are performed about the value specified by CameraTarget. When
false, you cannot interact with the volume.

IsosurfaceColor — Isosurface color
RGB triplet | color name | short color name

Isosurface color, specified as a MATLAB ColorSpec, with values in the range [0 1]. This
property specifies the volume color when the Renderer is set to 'Isosurface'.

Isovalue — Value that defines the surface of the volume
0.49 (default) | positive integer

Value that defines the surface of the volume drawn when Renderer is set to
'Isosurface', specified as a numeric array. Value must be in the range [0 1].

Parent — Parent of volshow object
gcf (default) | uipanel | figure

Parent of volshow object, specified as a handle to a uipanel or figure. If you do not
specify a parent, the parent of the volshow object is gcf.

Renderer — Rendering style
'VolumeRendering' | 'MaximumIntensityProjection' | 'Isosurface'

1 Functions — Alphabetical List

1-2948

Rendering style, specified as one of the values in this table. When the volume is logical,
the default Renderer is 'Isosurface', otherwise the default Renderer is
'VolumeRendering'.

Value Description
'VolumeRendering' View the volume based on the specified

color and transparency for each voxel.
'MaximumIntensityProjection' View the voxel with the highest intensity

value for each ray projected through the
data.

'Isosurface' View an isosurface of the volume specified
by the value in Isovalue.

ScaleFactors — Scale factors used to rescale volume
[1 1 1] (default) | 1-by-3 positive numeric array.

Scale factors used to rescale volume, specified as a 1-by-3 positive numeric array. The
values in the array correspond to the scale factor applied in the x, y, and z direction.

Object Functions
setVolume Set new volume

Examples

Create Animated GIF of Spiral Volume

Load and view the volume.

load('spiralVol.mat');
h = volshow(spiralVol);

 volshow

1-2949

Specify the name of the GIF file.

filename = 'animatedSpiral.gif';

Create an array of camera positions around the unit circle.

vec = linspace(0,2*pi(),120)';
myPosition = [cos(vec) sin(vec) ones(size(vec))];

Loop through and create an image at each camera position.

for idx = 1:120
 % Update current view.
 h.CameraPosition = myPosition(idx,:);

1 Functions — Alphabetical List

1-2950

 % Use getframe to capture image.
 I = getframe(gcf);
 [indI,cm] = rgb2ind(I.cdata,256);
 % Write frame to the GIF File.
 if idx == 1
 imwrite(indI, cm, filename, 'gif', 'Loopcount', inf, 'DelayTime', 0.05);
 else
 imwrite(indI, cm, filename, 'gif', 'WriteMode', 'append', 'DelayTime', 0.05);
 end
end

 volshow

1-2951

Visualize Volume of MRI Data

Load MRI data and remove the singleton dimension.

load mri
V = squeeze(D);

Generate a color map and transparency (alpha) map suited for MRI images.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255]) ./ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

View the volume with the custom color map and transparency map. Click and drag the
mouse to rotate the volume. Use the scroll wheel to zoom in and out of the volume.

vol = volshow(V,'Colormap',colormap,'Alphamap',alphamap);

1 Functions — Alphabetical List

1-2952

Visualize CT Volumetric Data

Load data.

load mri
V = squeeze(D);

Generate a colormap and an alphamap that are ideal for visualizing CT images.

intensity = [-3024,-16.45,641.38,3071];
alpha = [0, 0, 0.72, 0.72];
color = ([0 0 0; 186 65 77; 231 208 141; 255 255 255]) ./ 255;

 volshow

1-2953

queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

View volume with custom Colormap and Alphamap

volshow(V,'Colormap',colormap,'Alphamap',alphamap);

See Also
Volume Viewer | isosurface | labelvolshow | slice

1 Functions — Alphabetical List

1-2954

Introduced in R2019a

 volshow

1-2955

setVolume
Set new volume

Syntax
setVolume(hVol,V)

Description
setVolume(hVol,V) updates the volshow object hVol with a new volume V.
setVolume preserves the current viewpoint and other visualization settings remain
unchanged.

Examples

Change the Volume in volshow Object

Load two volumes.

load mri
V = squeeze(D);

load spiralVol

Display one of the volumes, using volshow.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255]) ./ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);
vol = volshow(V,'Colormap',colormap,'Alphamap',alphamap);

1 Functions — Alphabetical List

1-2956

Change rendering settings.

newColormap = hot(256);
vol.Colormap = newColormap;
vol.BackgroundColor = 'magenta';

 setVolume

1-2957

Change the volume in the volshow object. Note that, when changing the volume, the
volshow object preserves your rendering settings.

setVolume(vol,spiralVol)

1 Functions — Alphabetical List

1-2958

Input Arguments
hVol — Volume visualization
volshow object

Volume visualization, specified as a volshow object.

V — Volumetric data
3-D grayscale volume

Volumetric data, specified as a 3-D grayscale volume.

 setVolume

1-2959

See Also
volshow

Introduced in R2019a

1 Functions — Alphabetical List

1-2960

warp
Display image as texture-mapped surface

Syntax
warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(Z, ___)
warp(X,Y,Z, ___)
h = warp(___)

Description
warp(X,map) displays the indexed image X with colormap map as a texture map on a
simple rectangular surface.

warp(I,n) displays the intensity image I with n levels as a texture map on a simple
rectangular surface.

warp(BW) displays the binary image BW as a texture map on a simple rectangular surface.

warp(RGB) displays the truecolor image RGB as a texture map on a simple rectangular
surface.

warp(Z, ___) displays the image on the surface Z.

warp(X,Y,Z, ___) displays the image on the surface (X,Y,Z).

h = warp(___) returns a handle to the texture-mapped surface.

Examples

 warp

1-2961

Warp Indexed Image over Curved Surface

This example shows how to warp an indexed image over a nonuniform surface. This
example uses a curved surface centered at the origin.

Read an indexed image into the workspace.

[I,map] = imread('forest.tif');

Create the surface. First, define the x- and y-coordinates of the surface. This example
uses arbitrary coordinates that are unrelated to the indexed image. Note that the size of
the coordinate matrices X and Y do not need to match the size of the image.

[X,Y] = meshgrid(-100:100,-80:80);

Define the height Z of the surface at the coordinates given by (X,Y).

Z = -(X.^2 + Y.^2);

Warp the image over the surface defined by the coordinates (X,Y,Z).

figure
warp(X,Y,Z,I,map);

1 Functions — Alphabetical List

1-2962

Explore the warped image interactively using the rotate and data cursor tools.

Warp Grayscale Image Based on Intensity

Read a grayscale image into the workspace.

I = imread('coins.png');

Warp the image over the surface whose height is equal to the intensity of the image I.
Specify the number of graylevels.

 warp

1-2963

figure
warp(I,I,128);

Note that the x- and y-coordinates of the surface were not specified in the call to warp
and thus default to the image pixel indices. Explore the warped image interactively using
the rotate and data cursor tools.

Input Arguments
X — Indexed image
2-D array of real numeric values

1 Functions — Alphabetical List

1-2964

Indexed image, specified as a 2-D array of real numeric values. The values in X are an
index into map, an n-by-3 array of RGB values.
Data Types: single | double | uint8 | uint16 | int16 | logical

map — Colormap
n-by-3 array of real numeric values

Colormap, specified as an n-by-3 array of real numeric values. Each row specifies an RGB
color value. When map is type single or double, values must be in the range [0, 1].
Data Types: single | double | uint8

I — Intensity image
2-D array of real numeric values

Intensity image, specified as a 2-D array of real numeric values.
Data Types: single | double | uint8 | uint16 | int16 | logical

n — Number of grayscale levels
positive integer

Number of grayscale levels, specified as a positive integer.
Data Types: double | uint8 | uint16 | logical

BW — Binary image
2-D array of logical values

Binary image, specified as a 2-D array of logical values.
Data Types: single | double | uint8 | uint16 | int16 | logical

RGB — Truecolor image
m-by-n-by-3 array of real numeric values

Truecolor image, specified as an m-by-n-by-3 array of real numeric values.
Data Types: single | double | uint8 | uint16 | int16 | logical

Z — Height of surface
2-D array of real numeric values

Height of surface, specified as a 2-D array of logical values. When Z is not specified, the
surface is flat with a uniform height of 0.

 warp

1-2965

Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64 | logical

X — x-coordinates of surface
2-D array of real numeric values

x-coordinates of surface, specified as a 2-D array of real numeric values.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64 | logical

Y — y-coordinates of surface
2-D array of real numeric values

y-coordinates of surface, specified as a 2-D array of real numeric values.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64 | logical

Output Arguments
h — Texture-mapped surface object created by warp
texture-mapped surface object

Texture-mapped surface object created by warp, specified as a texture-mapped surface
object.

Tips
• Texture-mapped surfaces are generally rendered more slowly than images.

See Also
image | imagesc | imshow | surf

Introduced before R2006a

1 Functions — Alphabetical List

1-2966

images.geotrans.Warper
Apply same geometric transformation to many images efficiently

Description
A Warper object applies an affine2d or projective2d geometric transformation to
images with a specific size.

Creation

Syntax
w = images.geotrans.Warper(tform,inputSize)
w = images.geotrans.Warper(tform,inputRef)
w = images.geotrans.Warper(tform,inputRef,outputRef)
w = images.geotrans.Warper(sourceX,sourceY)
w = images.geotrans.Warper(___ ,Name,Value)

Description
w = images.geotrans.Warper(tform,inputSize) creates an image warper from
the geometric transformation object tform and sets the ImageSize property.

w = images.geotrans.Warper(tform,inputRef) specifies the coordinate system of
the input images, inputRef.

w = images.geotrans.Warper(tform,inputRef,outputRef) specifies the
coordinate system of the output image, outputRef. This syntax can be used to improve
performance by limiting the application of the geometric transformation to a specific
output region of interest.

w = images.geotrans.Warper(sourceX,sourceY) specifies the input image
coordinates, sourceX and sourceY, required to perform the geometric transformation.

 images.geotrans.Warper

1-2967

w = images.geotrans.Warper(___ ,Name,Value) sets the Interpolation and
FillValue properties using one or more name-value pair arguments. Enclose each property
name in single quotes.

For example, warper =
images.geotrans.Warper(tform,size(im),'FillValue',1) specifies a fill value
of 1 for pixels outside the original image.

Input Arguments
tform — Geometric transformation
affine2d object | projective2d object

Geometric transformation, specified as an affine2d or projective2d geometric
transformation object.

inputRef — Referencing object associated with input image
imref2d object

Referencing object associated with the input image, specified as an imref2d spatial
referencing object.

outputRef — Referencing object associated with output image
imref2d object

Referencing object associated with the output image, specified as an imref2d spatial
referencing object.

sourceX, sourceY — Input image coordinates
2-D matrix

Input image coordinates, specified as a 2-D matrix the same size as the required output
image. Each (x, y) index in sourceX and sourceY specifies the location in the input
image for the corresponding output pixel.
Data Types: single

Properties
InputSize — Size of the input images
2-element vector of positive integers | 3-element vector of positive integers

1 Functions — Alphabetical List

1-2968

Size of the input images, specified as a 2- or 3-element vector of positive integers.

OutputSize — Size of the first two dimensions of the output image
2-element vector of positive integers

Size of the first two dimensions of the output image, specified as a 2-element vector of
positive integers.

Interpolation — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified as 'linear', 'nearest', or 'cubic'.
Data Types: char | string

FillValue — Value used for output pixels outside the input image boundaries
0 (default) | numeric scalar

Value used for output pixels outside the input image boundaries, specified as a numeric
scalar. Warper casts the fill value to the data type of the input image.

Object Functions
warp Apply geometric transformation

Examples

Apply Shear to Multiple Images

Pick a set of images of the same size. The example uses a set of images that show cells.

imds = imageDatastore(fullfile(matlabroot,'toolbox','images','imdata','AT*'));

Create a geometric transform to rotate each image by 45 degrees and to shrink each
image.

tform = affine2d([0.5*cos(pi/4) sin(pi/4) 0;
 -sin(pi/4) 0.5*cos(pi/4) 0;
 0 0 1]);

 images.geotrans.Warper

1-2969

Create a Warper object, specifying the geometric transformation object, tform, and the
size of the input images.

im = readimage(imds,1);
warper = images.geotrans.Warper(tform,size(im));

Determine the number of images to be processed and preallocate the output array.

numFiles = numel(imds.Files);
imr = zeros([warper.OutputSize 1 numFiles],'like',im);

Apply the geometric transformation to each of the input images by calling the warp
function of the Warper object.

for ind = 1:numFiles
 im = read(imds);
 imr(:,:,1,ind) = warp(warper,im);
end

Visualize the output images. (Turn off the warning message about the images being
scaled for display.)

warning('off','images:initSize:adjustingMag')
montage(imr);

1 Functions — Alphabetical List

1-2970

Tips
• If the input images are RGB images or 3-D grayscale images of size m-by-n-by-p, then

warp applies the transformation to each color channel or plane p independently.

 images.geotrans.Warper

1-2971

Algorithms
Warper is optimized to apply the same geometric transformation across a batch of same
size images. Warper achieves this optimization by splitting the warping process into two
steps: computation of the transformed coordinates (done once) and interpolation on the
image (done for each image). Compared to imwarp, this approach speeds up the whole
process significantly for small to medium-sized images, with diminishing returns for
larger images.

See Also
Functions
imrotate | imtranslate | imwarp | warp

Objects
affine2d | imref2d | projective2d

Introduced in R2017b

1 Functions — Alphabetical List

1-2972

warp
Apply geometric transformation

Syntax
B = warp(w,A)

Description
B = warp(w,A) performs the geometrical transformation defined in w on input image A
and returns the warped image in B.

Input Arguments
w — Image warper
Warper object

Image warper, specified as a Warper object.

A — Input image
numeric matrix

Input image, specified as a numeric matrix, with size m-by-n or m-by-n-by-p. The size of A
must match w.InputSize.
Data Types: single | int16 | uint8

Output Arguments
B — Transformed image
numeric matrix

Transformed image, returned as a numeric matrix. B has the same type as A and its first
two dimensions are w.OutputSize. If A has p planes, B will also have p planes.

 warp

1-2973

See Also
Introduced in R2017b

1 Functions — Alphabetical List

1-2974

watershed
Watershed transform

The watershed transform finds "catchment basins" or "watershed ridge lines" in an image
by treating it as a surface where light pixels represent high elevations and dark pixels
represent low elevations. The watershed transform can be used to segment contiguous
regions of interest into distinct objects.

Syntax
L = watershed(A)
L = watershed(A,conn)

Description
L = watershed(A) returns a label matrix L that identifies the watershed regions of the
input matrix A.

L = watershed(A,conn) specifies the connectivity to be used in the watershed
computation.

Examples

Compute Watershed Transform and Display Resulting Label Matrix

Compute the watershed transform and display the resulting label matrix as an RGB
image. This example works with 2-D images.

Create a binary image containing two overlapping circular objects and display it.

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;

 watershed

1-2975

lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure
imshow(bw,'InitialMagnification','fit'), title('bw')

Compute the distance transform of the complement of the binary image.

D = bwdist(~bw);
figure
imshow(D,[],'InitialMagnification','fit')
title('Distance transform of ~bw')

1 Functions — Alphabetical List

1-2976

Complement the distance transform, and force pixels that don't belong to the objects to
be at Inf .

D = -D;
D(~bw) = Inf;

Compute the watershed transform and display the resulting label matrix as an RGB
image.

L = watershed(D);
L(~bw) = 0;
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure

 watershed

1-2977

imshow(rgb,'InitialMagnification','fit')
title('Watershed transform of D')

Compute Watershed Transform of 3-D Binary Image

Make a 3-D binary image containing two overlapping spheres.

center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];

1 Functions — Alphabetical List

1-2978

[x,y,z] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...
 (z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...
 (z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

Compute the distance transform.

 watershed

1-2979

D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

Complement the distance transform, force nonobject pixels to be Inf, and then compute
the watershed transform.

D = -D;
D(~bw) = Inf;
L = watershed(D);
L(~bw) = 0;

1 Functions — Alphabetical List

1-2980

figure
isosurface(x,y,z,L==1,0.5)
isosurface(x,y,z,L==2,0.5)
axis equal
title('Segmented objects')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

 watershed

1-2981

Input Arguments
A — Input image
numeric array | logical array

Input image, specified as a numeric or logical array of any dimension.
Example: RGB = imread('pears.png'); I = rgb2gray(RGB);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8
for 2-D images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch.

The neighborhood of a pixel are the
adjacent pixels in the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or
corners touch. The neighborhood of a
pixel are the adjacent pixels in the
horizontal, vertical, or diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch.

The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

1 Functions — Alphabetical List

1-2982

Value Meaning
18-connected Pixels are connected if their faces or

edges touch. The neighborhood of a pixel
are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

26-connected Pixels are connected if their faces, edges,
or corners touch. The neighborhood of a
pixel are the adjacent pixels in:

• One of these directions: in, out, left,
right, up, and down

• A combination of two directions, such
as right-down or in-up

• A combination of three directions,
such as in-right-up or in-left-down

For higher dimensions, watershed uses the default value
conndef(ndims(A),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a
3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood
locations relative to the center element of conn. Note that conn must be symmetric about
its center element. See “Specifying Custom Connectivities” for more information.

Note If you specify a nondefault connectivity, pixels on the edge of the image might not
be considered to be border pixels. For example, if conn = [0 0 0; 1 1 1; 0 0 0],
elements on the first and last row are not considered to be border pixels because,
according to that connectivity definition, they are not connected to the region outside the
image.

Data Types: double | logical

 watershed

1-2983

Output Arguments
L — Label matrix
numeric array of nonnegative integers

Label matrix, specified as a numeric array of nonnegative integers. The elements labeled
0 do not belong to a unique watershed region. The elements labeled 1 belong to the first
watershed region, the elements labeled 2 belong to the second watershed region, and so
on.

Tips
• The watershed transform algorithm used by this function changed in version 5.4

(R2007a) of the Image Processing Toolbox software. The previous algorithm
occasionally produced labeled watershed basins that were not contiguous. If you need
to obtain the same results as the previous algorithm, use the function
watershed_old.

• To prevent oversegmentation, remove shallow minima from the image by using the
imhmin function before you use the watershed function.

Algorithms
watershed uses the Fernand Meyer algorithm [1].

References
[1] Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol.

38, July 1994, pp. 113-125.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-2984

Usage notes and limitations:

• watershed supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, watershed
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

• Supports only 2-D images
• Supports only 4 or 8 connectivity
• Supports images containing up to 65,535 regions
• Output type is always uint16

See Also
bwdist | bwlabel | bwlabeln | imhmin | regionprops

Introduced before R2006a

 watershed

1-2985

whitepoint
XYZ color values of standard illuminants

Syntax
xyz = whitepoint
xyz = whitepoint(illuminant)

Description
xyz = whitepoint returns the XYZ value corresponding to the default ICC white
reference illuminant, scaled so that Y = 1.

xyz = whitepoint(illuminant) returns the XYZ value corresponding to the white
reference illuminant, illuminant, scaled so that Y = 1.

Examples

Get XYZ Value of ICC Illuminant
Return the XYZ color space representation of the default white reference illuminant,
'icc'.

wp_icc = whitepoint

wp_icc =

 0.9642 1.0000 0.8249

Note that the second element, corresponding to the Y value, is 1.

Get XYZ Value of d65 Illuminant
Return the XYZ color space representation of the 'd65' white reference illuminant.

1 Functions — Alphabetical List

1-2986

wp_d65 = whitepoint('d65')

wp_d65 =

 0.9504 1.0000 1.0888

Input Arguments
illuminant — White reference illuminant
'icc' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'd65'

White reference illuminant, specified as one of these values:

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a
theoretical reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates
warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: char | string

 whitepoint

1-2987

Output Arguments
xyz — XYZ values
3-element numeric row vector

XYZ values corresponding to the illuminant, returned as a 3-element numeric row vector.
The values are scaled so that Y = 1.
Data Types: double

See Also
applycform | makecform | xyz2double | xyz2lab | xyz2rgb | xyz2uint16

Introduced before R2006a

1 Functions — Alphabetical List

1-2988

wiener2
2-D adaptive noise-removal filtering

Note The syntax wiener2(I,[m n],[mblock nblock],noise) has been removed.
Use the wiener2(I,[m n],noise) syntax instead.

Syntax
J = wiener2(I,[m n],noise)
[J,noise_out] = wiener2(I,[m n])

Description
J = wiener2(I,[m n],noise) filters the grayscale image I using a pixel-wise
adaptive low-pass Wiener filter. [m n] specifies the size (m-by-n) of the neighborhood
used to estimate the local image mean and standard deviation. The additive noise
(Gaussian white noise) power is assumed to be noise.

The input image has been degraded by constant power additive noise. wiener2 uses a
pixelwise adaptive Wiener method based on statistics estimated from a local
neighborhood of each pixel.

[J,noise_out] = wiener2(I,[m n]) returns the estimates of the additive noise
power wiener2 calculates before doing the filtering.

Examples

Remove Noise By Adaptive Filtering

This example shows how to use the wiener2 function to apply a Wiener filter (a type of
linear filter) to an image adaptively. The Wiener filter tailors itself to the local image
variance. Where the variance is large, wiener2 performs little smoothing. Where the
variance is small, wiener2 performs more smoothing.

 wiener2

1-2989

This approach often produces better results than linear filtering. The adaptive filter is
more selective than a comparable linear filter, preserving edges and other high-frequency
parts of an image. In addition, there are no design tasks; the wiener2 function handles
all preliminary computations and implements the filter for an input image. wiener2,
however, does require more computation time than linear filtering.

wiener2 works best when the noise is constant-power ("white") additive noise, such as
Gaussian noise. The example below applies wiener2 to an image of Saturn with added
Gaussian noise.

Read the image into the workspace.

RGB = imread('saturn.png');

Convert the image from truecolor to grayscale.

I = rgb2gray(RGB);

Add Gaussian noise to the image

J = imnoise(I,'gaussian',0,0.025);

Display the noisy image. Because the image is quite large, display only a portion of the
image.

imshow(J(600:1000,1:600));
title('Portion of the Image with Added Gaussian Noise');

1 Functions — Alphabetical List

1-2990

Remove the noise using the wiener2 function.

K = wiener2(J,[5 5]);

Display the processed image. Because the image is quite large, display only a portion of
the image.

figure
imshow(K(600:1000,1:600));
title('Portion of the Image with Noise Removed by Wiener Filter');

 wiener2

1-2991

Input Arguments
I — Input image
2-D numeric array

Input image, specified as a 2-D numeric array.
Data Types: single | double | int16 | uint8 | uint16

[m n] — Neighborhood size
[3 3] (default) | 2-element numeric vector of the form [m n]

Neighborhood size, specified as a 2-element vector [m n] where m is the number of rows
and n is the number of columns. If you omit the [m n] argument, m and n default to 3.

1 Functions — Alphabetical List

1-2992

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical

noise — Additive noise
mean2(localVar) (default) | numeric array

Additive noise, specified as a numeric array. If you do not specify noise, wiener2
calculates the mean of the local variance, mean2(localVar).
Data Types: single | double

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array the same size and class as the input image I.

noise_out — Estimate of additive noise power
numeric array

Estimate of additive noise power, returned as a numeric array.

Algorithms
wiener2 estimates the local mean and variance around each pixel.

μ = 1
NM ∑

n1, n2 ∈ η
a(n1, n2)

and

σ2 = 1
NM ∑

n1, n2 ∈ η
a2(n1, n2) − μ2,

where η is the N-by-M local neighborhood of each pixel in the image A. wiener2 then
creates a pixelwise Wiener filter using these estimates,

b(n1, n2) = μ + σ2− ν2

σ2 (a(n1, n2) − μ),

 wiener2

1-2993

where ν2 is the noise variance. If the noise variance is not given, wiener2 uses the
average of all the local estimated variances.

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ,

Prentice Hall, 1990, p. 548, equations 9.26, 9.27, and 9.29.

See Also
filter2 | medfilt2

Topics
“Remove Noise By Adaptive Filtering”

Introduced before R2006a

1 Functions — Alphabetical List

1-2994

worldToIntrinsic
Convert from world to intrinsic coordinates

Syntax
[xIntrinsic, yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld)
[xIntrinsic,yIntrinsic,zIntrinsic] = worldToIntrinsic(R,xWorld,
yWorld,zWorld)

Description
[xIntrinsic, yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld) maps
points from the 2-D world system (xWorld,yWorld) to the 2-D intrinsic system
(xIntrinsic,yIntrinsic) based on the relationship defined by 2-D spatial referencing
object R.

If the kth input coordinates (xWorld(k),yWorld(k)) fall outside the image bounds in the
world coordinate system, worldToIntrinsic extrapolates xIntrinsic(k) and
yIntrinsic(k) outside the image bounds in the intrinsic coordinate system.

[xIntrinsic,yIntrinsic,zIntrinsic] = worldToIntrinsic(R,xWorld,
yWorld,zWorld) maps points from the world coordinate system to the intrinsic
coordinate system using 3-D spatial referencing object R.

Examples

Convert 2-D World Coordinates to Intrinsic Coordinates

Read a 2-D grayscale image of a knee into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

 worldToIntrinsic

1-2995

Create an imref2d object, specifying the size and the resolution of the pixels. The
DICOM file contains a metadata field PixelSpacing that specifies the image resolution
in each dimension in millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1563 160.1563]
 YWorldLimits: [0.1563 160.1563]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

Display the image, including the spatial referencing object. The axes coordinates reflect
the world coordinates. Notice that the coordinate (0,0) is in the upper left corner.

figure
imshow(A,RA,'DisplayRange',[0 512])

1 Functions — Alphabetical List

1-2996

Select sample points, and store their world x- and y- coordinates in vectors. For example,
the first point has world coordinates (38.44,68.75), the second point is 1 mm to the right
of it, and the third point is 7 mm below it. The last point is outside the image boundary.

 worldToIntrinsic

1-2997

xW = [38.44 39.44 38.44 -0.2];
yW = [68.75 68.75 75.75 -1];

Convert the world coordinates to intrinsic coordinates using worldToIntrinsic.

[xI, yI] = worldToIntrinsic(RA,xW,yW)

xI = 1×4

 123.0080 126.2080 123.0080 -0.6400

yI = 1×4

 220.0000 220.0000 242.4000 -3.2000

The resulting vectors are the intrinsic x- and y- coordinates in units of pixels. Note that
the intrinsic coordinate system is continuous, and some returned intrinsic coordinates
have noninteger values. Also, worldToIntrinsic extrapolates the intrinsic coordinates
of the point outside the image boundary.

Convert 3-D World Coordinates to Intrinsic Coordinates

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128
pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative
purposes, provide a pixel resolution in each dimension. The resolution is in millimeters
per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 XWorldLimits: [1 257]
 YWorldLimits: [1 257]

1 Functions — Alphabetical List

1-2998

 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Select sample points, and store their world x-, y-, and z-coordinates in vectors. For
example, the first point has world coordinates (108,92,52), the second point is 3 mm
above it in the +z-direction, and the third point is 0.2 mm to the right of it in the +x-
direction. The last point is outside the image boundary.

xW = [108 108 108.2 2];
yW = [92 92 92 -1];
zW = [52 55 52 0.33];

Convert the world coordinates to intrinsic coordinates using worldToIntrinsic.

[xI, yI, zI] = worldToIntrinsic(R,xW,yW,zW)

xI = 1×4

 54.0000 54.0000 54.1000 1.0000

yI = 1×4

 46.0000 46.0000 46.0000 -0.5000

zI = 1×4

 13.0000 13.7500 13.0000 0.0825

The resulting vectors are the intrinsic x-, y-, and z-coordinates in units of pixels. Note that
the intrinsic coordinate system is continuous, and some returned intrinsic coordinates
have noninteger values. Also, worldToIntrinsic extrapolates the intrinsic coordinates
of the point outside the image boundary.

 worldToIntrinsic

1-2999

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, returned as a numeric
scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, returned as a numeric
scalar or vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, returned as a numeric
scalar or vector. zWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
xIntrinsic — Coordinates along the x-dimension in the intrinsic coordinate
system
numeric scalar or vector

1 Functions — Alphabetical List

1-3000

Coordinates along the x-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector. xIntrinsic is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yIntrinsic — Coordinates along the y-dimension in the intrinsic coordinate
system
numeric scalar or vector

Coordinates along the y-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector. yIntrinsic is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zIntrinsic — Coordinates along the z-dimension in the intrinsic coordinate
system
numeric scalar or vector

Coordinates along the z-dimension in the intrinsic coordinate system, specified as a
numeric scalar or vector. zIntrinsic is the same length as xWorld and yWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
imref2d | imref3d | intrinsicToWorld | worldToSubscript

Introduced in R2013a

 worldToIntrinsic

1-3001

worldToSubscript
Convert world coordinates to row and column subscripts

Syntax
[I, J] = worldToSubscript(R,xWorld,yWorld)
[I, J, K] = worldToSubscript(R,xWorld,yWorld,zWorld)

Description
[I, J] = worldToSubscript(R,xWorld,yWorld) maps points from the 2-D world
system (xWorld,yWorld) to subscript arrays I and J based on the relationship defined by
2-D spatial referencing object R.

If the kth input coordinates (xWorld(k),yWorld(k)) fall outside the image bounds in the
world coordinate system, worldToSubscript sets the corresponding subscripts I(k) and
J(k) to NaN.

[I, J, K] = worldToSubscript(R,xWorld,yWorld,zWorld) maps points from the
3-D world system to subscript arrays I, J, and K, using 3-D spatial referencing object R.

Examples

Convert 2-D World Coordinates to Row and Column Subscripts

Read a 2-D grayscale image of a knee into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The
DICOM file contains a metadata field PixelSpacing that specifies the image resolution
in each dimension in millimeters per pixel.

1 Functions — Alphabetical List

1-3002

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1563 160.1563]
 YWorldLimits: [0.1563 160.1563]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

Display the image, including the spatial referencing object. The axes coordinates reflect
the world coordinates. Notice that the coordinate (0,0) is in the upper left corner.

figure
imshow(A,RA,'DisplayRange',[0 512])

 worldToSubscript

1-3003

Select sample points, and store their world x- and y- coordinates in vectors. For example,
the first point has world coordinates (38.44,68.75), the second point is 1 mm to the right
of it, and the third point is 7 mm below it. The last point is outside the image boundary.

1 Functions — Alphabetical List

1-3004

xW = [38.44 39.44 38.44 -0.2];
yW = [68.75 68.75 75.75 1];

Convert the world coordinates to row and column subscripts using worldToSubscript.

[rS, cS] = worldToSubscript(RA,xW,yW)

rS = 1×4

 220 220 242 NaN

cS = 1×4

 123 126 123 NaN

The resulting vectors contain the row and column indices that are closest to the point.
Note that the indices are discrete, and that points outside the image boundary have NaN
for both row and column indices.

Also, the order of the input and output coordinates is reversed. The world x-coordinate
vector, xW, corresponds to the second output vector, cS. The world y-coordinate vector,
yW, corresponds to the first output vector, rS.

Convert 3-D World Coordinates to Row, Column, and Plane Subscripts

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128
pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative
purposes, provide a pixel resolution in each dimension. The resolution is in millimeters
per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 worldToSubscript

1-3005

 XWorldLimits: [1 257]
 YWorldLimits: [1 257]
 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Select sample points, and store their world x-, y-, and z-coordinates in vectors. For
example, the first point has world coordinates (108,92,52), the second point is 3 mm
above it in the +z-direction, and the third point is 5.2 mm to the right of it in the +x-
direction. The last point is outside the image boundary.

xW = [108 108 113.2 2];
yW = [92 92 92 -1];
zW = [52 55 52 0.33];

Convert the world coordinates to row, column, and plane subscripts using
worldToSubscript.

[rS, cS, pS] = worldToSubscript(R,xW,yW,zW)

rS = 1×4

 46 46 46 NaN

cS = 1×4

 54 54 57 NaN

pS = 1×4

 13 14 13 NaN

1 Functions — Alphabetical List

1-3006

The resulting vectors contain the column, row, and plane indices that are closest to the
point. Note that the indices are discrete, and that points outside the image boundary have
index values of NaN.

Also, the order of the input and output coordinates is reversed. The world x-coordinate
vector, xW, corresponds to the second output vector, cS. The world y-coordinate vector,
yW, corresponds to the first output vector, rS.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, specified as a numeric
scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, specified as a numeric
scalar or vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, specified as a numeric
scalar or vector. zWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 worldToSubscript

1-3007

Output Arguments
I — Row indices
positive integer scalar or vector

Row indices, returned as a positive integer scalar or vector. I is the same length as
yWorld. For an m-by-n or m-by-n-by-p image, 1 ≤ I ≤ m.
Data Types: double

J — Column indices
positive integer scalar or vector

Column indices, returned as a positive integer scalar or vector. J is the same length as
xWorld. For an m-by-n or m-by-n-by-p image, 1 ≤ J ≤ n.
Data Types: double

K — Plane indices
positive integer scalar or vector

Plane indices, returned as a positive integer scalar or vector. K is the same length as
zWorld. For an m-by-n-by-p image, 1 ≤ K ≤ p.
Data Types: double

See Also
imref2d | imref3d | worldToIntrinsic

Introduced in R2013a

1 Functions — Alphabetical List

1-3008

xyz2double
Convert XYZ color values to double

Syntax
xyzD = xyz2double(xyz)

Description
xyzD = xyz2double(xyz) converts XYZ color values to type double.

Examples

Convert XYZ Color Values to double

This example shows how to convert uint16-encoded XYZ values to double.

Create a uint16 vector specifying a color in XYZ colorspace.

c = uint16([100 32768 65535]);

Convert the XYZ color value to double.

xyz2double(c)

ans = 1×3

 0.0031 1.0000 2.0000

 xyz2double

1-3009

Input Arguments
xyz — Color values to convert
m-by-3 matrix | m-by-n-by-3 image array

Color values to convert, specified as a m-by-3 matrix of color values (one color per row),
or an m-by-n-by-3 image array. The input xyz matrix must be real and nonsparse.
Data Types: uint16

Output Arguments
xyzD — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: double

Algorithms
The Image Processing Toolbox software follows the convention that double-precision XYZ
arrays contain 1931 CIE XYZ values (2° observer). The XYZ arrays that are uint16 follow
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) for
representing XYZ values as unsigned 16-bit integers. There is no standard representation
of XYZ values as unsigned 8-bit integers. The ICC encoding convention is illustrated by
this table.

Value (X, Y, or Z) uint16 Value
0.0 0
1.0 32768
1.0 + (32767/32768) 65535

See Also
applycform | lab2double | lab2uint16 | lab2uint8 | makecform | whitepoint |
xyz2uint16

1 Functions — Alphabetical List

1-3010

Introduced before R2006a

 xyz2double

1-3011

xyz2rgb
Convert CIE 1931 XYZ to RGB

Syntax
rgb = xyz2rgb(xyz)
rgb = xyz2rgb(xyz,Name,Value)

Description
rgb = xyz2rgb(xyz) converts CIE 1931 XYZ values (2° observer) to sRGB values.

rgb = xyz2rgb(xyz,Name,Value) specifies additional conversion options, such as the
color space of the RGB image, using one or more name-value pair arguments.

Examples

Convert XYZ color to sRGB

Convert a color value in the XYZ color space to the sRGB color space.

xyz2rgb([0.25 0.40 0.10])

ans = 1×3

 0.4174 0.7434 0.2152

Convert XYZ Color to Adobe RGB

Convert the color value in XYZ color space to the Adobe RGB (1998) color space.

xyz2rgb([0.25 0.40 0.10],'ColorSpace','adobe-rgb-1998')

1 Functions — Alphabetical List

1-3012

ans = 1×3

 0.5323 0.7377 0.2730

Convert XYZ color to sRGB Specifying Whitepoint

Convert an XYZ color value to sRGB specifying the D50 whitepoint.

xyz2rgb([0.25 0.40 0.10],'WhitePoint','d50')

ans = 1×3

 0.3276 0.7517 0.2869

Convert XYZ color to 8-bit-encoded RGB Color

Convert an XYZ color value to an 8-bit encoded RGB color value.

xyz2rgb([0.25 0.40 0.10],'OutputType','uint8')

ans = 1x3 uint8 row vector

 106 190 55

Input Arguments
xyz — XYZ color values
numeric array

XYZ color values to convert, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one XYZ color value.
• m-by-n-by-3 image

 xyz2rgb

1-3013

• m-by-n-by-3-by-p stack of images

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: xyz2rgb([0.25 0.40 0.10],'ColorSpace','adobe-rgb-1998')

ColorSpace — Color space of the output RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the output RGB values, specified as the comma-separated pair consisting
of 'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify
'linear-rgb', then xyz2rgb returns linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of
'WhitePoint' and a 1-by-3 vector or one of the CIE standard illuminants listed in the
following table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a
theoretical reference.

1 Functions — Alphabetical List

1-3014

Value White Point
'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates

warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: single | double | char

OutputType — Data type of returned RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of returned RGB values, specified as one of the following values: 'double',
'single', 'uint8', or 'uint16'. If you do not specify OutputType, the output type is
the same type as the input.
Data Types: char

Output Arguments
rgb — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same size as the input.
The output type is the same as the input type unless you specify the OutputType
parameter.

 xyz2rgb

1-3015

Tips
• If you specify the output RGB color space as 'linear-rgb', then the output values

are linearized sRGB values. If instead you want the output color space to be linearized
Adobe RGB (1998), then you can use the rgb2lin function.

For example, to convert CIE 1931 XYZ image XYZ to linearized Adobe RGB (1998)
color space, perform the conversion in two steps:

RGBadobe = xyz2rgb(XYZ,'ColorSpace','adobe-rgb-1998');
RGBlinadobe = rgb2lin(RGBadobe,'ColorSpace','adobe-rgb-1998');

See Also
lab2rgb | rgb2lin | rgb2xyz | xyz2lab

Introduced in R2014b

1 Functions — Alphabetical List

1-3016

xyz2lab
Convert CIE 1931 XYZ to CIE 1976 L*a*b*

Syntax
lab = xyz2lab(xyz)
lab = xyz2lab(xyz,Name,Value)

Description
lab = xyz2lab(xyz) converts CIE 1931 XYZ values (2° observer) to CIE 1976 L*a*b*
values.

lab = xyz2lab(xyz,Name,Value) specifies additional options with one or more
name-value pair arguments.

Examples

Convert XYZ Color to L*a*b*

Convert an XYZ color value to L*a*b* using the default reference white point, D65.

xyz2lab([0.25 0.40 0.10])

ans = 1×3

 69.4695 -48.0439 57.1259

Convert XYZ Color to L*a*b* Specifying Whitepoint

Convert an XYZ color value to L*a*b* specifying the D50 whitepoint.

 xyz2lab

1-3017

xyz2lab([0.25 0.40 0.10],'WhitePoint','d50')

ans = 1×3

 69.4695 -49.5717 48.3864

Input Arguments
xyz — Color values to convert
c-by-3 matrix | m-by-n-by-3 image array | m-by-n-by-3-by-f image stack

Color values to convert, specified as a c-by-3 matrix of color values (one color per row), an
m-by-n-by-3 image array, or an m-by-n-by-3-by-f image stack.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: xyz2lab([0.25 0.40 0.10],'WhitePoint','d50')

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as a 1-by-3 vector or one of the CIE standard illuminants,
listed in the following table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates

typical, domestic, tungsten-filament lighting with correlated color
temperature of 2856 K.

'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates
average or north sky daylight with correlated color temperature of 6774
K. Deprecated by CIE.

1 Functions — Alphabetical List

1-3018

Value White Point
'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a

theoretical reference.
'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates

warm daylight at sunrise or sunset with correlated color temperature of
5003 K. Also known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates
mid-morning or mid-afternoon daylight with correlated color
temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates
noon daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles.
Approximation of [0.9642, 1.000, 0.8249] using fixed-point,
signed, 32-bit numbers with 16 fractional bits. Actual value:
[31595,32768, 27030]/32768.

Data Types: single | double | char

Output Arguments
lab — Converted color values
numeric array

Converted color values, returned as a numeric array of the same shape and type as the
input.

See Also
lab2xyz | rgb2lab | xyz2rgb

Introduced in R2014b

 xyz2lab

1-3019

xyz2uint16
Convert XYZ color values to uint16

Syntax
xyz16 = xyz2uint16(xyz)

Description
xyz16 = xyz2uint16(xyz) converts XYZ color values to type uint16.

Examples

Convert XYZ Color Values to uint16

This example shows how to convert XYZ color values from double to uint16.

Create a double vector specifying a color in XYZ colorspace.

c = [0.1 0.5 1.0];

Convert the XYZ color value to uint16.

xyz2uint16(c)

ans = 1x3 uint16 row vector

 3277 16384 32768

1 Functions — Alphabetical List

1-3020

Input Arguments
xyz — Color values to convert
m-by-3 matrix | m-by-n-by-3 image array

Color values to convert, specified as a m-by-3 matrix of color values (one color per row),
or an m-by-n-by-3 image array. The input xyz matrix must be real and nonsparse.
Data Types: double

Output Arguments
xyz16 — Converted color values
numeric array

Converted color values, returned as a numeric array of the same size as the input.
Data Types: uint16

Algorithms
The Image Processing Toolbox software follows the convention that double-precision XYZ
arrays contain 1931 CIE XYZ values (2° observer). The XYZ arrays that are uint16 follow
the convention in the ICC profile specification (ICC.1:2001-4, www.color.org) for
representing XYZ values as unsigned 16-bit integers. There is no standard representation
of XYZ values as unsigned 8-bit integers. The ICC encoding convention is illustrated by
this table.

Value (X, Y, or Z) uint16 Value
0.0 0
1.0 32768
1.0 + (32767/32768) 65535

See Also
applycform | lab2double | lab2uint16 | lab2uint8 | makecform | whitepoint |
xyz2double

 xyz2uint16

1-3021

Introduced before R2006a

1 Functions — Alphabetical List

1-3022

ycbcr2rgb
Convert YCbCr color values to RGB color space

Syntax
rgbmap = ycbcr2rgb(ycbcrmap)
RGB = ycbcr2rgb(YCBCR)

Description
rgbmap = ycbcr2rgb(ycbcrmap) converts the YCbCr color space values in ycbcrmap
to the RGB color space. ycbcrmap is an m-by-3 matrix that contains the YCbCr luminance
(Y) and chrominance (Cb and Cr) color values as columns. Each row in rgbmap represents
the equivalent color to the corresponding row in ycbcrmap.

You optionally can perform the conversion using a GPU (requires Parallel Computing
Toolbox). For more information, see “Image Processing on a GPU”.

RGB = ycbcr2rgb(YCBCR) converts the YCbCr image YCBCR to the equivalent truecolor
image RGB.

Examples

Convert Image from YCbCr to RGB

This example shows how to convert an image from RGB to YCbCr color space and back.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YCbCr color space.

YCBCR = rgb2ycbcr(RGB);

 ycbcr2rgb

1-3023

Convert the YCbCr image back to RGB color space.

RGB2 = ycbcr2rgb(YCBCR);

Display the luminance channel of the image in YCbCr color space alongside the image
that was converted from YCbCr to RGB color space.

figure
subplot(1,2,1)
imshow(YCBCR(:,:,1))
title('Original Luminance (Y)');
subplot(1,2,2)
imshow(RGB2);
title('Image Converted to RGB');

1 Functions — Alphabetical List

1-3024

Input Arguments
ycbcrmap — YCbCr color space values
c-by-3 matrix | gpuArray

YCbCr color space values, specified as a c-by-3 matrix representing c colors. The first
column corresponds to luminance Y. The second and third columns correspond to
chrominance Cb and Cr.

To perform the conversion using a GPU, specify ycbcrmap as a gpuArray that contains a
c-by-3 matrix.
Data Types: single | double

YCBCR — YCbCr image
m-by-n-by-3 array | gpuArray

YCbCr image, specified as an m-by-n-by-3 array.

To perform the conversion using a GPU, specify YCBCR as a gpuArray that contains an m-
by-n-by-3 array.
Data Types: single | double | uint8 | uint16

Output Arguments
rgbmap — RGB color space values
c-by-3 matrix | gpuArray

RGB color space values, returned as a c-by-3 matrix. The three columns represent the
red, green, and blue channels.

If the conversion is performed using a GPU, then rgbmap is returned as a gpuArray
containing a c-by-3 matrix.

RGB — Image in RGB color space
m-by-n-by-3 array | gpuArray

Image in RGB color space, returned as an m-by-n-by-3 array.

 ycbcr2rgb

1-3025

If the conversion is performed using a GPU, then RGB is returned as a gpuArray
containing an m-by-n-by-3 array.

References
[1] Poynton, C. A.A Technical Introduction to Digital Video, John Wiley & Sons, Inc., 1996,

p. 175.

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard
4:3 and Wide-screen 16:9 Aspect Ratios, (1982-1986-1990-1992-1994-1995),
Section 3.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• ycbcr2rgb supports the generation of C code (requires MATLAB Coder). Note that if
you choose the generic MATLAB Host Computer target platform, ycbcr2rgb
generates code that uses a precompiled, platform-specific shared library. Use of a
shared library preserves performance optimizations but limits the target platforms for
which code can be generated. For more information, see “Code Generation Using a
Shared Library”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on
a GPU”.

1 Functions — Alphabetical List

1-3026

See Also
ntsc2rgb | rgb2ntsc | rgb2ycbcr

Introduced before R2006a

 ycbcr2rgb

1-3027

